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1 Probability Measure on Banach Space

Let X be a real separable Banach space and X* be its dual space. Let B(X) be
Borel o-field of X. For finite dimensional subspace F' of X* we define the cylinder
set C' based on F' as follows

¢ = {fL’GX;(<£C,f1>,<Q?,f2>,...,<l',fn>) € D}

where n > 1, {f1, fo, ..., fu} C F, D € B(R™). We denote all of cylinder sets based
on F' by Cr. Then we put

C(X,X*) =|J{Cp; F is finite dimensional subspaces of X*}.

It is easy to show that C(X, X*) is a fileld. Let C(X, X*) be the o— field generated
by C(X, X*). Then C(X,X*) = B(X). If u is a probability measure on (X, B(X))

satisfying [ ||z||*du(z) < oo, then there exist a vector m € X and an operator

R:X*— XXSUCh that
(m, ") = /X (2, 2%} du(x),

(Ra*, ) = /X (& — m, 2% (& — m, y*)dp(z),

for any x* € X*, y* € Y* . m is a mean vector of i and R is a covariance operator
of p which is a bounded linear operator. We remark that R is symmetric in the
following sence.

(Rx*,y*) = (Ry*,x*), for any z*,y* € X*.
And also R is positive in the following sence.

(Rx*,x*) > 0, for any z* € X*.



When p; = po f~1 is a Gaussian measure on R for any f € X*, we call u a
Gaussian measure on (X, B(X)). For any f € X*, the characteristic function f(f)
is represented by

AP = coplitm, 1)~ SR Y, (1)

where m € X is mean vector of p and R : X* — X is covariance operator of u.
Conversely when the characteristic function of a probability measure p on (X, B(X))
is given by (1.1), p is Gaussian measure whose mean vector is m € X and covariance
operaor is R : X* — X. Then we can represent u = [m, R] as Gaussian measure
with mean vector p and covariance operator R.

2 Reproducing Kernel Hilbert Space and Mutual
Information

For any symmetric positive operator R : X* — X, there exists a Hilbertian subspace
H (C X) and a continuous embedding j : H — X such that R = jj*. H is
isomorphic to the reproducing kernel Hilbert space (RKHS) #H(kg) which is defined
by positive definite kernel kg satisfying kr(z*,y*) = (Rz*,y*). Then we call H
itself a reproducing kernel Hilber space. Now we can define mutual information
as follows. Let X,Y be real Banach spaces. Let ux,uy be probability measures
on (X, B(X)),(Y,B(Y)), respectively, and let pxy be joint probability measure on
(X xY,B(X) x B(Y)) with marginal distributions px, uy, respectively. That is

px(A) = pxy(AxY), A€ B(X),
py(B) = pxy(X x B), B e B(Y),
If we asume

/X |2y () < o, /Y lylduy () < oo,

then there exists m = (my, my) € X x Y such that for any (z*,y*) € X* x Y*

(ma, ma), (2, y")) = / (@ y), (24" duxy (2, ),

XxY

where my, my are mean vectors of px, py, respectively, and there exists R such that

Rll R12 * *
R = T XTXY > X XY
(Rm RQQ)

satisfies the following relation: for any (z*,y*), (2*,w*) € X* x Y*

(o) () (o )=
[ () = ) 0} () = (), (0 e (.0,
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where R;; : X* — X is covariance operator of ux, Res : Y* — Y is covariance
operator of uy, and Ry = R5; : Y* — X is cross covariance operator defined by

<R12y*, 95*> = / (917 — my, 33'*><y — My, y*>dMXY(9E> ?J)
XxXY

for any (z*,y*) € Y* x X*.

When we put pxy = {(0,0), < gi g;z )}, we obtain pux = [0, Rx]|, py = [0, Ry].

And there exist RKHSs Hx C X of Rx, Hy C Y of Ry with continuous embeddings
jx  Hx = X. jy : Hy — Y satistying Rx = jxj%, Ry = jyJjy, respectively.
Furthermore if we assume RKHS Hy is dense in X and RKHS Hy is dense in Y,
then there exist Vxy : Hy — Hx such that

Rxy = jxVxvijy, |Vxy| <1
Then the following theorem holds.

Theorem 2.1 puxy ~ pux ® py if and only if Vxy s Hilbert-Schmidt operatorsatis-
fying Vxy| < 1.

Next we define mutual information of pxy in the following. We put

F ={({A4;},{B;}); {A;} is finite measurable partitions of X with px(A4;) > 0 and
{B;} is finite measurable partitions of Y with py (B;) > 0}.

Then

bey(Ai X Bj)
I = su Ai x Bj)lo '
(kxy) p;juxy( ;) & x Ay (B,)

where the supremum is taken by all ({A4;}, {B;}) € F.
It is easy to show that if uxy < pux ® py, then

dpxy
I = log ————(z,y)d x,
(xy) /XXY gdux®uy( y)duxy (z,y)

and if otherwise, we put I(puxy) = co.

We introduce several properties without proofs in order to state the exact rep-

resentation of mutual information. Let X be real separable Banach space and
|| I*X

ux = [0, Rx], Hx be RKHS of Rx. Let Lx = X117 pe the completion by norm

of Lo(X,B(X), ux). Then Ly is a Hilbert space with the inner product

(e = [ (o, D)o ghdux(z)
X
For any embedding jx : Hx — Hy, there exists an unitary operator Uy : Lx — Hx

such that Ux f = 5% f, f € X*.
We give the followingimportant properties of Radon-Nykodym derivatives.
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Lemma 2.1 (Pan [17]) Let X be a real separable Banach space and let pux =
0, Rx], uy = [m,Ry|. Then px ~ pyif and only if the following (1), (2), (3)
are satisfied.

(1) Hx = Hy,
(2) m € Hx,
(3) JJ* — Ix: Hilbert Schmidt operator,

where Hx, Hy are RKHS of Rx, Ry, respectively, J : Hy — Hyx is continuous
ingection and Ix : Hx — Hx is an identity operator.
And When (1), (2), (3) hold, we assume {\,} is eigenvalues (# 1) of JJ*, {v,} is

normalized eigenvectors with respect to {\,}. Then

9y ()

1 > 1

where Ux : Lx — Hyx 1s an unitary operator.
And when at least one of (1), (2), (3) does not hold, pux L py.

Lemma 2.2 Let Ry : X* = X, Ry : Y* =Y and

_( Rx O
Rz (0
Then Rxgy : X* xY* = X XY is symmetric, positive. And let Hx, Hy, Hxsy be
RKHS Of RX, Ry,RX®y, Tespectively. Then HX@Y = HX X Hy.

We obtain the exact representation of mutual information.

Theorem 2.2 If uxy ~ pux ® py, then I(puxy) < oo and
I(pxy) = ——Zlog 1 —7n),

where {7,} are eigenvalues of Vi, Vyy.



3 Gaussian Channel

We define Gaussian channel without feedback as follows.
Let X be a real separable Banach space representing input space, Y be a real

separable Banach space representing output space, respectively. We assume that
A X x B(Y) — [0,1] satisfies the following (1), (2).

(1) For any x € X, A(z,-) = A, is Gaussian measure on (Y, B(Y)).
(2) For any B € B(Y), A(+, B) is Borel measurable function on (X, B(X)).

We call a triple [ X, \, Y] Gaussian channel. When an input source px is given, we
can define corresponding output source py and compound source pxy as follows.
For any B € B(Y)

iy (B) = /X Az, B)dux (x),

For any C' € B(X) x B(Y)

v (C) = /X Az, Cu)dux (2),

where C, ={y € Y;(z,y) € X x Y}

Capacity of Gaussian channel is defined as the supremum of mutual information
I(pxy) under appropriate constraint on input sources. We put X =Y and A(z, B) =
pz(B =), pz = [0, Rz] for the simplicity. When the constraint is given by

[ el dusta) < P
X

it is called matched Gaussian channel. The capacity is well known to be P/2. On
the other hand when the constraint is given by

[ lalfymus (@) < P
X

where py is different from puyz, it is called mismatched Gaussian channel. The ca-
pacity is given by Baker [4] in the case of X and Y are the same real separable
Hilbert space H. Yanagi [21] considered the case of channel distribution A\, = [0, R,]
and showed this channel corresponds to the change of density operator p after the
measurement.

4 Discere Time Gaussian Chennal with Feedback

The model of discrete time Gaussian channel with feedback is defined as follows.

Y,=S.+7Z,, n=12,...,

5



where Z = {Z,;n = 1,2,...} is nondegenerate zeno mean Gaussian process repre-
senting noise, S = {S,;n = 1,2,...} is stocastic process representing input signal and
Y ={Y,;n=1,2,...} is stocastic process representing output signal. The input sig-
nal S,at time n can be represented by some function of message W and output signal
Y1,Ys, ..., Y, 1 The error probability for code word (W, Y1), W € {1,2,...,2"%}
with rate R and length n and the decoding function g, : R® — {1,2,...,2"%} is de-
fined by
Pe™ = Pr{g,(Y"™) £ W;Y" = 2"(W,Y"" 1) + Z"},

where W is uniform distribution which is independent with the noise Z" = (21, Za, ..., Zy).
The input signals is assumed average power constraint. That is

1§:Ewﬂgfz
n i=1

The feedback is causal. That is S;(i = 1,2, ...,n) is dependent with Z, Zs, ..., Z; 1.
In the nonfeedback case S;(i = 1,2,...,n) is independent with Z" = (Z1, Zs, ..., Zy,).
Since the input signals can be assumed Gaussian, we can represent as follows.

1. |RY +RY
Ch,rp(P) = max — log %,
2n |Rz]
where | - | is determinant and the maximum is taken under strictly lower triangle

matrix B and nonnegative symmetric matrix Rg?) satisfying
Tr[(I + B)RY (I + B)' + BR}"B'] < nP.

The nonfeedback capacity is given by the condition B = 0. The feedback capacity
can be represented by the differnt form.

1 |RY)
Cn, rp(P) = max — log | S(:)Z :
2n Ry

where the maximum is taken under nonnegative symmetric matrix R(S").
Cover and Pombra [9] obtained the following.

Proposition 4.1 (Cover and Pombra [9]) For any e > 0 there exists 2"(Cn.ra(P)=¢)
cord words with lblock ength n such that Pe™ — 0 for n — co. Conversely For any
€ > 0 and any 2MCnrBP)+) code words with block length n, Pe™ — 0 (n — o0)
does not hold.

C,(P) is given exactly.



Proposition 4.2 (Gallager [10])

1 nP+ry+---+m
Cn P - 1 )
(P) 2n ; o8 kr;
where 0 < ry < ry < --- <1, are eigenvalues of R(Zn), k(< n) isthe largest integer

satisfying nP +ry + 1o + -+ + 1 > k.

4.1 Necessary and sufficient condition for increase of feed-
back capacity

We give the following definition for R(Zn).

Definition 4.1 (Yanagi [23]) Let R(Zn) = {2} and Ly, = {{(# k); zke # 0}. Then
(a) RY is called white if Ly = 0 for any k.

(b) R(Zn) is called completely non-white if Ly, # 0 for any k.

(c) R(Zn) is blockwise white if there exists k,{ such that Ly, =0 and L, # (.

We denote by Ry the submatriz of Rgb) generated by k with Ly # 0.
Theorem 4.1 (Ihara and Yanagi [12], Yanagi [23]) The following (1), (2) and
(3) hold.

1) If R(Zn) is white, then C,(P) = C, pp(P) for any P > 0.
(2) If Ris completely non-white, then Cy(P) < Cp pp(P) for any P > 0.

3) If R(Zn) is blockwise white, then we have two cases in the following.
Let rp, is the minimum eigenvalue of Ry and nPy = mry, — (r1+re+--+7n).

(a) If P> Py, then Cyp(P) < Cor5(P).
(b) If P < Py, then Co(P) = Cyr5(P).

4.2 Upper bound of C,, pp(P)

Since we can’t obtain the exact value of C, pp(P) generally, the upper bound of
Ch,rp(P) is important. The following theorem has a kind of beautiful exprssion.



Theorem 4.2 (Cover and Pombra [9])

1
Cn,FB(P) S Iﬂln{QCn(P), On(P) + élog 2}

Proof. We use Rg, Rz, - - - for a simplification of Rg"), R(Zn), -+--. We obtain the
following relation by using properties of covariance matrices.

1 1
EPLS_,_Z + §RS—Z = Rs+ Ry. (4.1)

By operator concavity of log x

1 1 1 1

3 log Rg4 7 + 3 log Rg_7 < 10g{§Rs+z + §RS—Z} = log{Rs + Rz}.
We take T'r and get

1 1
§log |Rsiz| + ilog |Rs—z| <log|Rs + Rz|.

Then
11 |Rs+z| 11 |Rs_ 7| 1 |Rs + Rz|
——log——— + -——1o < —log ———
Now since . |R |
S—7Z
—1 >0
o Ry T
we have

L1, |Rsigl _ 1 |Rs+ Ryl

220 B TR, T 20 ® |Ry|
By maximizing under the condition Tr[Rs] < nP

O, r5(P) < 20,(P).

By (4.1)
Rsiz < 2(Rs + Ry).
Fhen I |Rssz|l . 1. |Rs+Rs 1
S+7 s+ iz
1 < o szl 1y
o B R, " 2m ® T |Ry 2

By maximizing under the condition 7r[Rs] < nP

1
Cn,FB(P) < Cn(P) + 510g2



4.3 Cover’s conjecture

Cover gave the following conjecture.
Conjecture 4.1 (Cover [8])

Cn(P) < C, rp(P) < C,(2P).

We remark the following.

Proposition 4.3 (Chen and Yanagi [5])

1
C,(2P) < min{2C,(P),C,(P) + 3 log 2}.

Then if we can prove Conjecture 4.1 ;, we obtain Theorem 4.2 as its colrollary.
On the other hand we proved conjecture for n = 2. But conjecture is not solved in
the case of n > 3 still now.

Theorem 4.3 (Chen and Yanagi [5])

CQ(P) S CZFB(P) S OQ(QP)

4.4 Concavity of C, pp(-)

Concavity of non-feedback capacity C,(+) is clear, but concavity of feedback capacity
Ch.rp(-) is also given.

Theorem 4.4 (Chen and Yanagi [7], Yanagi, Chen and Yu [26]) Forany P,Q >
0 and any for o, > 0(a+ B =1)

Cnre(aP + BQ) > aC, pp(P) + BC, re(Q).



5 Mixed Gaussian channel with feedback

Let Zy,Z be Gaussian processes with mean 0 and covariance operator R(Zﬁ), R(ZZ),
respectively. Let Z be Gaussian process with mean 0 and covariance operator

R} = aRY) + BRY),

where o, > O0(aw + f = 1). We define the mixed Gaussian channel by additive

Gaussian channel with Z as noise. C, 7(P) is called capacity of mixed Gaussian

channel without feedback. And C, pp 7(P) is called capacity of mixed Gaussian
channel with feedback. Now we gave concavity of C, ;(P) in the following sence.

Theorem 5.1 (Yanagi, Chen and Yu [26], Yanagi, Yu and Chao [27]) For any
P>0
Cn,Z(P) < aOn,Z1 (P> + /BCn7Z2(P>‘

Theorem 5.2 (Yanagi, Chen and Yu [26], Yanagi, Yu and Chao [27]) For any
P > 0 there exit Py, P, > 0(P = aP; + S P,) such that

C,rpz(P) <aCyrpz (P1) + BC rB .2,(P2).

The proof is given by the operator convexity of log(1 + ¢~1) essencially. But the
following conjecture is not solved still now.

Conjecture 5.1 For P >0
Cn,FB,Z(P) < acn,FB,Z1 (P) + BCTL,FB,Z2(P)'

Conjecture is partially solved under some condition.

Theorem 5.3 (Yanagi, Yu and Chao [27]) If one of the following conditions is
satisfied, the corollay holds.

(a) Ry ™V =RyY.

(b) R is white.

We also give the following conjecture.

Conjecture 5.2 For any Zy,Z, P, P, >0, o, > 0(a+ B = 1),
aCy rp,z, (P1) + BCh rB, 2z, (P2)

1 R:
< C,rpzlaPL+ BP) + on log Livd

’RZI‘QIRZQW'
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6 Kim’s result

Definition 6.1 Z = {Z;;i = 1,2,...} is first order moving average Gaussian process
if the following equivalent three conditions.

(1) Zi=aU, 14+ U;, i =1,2,..., where U; ~ N(0,1) is i.i.d.
(2) Spectral density function (SDF) f(\) is given by

1 - 1
f\) = %|1 + e = %(1 + a4+ 2acos \).

3) Z,=(Zi,...,Z,) ~ Nu(0,Kz), n € N, where covariance matric Kz is given by

1+a? « 0 0
«Q 1+ a? o 0
K, = 0 a 1+a* -+ 0
) ) ) ) N
0 0 0 1+a?

Then entropy rate of Z is given by
1 ™
hZ) = 4—/ log{4m?ef(\)}dA
™) _n
1 [" .
- = /_ log{2rel 1+ e
1 .
=35 log(2me) if Ja| <1
1
= 3 log(2mea?) if |a| > 1,
where the last term is used by the following Poisson’s integral formula.
1 [ ,
—/ log e —aldx = 0 if |af <1,
2 ) .

= logla| if |a| > 1.
Capacity of Gaussian channel with M A(1) Gaussian noise is given by
Crrp(P) = nh_g)lo Ch,z,rB(P).
Recently Kim obtained capacity of Gaussian channel with feedback for the first time.
Theorem 6.1 (Kim [15])
Czrp(P) = —logmy,
where xg 1s only one positive solution of the following equation;

Pz? = (1 — 2?)(1 — |a|z)?.
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7 Counter example of Conjecture 4.1

Kim [16] gave the counter example of Conjecture 4.1. When

14 cosA

1 .
)\ — 1 z)\2:
faQ0) = gL+ o

input is known to be taken by

1 —cos A

fx(\) = o

Then output is given by

fy(A) = fx(A) + fz(A) = =

Then nonfeedback capacity is given by

M (V)
i mA
- _/ ’1+ 2)\‘

= —/ lode)\——/ log |1 + e™|d\
2 J_ . 2 J_.

1
= —27mlog2—0
2m

= log?2.
On the other hand feedback capacity is given by
Czrp(1) = —log xo,
where x is only one positive solution of equation

=(1+z)(1—x)°
. L. .
Since xg < 3 is assumed, we have the following

CZ,FB(l) = —lOgIO > 10g2 = 02(2)

This is a counter example of Conjecture 4.1. And we can show that there exists
ng € N such that
Cno,Z,FB(l) > Cn07z<2).
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