
Review on Capacity of Gaussian Channel
with or without Feedback

Kenjiro Yanagi (Yamaguchi University)

1 Probability Measure on Banach Space

Let X be a real separable Banach space and X∗ be its dual space. Let B(X) be
Borel σ-field of X. For finite dimensional subspace F of X∗ we define the cylinder
set C based on F as follows

C = {x ∈ X; (⟨x, f1⟩, ⟨x, f2⟩, . . . , ⟨x, fn⟩) ∈ D}.

where n ≥ 1, {f1, f2, . . . , fn} ⊂ F,D ∈ B(Rn). We denote all of cylinder sets based
on F by CF . Then we put

C(X,X∗) =
∪
{CF ;F is finite dimensional subspaces of X∗}.

It is easy to show that C(X,X∗) is a fileld. Let C(X,X∗) be the σ− field generated
by C(X,X∗). Then C(X,X∗) = B(X). If µ is a probability measure on (X,B(X))

satisfying

∫
X

∥x∥2dµ(x) < ∞, then there exist a vector m ∈ X and an operator

R : X∗ → X such that

⟨m,x∗⟩ =
∫
X

⟨x, x∗⟩dµ(x),

⟨Rx∗, y∗⟩ =
∫
X

⟨x−m,x∗⟩⟨x−m, y∗⟩dµ(x),

for any x∗ ∈ X∗, y∗ ∈ Y ∗ . m is a mean vector of µ and R is a covariance operator
of µ which is a bounded linear operator. We remark that R is symmetric in the
following sence.

⟨Rx∗, y∗⟩ = ⟨Ry∗, x∗⟩, for any x∗, y∗ ∈ X∗.

And also R is positive in the following sence.

⟨Rx∗, x∗⟩ ≥ 0, for any x∗ ∈ X∗.
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When µf = µ ◦ f−1 is a Gaussian measure on R for any f ∈ X∗, we call µ a
Gaussian measure on (X,B(X)). For any f ∈ X∗, the characteristic function µ(f)
is represented by

µ(f) = exp{i⟨m, f⟩ − 1

2
⟨Rf, f⟩}, (1.1)

where m ∈ X is mean vector of µ and R : X∗ → X is covariance operator of µ.
Conversely when the characteristic function of a probability measure µ on (X,B(X))
is given by (1.1), µ is Gaussian measure whose mean vector is m ∈ X and covariance
operaor is R : X∗ → X. Then we can represent µ = [m,R] as Gaussian measure
with mean vector µ and covariance operator R.

2 Reproducing Kernel Hilbert Space and Mutual

Information

For any symmetric positive operator R : X∗ → X, there exists a Hilbertian subspace
H (⊂ X) and a continuous embedding j : H → X such that R = jj∗. H is
isomorphic to the reproducing kernel Hilbert space (RKHS) H(kR) which is defined
by positive definite kernel kR satisfying kR(x

∗, y∗) = ⟨Rx∗, y∗⟩. Then we call H
itself a reproducing kernel Hilber space. Now we can define mutual information
as follows. Let X, Y be real Banach spaces. Let µX , µY be probability measures
on (X,B(X)), (Y,B(Y )), respectively, and let µXY be joint probability measure on
(X × Y,B(X)× B(Y )) with marginal distributions µX , µY , respectively. That is

µX(A) = µXY (A× Y ), A ∈ B(X),

µY (B) = µXY (X ×B), B ∈ B(Y ),

If we asume ∫
X

∥x∥2dµX(x) < ∞,

∫
Y

∥y∥2dµY (y) < ∞,

then there exists m = (m1,m2) ∈ X × Y such that for any (x∗, y∗) ∈ X∗ × Y ∗

⟨(m1,m2), (x
∗, y∗)⟩ =

∫
X×Y

⟨(x, y), (x∗, y∗)⟩dµXY (x, y),

where m1,m2 are mean vectors of µX , µY , respectively, and there exists R such that

R =

(
R11 R12

R21 R22

)
: X∗ × Y ∗ → X × Y

satisfies the following relation: for any (x∗, y∗), (z∗, w∗) ∈ X∗ × Y ∗

⟨
(

R11 R12

R21 R22

)(
x∗

y∗

)
,

(
z∗

w∗

)
⟩ =∫

X×Y

⟨(x, y)− (m1,m2), (x
∗, y∗)⟩⟨(x, y)− (m1,m2), (z

∗, w∗)⟩dµXY (x, y),
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where R11 : X∗ → X is covariance operator of µX , R22 : Y ∗ → Y is covariance
operator of µY , and R12 = R∗

21 : Y
∗ → X is cross covariance operator defined by

⟨R12y
∗, x∗⟩ =

∫
X×Y

⟨x−m1, x
∗⟩⟨y −m2, y

∗⟩dµXY (x, y)

for any (x∗, y∗) ∈ Y ∗ ×X∗.

When we put µXY =

[
(0, 0),

(
R11 R12

R21 R22

)]
, we obtain µX = [0, RX ], µY = [0, RY ].

And there exist RKHSs HX ⊂ X of RX , HY ⊂ Y of RY with continuous embeddings
jX : HX → X. jY : HY → Y satisfying RX = jXj

∗
X , RY = jY j

∗
Y , respectively.

Furthermore if we assume RKHS HX is dense in X and RKHS HY is dense in Y ,
then there exist VXY : HY → HX such that

RXY = jXVXY j
∗
Y , ∥VXY ∥ ≤ 1.

Then the following theorem holds.

Theorem 2.1 µXY ∼ µX ⊗ µY if and only if VXY is Hilbert-Schmidt operatorsatis-
fying ∥VXY ∥ < 1.

Next we define mutual information of µXY in the following. We put

F = {({Aj}, {Bj}); {Aj} is finite measurable partitions of X with µX(Aj) > 0 and
{Bj} is finite measurable partitions of Y with µY (Bj) > 0}.

Then

I(µXY ) = sup
∑
i,j

µXY (Ai ×Bj) log
µXY (Ai ×Bj)

µX(Ai)µY (Bj)
.

where the supremum is taken by all ({Ai}, {Bj}) ∈ F .
It is easy to show that if µXY ≪ µX ⊗ µY , then

I(µXY ) =

∫
X×Y

log
dµXY

dµX ⊗ µY

(x, y)dµXY (x, y)

and if otherwise, we put I(µXY ) = ∞.
We introduce several properties without proofs in order to state the exact rep-
resentation of mutual information. Let X be real separable Banach space and

µX = [0, RX ], HX be RKHS of RX . Let LX ≡ X∗∥·∥
µX
2 be the completion by norm

of L2(X,B(X), µX). Then LX is a Hilbert space with the inner product

⟨f, g⟩LX
=

∫
X

⟨x, f⟩⟨x, g⟩dµX(x)

For any embedding jX : HX → HX , there exists an unitary operator UX : LX → HX

such that UXf = j∗Xf, f ∈ X∗.
We give the followingimportant properties of Radon-Nykodym derivatives.
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Lemma 2.1 (Pan [17]) Let X be a real separable Banach space and let µX =
[0, RX ], µY = [m,RY ]. Then µX ∼ µY if and only if the following (1), (2), (3)
are satisfied.

(1) HX = HY ,

(2) m ∈ HX ,

(3) JJ∗ − IX : Hilbert Schmidt operator,

where HX , HY are RKHS of RX , RY , respectively, J : HY → HX is continuous
injection and IX : HX → HX is an identity operator.
And When (1), (2), (3) hold, we assume {λn} is eigenvalues ( ̸= 1) of JJ∗, {vn} is
normalized eigenvectors with respect to {λn}. Then

dµY

dµX

(x) = exp{U−1
X [(JJ∗)−1/2m](x)− 1

2
< m, (JJ∗)−1m >HX

−1

2

∞∑
n=1

[(U−1
X vn)

2(x)(
1

λn

− 1) + log λn]},

where UX : LX → HX is an unitary operator.
And when at least one of (1), (2), (3) does not hold, µX ⊥ µY .

Lemma 2.2 Let RX : X∗ → X, RY : Y ∗ → Y and

RX⊗Y ≡
(

RX 0
0 RY

)
.

Then RX⊗Y : X∗ × Y ∗ → X × Y is symmetric, positive. And let HX , HY , HX⊗Y be
RKHS of RX , RY ,RX⊗Y , respectively. Then HX⊗Y

∼= HX ×HY .

We obtain the exact representation of mutual information.

Theorem 2.2 If µXY ∼ µX ⊗ µY , then I(µXY ) < ∞ and

I(µXY ) = −1

2

∞∑
n=1

log(1− γn),

where {γn} are eigenvalues of V ∗
XY VXY .
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3 Gaussian Channel

We define Gaussian channel without feedback as follows.
Let X be a real separable Banach space representing input space, Y be a real
separable Banach space representing output space, respectively. We assume that
λ : X × B(Y ) → [0, 1] satisfies the following (1), (2).

(1) For any x ∈ X, λ(x, ·) = λx is Gaussian measure on (Y,B(Y )).

(2) For any B ∈ B(Y ), λ(·, B) is Borel measurable function on (X,B(X)).

We call a triple [X,λ, Y ] Gaussian channel. When an input source µX is given, we
can define corresponding output source µY and compound source µXY as follows.
For any B ∈ B(Y )

µY (B) =

∫
X

λ(x,B)dµX(x),

For any C ∈ B(X)× B(Y )

µXY (C) =

∫
X

λ(x,Cx)dµX(x),

where Cx = {y ∈ Y ; (x, y) ∈ X × Y }.
Capacity of Gaussian channel is defined as the supremum of mutual information
I(µXY ) under appropriate constraint on input sources. We putX = Y and λ(x,B) =
µZ(B − x), µZ = [0, RZ ] for the simplicity. When the constraint is given by∫

X

∥x∥2ZdµX(x) ≤ P,

it is called matched Gaussian channel. The capacity is well known to be P/2. On
the other hand when the constraint is given by∫

X

∥x∥2WmuX(x) ≤ P,

where µW is different from µZ , it is called mismatched Gaussian channel. The ca-
pacity is given by Baker [4] in the case of X and Y are the same real separable
Hilbert space H. Yanagi [21] considered the case of channel distribution λx = [0, Rx]
and showed this channel corresponds to the change of density operator ρ after the
measurement.

4 Discere Time Gaussian Chennal with Feedback

The model of discrete time Gaussian channel with feedback is defined as follows.

Yn = Sn + Zn, n = 1, 2, . . . ,
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where Z = {Zn;n = 1, 2, . . .} is nondegenerate zeno mean Gaussian process repre-
senting noise, S = {Sn;n = 1, 2, . . .} is stocastic process representing input signal and
Y = {Yn;n = 1, 2, . . .} is stocastic process representing output signal. The input sig-
nal Snat time n can be represented by some function of message W and output signal
Y1, Y2, . . . , Yn−1 The error probability for code word xn(W,Y n−1),W ∈ {1, 2, . . . , 2nR}
with rate R and length n and the decoding function gn : Rn → {1, 2, . . . , 2nR} is de-
fined by

Pe(n) = Pr{gn(Y n) ̸= W ;Y n = xn(W,Y n−1) + Zn},

whereW is uniform distribution which is independent with the noise Zn = (Z1, Z2, . . . , Zn).
The input signals is assumed average power constraint. That is

1

n

n∑
i=1

E[S2
i ] ≤ P.

The feedback is causal. That is Si(i = 1, 2, . . . , n) is dependent with Z1, Z2, . . . , Zi−1.
In the nonfeedback case Si(i = 1, 2, . . . , n) is independent with Zn = (Z1, Z2, . . . , Zn).
Since the input signals can be assumed Gaussian, we can represent as follows.

Cn,FB(P ) = max
1

2n
log

|R(n)
X +R

(n)
Z |

|R(n)
Z |

,

where | · | is determinant and the maximum is taken under strictly lower triangle

matrix B and nonnegative symmetric matrix R
(n)
X satisfying

Tr[(I +B)R
(n)
X (I +B)t +BR

(n)
Z Bt] ≤ nP.

The nonfeedback capacity is given by the condition B = 0. The feedback capacity
can be represented by the differnt form.

Cn,FB(P ) = max
1

2n
log

|R(n)
S+Z |

|R(n)
Z |

,

where the maximum is taken under nonnegative symmetric matrix R
(n)
S .

Cover and Pombra [9] obtained the following.

Proposition 4.1 (Cover and Pombra [9]) For any ϵ > 0 there exists 2n(Cn,FB(P )−ϵ)

cord words with lblock ength n such that Pe(n) → 0 for n → ∞. Conversely For any
ϵ > 0 and any 2n(Cn,FB(P )+ϵ) code words with block length n, Pe(n) → 0 (n → ∞)
does not hold.

Cn(P ) is given exactly.
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Proposition 4.2 (Gallager [10])

Cn(P ) =
1

2n

k∑
i=1

log
nP + r1 + · · ·+ rk

kri
,

where 0 < r1 ≤ r2 ≤ · · · ≤ rn are eigenvalues of R
(n)
Z , k(≤ n) isthe largest integer

satisfying nP + r1 + r2 + · · ·+ rk > krk.

4.1 Necessary and sufficient condition for increase of feed-
back capacity

We give the following definition for R
(n)
Z .

Definition 4.1 (Yanagi [23]) Let R
(n)
Z = {zij} and Lk = {ℓ(̸= k); zkℓ ̸= 0}. Then

(a) R
(n)
Z is called white if Lk = ∅ for any k.

(b) R
(n)
Z is called completely non-white if Lk ̸= ∅ for any k.

(c) R
(n)
Z is blockwise white if there exists k, ℓ such that Lk = ∅ and Lℓ ̸= ∅.
We denote by R̃Z the submatrix of R

(n)
Z generated by k with Lk ̸= ∅.

Theorem 4.1 (Ihara and Yanagi [12], Yanagi [23]) The following (1), (2) and
(3) hold.

(1) If R
(n)
Z is white, then Cn(P ) = Cn,FB(P ) for any P > 0.

(2) If R
(n)
Z is completely non-white, then Cn(P ) < Cn,FB(P ) for any P > 0.

(3) If R
(n)
Z is blockwise white, then we have two cases in the following.

Let rm is the minimum eigenvalue of R̃Z and nP0 = mrm− (r1+ r2+ · · ·+ rm).

(a) If P > P0, then Cn(P ) < Cn,FB(P ).

(b) If P ≤ P0, then Cn(P ) = Cn,FB(P ).

4.2 Upper bound of Cn,FB(P )

Since we can’t obtain the exact value of Cn,FB(P ) generally, the upper bound of
Cn,FB(P ) is important. The following theorem has a kind of beautiful exprssion.
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Theorem 4.2 (Cover and Pombra [9])

Cn,FB(P ) ≤ min{2Cn(P ), Cn(P ) +
1

2
log 2}.

Proof. We use RS, RZ , · · · for a simplification of R
(n)
S , R

(n)
Z , · · ·. We obtain the

following relation by using properties of covariance matrices.

1

2
RS+Z +

1

2
RS−Z = RS +RZ . (4.1)

By operator concavity of log x

1

2
logRS+Z +

1

2
logRS−Z ≤ log{1

2
RS+Z +

1

2
RS−Z} = log{RS +RZ}.

We take Tr and get

1

2
log |RS+Z |+

1

2
log |RS−Z | ≤ log |RS +RZ |.

Then
1

2

1

2n
log

|RS+Z |
|RZ |

+
1

2

1

2n
log

|RS−Z |
|RZ |

≤ 1

2n
log

|RS +RZ |
|RZ |

.

Now since
1

2n
log

|RS−Z |
|RZ |

≥ 0,

we have
1

2

1

2n
log

|RS+Z |
|RZ |

≤ 1

2n
log

|RS +RZ |
|RZ |

.

By maximizing under the condition Tr[RS] ≤ nP

Cn,FB(P ) ≤ 2Cn(P ).

By (4.1)
RS+Z ≤ 2(RS +RZ).

Then
1

2n
log

|RS+Z |
|RZ |

≤ 1

2n
log

|RS +RZ |
|RZ |

+
1

2
log 2.

By maximizing under the condition Tr[RS] ≤ nP

Cn,FB(P ) ≤ Cn(P ) +
1

2
log 2.

2
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4.3 Cover’s conjecture

Cover gave the following conjecture.

Conjecture 4.1 (Cover [8])

Cn(P ) ≤ Cn,FB(P ) ≤ Cn(2P ).

We remark the following.

Proposition 4.3 (Chen and Yanagi [5])

Cn(2P ) ≤ min{2Cn(P ), Cn(P ) +
1

2
log 2}.

Then if we can prove Conjecture 4.1 , we obtain Theorem 4.2 as its colrollary.
On the other hand we proved conjecture for n = 2. But conjecture is not solved in
the case of n ≥ 3 still now.

Theorem 4.3 (Chen and Yanagi [5])

C2(P ) ≤ C2,FB(P ) ≤ C2(2P ).

4.4 Concavity of Cn,FB(·)
Concavity of non-feedback capacity Cn(·) is clear, but concavity of feedback capacity
Cn,FB(·) is also given.

Theorem 4.4 (Chen and Yanagi [7], Yanagi, Chen and Yu [26]) For any P,Q ≥
0 and any for α, β ≥ 0(α + β = 1)

Cn,FB(αP + βQ) ≥ αCn,FB(P ) + βCn,FB(Q).
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5 Mixed Gaussian channel with feedback

Let Z1, Z2 be Gaussian processes with mean 0 and covariance operator R
(n)
Z1

, R
(n)
Z2

,

respectively. Let Z̃ be Gaussian process with mean 0 and covariance operator

R
(n)

Z̃
= αR

(n)
Z1

+ βR
(n)
Z2

,

where α, β ≥ 0(α + β = 1). We define the mixed Gaussian channel by additive
Gaussian channel with Z̃ as noise. Cn,Z̃(P ) is called capacity of mixed Gaussian
channel without feedback. And Cn,FB,Z̃(P ) is called capacity of mixed Gaussian
channel with feedback. Now we gave concavity of Cn,Z̃(P ) in the following sence.

Theorem 5.1 (Yanagi, Chen and Yu [26], Yanagi, Yu and Chao [27]) For any
P > 0

Cn,Z̃(P ) ≤ αCn,Z1(P ) + βCn,Z2(P ).

Theorem 5.2 (Yanagi, Chen and Yu [26], Yanagi, Yu and Chao [27]) For any
P > 0 there exit P1, P2 ≥ 0(P = αP1 + βP2) such that

Cn,FB,Z̃(P ) ≤ αCn,FB,Z1(P1) + βCn,FB,Z2(P2).

The proof is given by the operator convexity of log(1 + t−1) essencially. But the
following conjecture is not solved still now.

Conjecture 5.1 For P > 0

Cn,FB,Z̃(P ) ≤ αCn,FB,Z1(P ) + βCn,FB,Z2(P ).

Conjecture is partially solved under some condition.

Theorem 5.3 (Yanagi, Yu and Chao [27]) If one of the following conditions is
satisfied, the corollay holds.

(a) R
(n−1)
Z1

= R
(n−1)
Z2

.

(b) RZ̃ is white.

We also give the following conjecture.

Conjecture 5.2 For any Z1, Z2, P1, P2 ≥ 0, α, β ≥ 0(α + β = 1),

αCn,FB,Z1(P1) + βCn,FB,Z2(P2)

≤ Cn,FB,Z̃(αP1 + βP2) +
1

2n
log

|RZ̃ |
|RZ1 |α|RZ2 |β

.
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6 Kim’s result

Definition 6.1 Z = {Zi; i = 1, 2, . . .} is first order moving average Gaussian process
if the following equivalent three conditions.

(1) Zi = αUi−1 + Ui, i = 1, 2, . . ., where Ui ∼ N(0, 1) is i.i.d.

(2) Spectral density function (SDF) f(λ) is given by

f(λ) =
1

2π
|1 + αe−iλ|2 = 1

2π
(1 + α2 + 2α cosλ).

(3) Zn = (Zi, . . . , Zn) ∼ Nn(0, KZ), n ∈ N, where covariance matrix KZ is given by

KZ =


1 + α2 α 0 · · · 0

α 1 + α2 α · · · 0
0 α 1 + α2 · · · 0
...

...
...

... α
0 0 0 · · · 1 + α2

 .

Then entropy rate of Z is given by

h(Z) =
1

4π

∫ π

−π

log{4π2ef(λ)}dλ

=
1

4π

∫ π

−π

log{2πe|1 + αe−iλ|2}dλ

=
1

2
log(2πe) if |α| ≤ 1

=
1

2
log(2πeα2) if |α| > 1,

where the last term is used by the following Poisson’s integral formula.

1

2π

∫ π

−π

log |eiλ − α|dλ = 0 if |α| ≤ 1,

= log |α| if |α| > 1.

Capacity of Gaussian channel with MA(1) Gaussian noise is given by

CZ,FB(P ) = lim
n→∞

Cn,Z,FB(P ).

Recently Kim obtained capacity of Gaussian channel with feedback for the first time.

Theorem 6.1 (Kim [15])

CZ,FB(P ) = − log x0,

where x0 is only one positive solution of the following equation;

Px2 = (1− x2)(1− |α|x)2.
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7 Counter example of Conjecture 4.1

Kim [16] gave the counter example of Conjecture 4.1. When

fZ(λ) =
1

4π
|1 + eiλ|2 = 1 + cosλ

2π
,

input is known to be taken by

fX(λ) =
1− cosλ

2π
.

Then output is given by

fY (λ) = fX(λ) + fZ(λ) =
1

π
.

Then nonfeedback capacity is given by

CZ(2) =
1

4π

∫ π

−π

log
fY (λ)

fZ(λ)
dλ

=
1

4π

∫ π

−π

log
4

|1 + eiλ|2
dλ

=
1

2π

∫ π

−π

log
2

|1 + eiλ|
dλ

=
1

2π

∫ π

−π

log 2dλ− 1

2π

∫ π

−π

log |1 + eiλ|dλ

=
1

2π
2π log 2− 0

= log 2.

On the other hand feedback capacity is given by

CZ,FB(1) = − log x0,

where x0 is only one positive solution of equation

x2 = (1 + x)(1− x)3.

Since x0 <
1

2
is assumed, we have the following

CZ,FB(1) = − log x0 > log 2 = CZ(2).

This is a counter example of Conjecture 4.1. And we can show that there exists
n0 ∈ N such that

Cn0,Z,FB(1) > Cn0,Z(2).
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