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Higher-order nonlinear evolution equation for interfacial waves in a two-layer fluid system
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An alternative type of nonlinear evolution equation is derived that describes interfacial waves in a
two-layer fiuid system. The equation presented here is a higher-order version of the Benjamin-Ono (BO)
equation. A solitary-wave solution of the equation is obtained by means of a singular perturbation
method. The characteristics of the solution are discussed in comparison with those for a higher-order

BO equation of the Lax type.

PACS number(s): 03.40.Gc, 03.40.Kf, 68.10.—m

Nonlinear waves on a fluid interface have received a
great deal of attention due to their practical importance
[1]. In contrast to surface gravity waves [2-5], relatively
little study has been done on interfacial waves. Some in-
vestigators have been concerned with interfacial waves in
two-layer fluid systems where each fluid has a constant
density [6—8]. They derived nonlinear evolution equa-
tions (NEE's) such as the Korteweg —de Vries (KdV) and
Benjamin-Ono (BO) equations that describe the time evo-
lution of the interfacial elevation. In this respect, it can
be remarked that a unified theory of interfacial waves has
been developed recently which is applicable to wave phe-
nomena on fluid of arbitrary depth [9]. Although these
equations usually incorporate the lowest-order nonlinear-
ity in wave amplitude, there appear to be few works tak-
ing into account of higher-order nonlinearities [10—12].
Almost all the works mentioned above were made under
the assumption that the depth of both fluids is short com-
pared with a typical wavelength of the wave. The result-
ing NEE's are called the higher-order KdV equations.
These equations have been used extensively in dealing
with the large amplitude interfacial waves. As for the BO
equation, however, the corresponding higher-order equa-
tions have not been obtained as yet.

The main purpose of this paper is to derive a higher-
order BO equation in a two-layer fluid system. A
solitary-wave solution of the equation is also presented by
employing a singular perturbation method. The results
are compared with those for a higher-order BO equation
of the Lax type.

We propose two-dimensional systems in which a layer
of a light fluid overlies a layer of a heavier one resting on
a flat bottom. The upper boundary is assumed to be rig-
id. For the sake of generality, we first consider the case
where the thickness of the two layers is arbitrary, and
then take appropriate limits to match with the physical
configuration leading to a higher-order BO equation.
Under the assumption of the irrotational Qow of an in-
compressible and inviscid fluid, the equations governing
the Quid motion and the boundary conditions are written
in dimensionless form as follows [9]:

(i) Continuity equations,

+Pi rr 0( ~ &x & ~,aint &y &1),

52', „+y„,=0( —~ &x & m, —5,/5, &y &a,g) .

(2)

(ii) Kinematic boundary conditions at the fluid inter-
face,

(iii} Dynamic boundary condition at the fluid interface,

(y=a, ri) .

x =lx, y =h,y, t =(1/co)t,
$.=(gla/co}p (j=1,2), q=aq,

(8)

and the dimensionless parameters e, a., and 6. are
defined by

(9)

(iv) Upper and lower boundary conditions,

=0 (y =1),
=0 (y = —5q/51) .

Here $1=/&(x,y, t) and $2=$2(x,y, t) are the velocity po-
tentials for the upper and lower fluids, respectively,
g= g(x, t) is the interfacial elevation, go is a constant; and
h=p, /p2( &1) is the density ratio. The subscripts x, y,
and t appended to pj(j =1,2) and ri denote partial
differentiation. This notation will be used throughout the
paper.

The dimensional quantities, with tildes, are related to
the corresponding dimensional ones by the relations
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where I, a, and co are characteristic scales of length
(wavelength in periodic wave), amplitude, and velocity of
the wave, respectively; h, and —hz are the vertical coor-
dinates of the upper and lower boundaries, respectively;
and g is the acceleration due to gravity. A characteristic
velocity co is given by co =v'gl /v, where I~ is a parameter
depending on b, and 5j(j= 1,2) and is chosen appropri-
ately according to various limits of the thickness ratio of
the two layers. e is called the steepness parameter, which
measures the magnitude of the nonlinearity.

First of all, we derive the equation for the general
configuration described above. In the following discus-

sion, we shall restrict our consideration to higher-order
NEE's with cubic nonlinearities. Although it is possible
in principle to incorporate nonlinearities of arbitrary or-
der, the resulting NEE's would be difficult to manage,
particularly in an analytical treatment. We first note that
the solutions of (1) and (2) satisfying the boundary condi-
tions (6) and (7) have been obtained in the form of an in-

tegral representation [9]. Expanding the potentials at the
Auid interface in powers of e, and retaining the terms up
to O(e ), we obtain the first three terms of the expansion
to be

„=—Tjfj„—(
—1)jErjfj„„+2

e rj T f „„,+O(e ) (j =1,2),

pj&l&=~, &=( —1)j+ 5&[f&»
—

(
—1)~prjT f —2e rjfj„„+O(p )] (j =1,2),

Njgly=~, ~= Tjf& p ( I) 6gfj„,+ 2e rj Tf,+O(e ) (j=1,2),

where f~(j =1,2) are arbitrary real functions, and T (j=1,2. ) are integral operators defined by

Tjf(x, &)= P I coth[n'(y —x)/25 ]f(y, r)dy (j =1,2) .
I

At this stage, we introduce the horizontal components of the interfacial velocities by

uj =Pj, ~y q
(j=1,2),

(10)

(12)

(13)

(14)

and solve (10) iteratively in f „ to express them in terms of rj and u as

f „=—T u +( —1) eT (AT u „)—e [T [.AT (rIT u „),j+ ,'T. , (. rj u „„—)]+O(e) (j=1,2),
where T (j = 1,2) are the inverse operators of T, i.e., T~ Tj = T T =I (I is the identity operator), and given explicitly
by

(16)

Insertion of (15) into (11)and the x derivative of (12) yields

„=5,[(—1)'T,u e[rju, „+T—, (rjT, u, „)j

+( —1)je [T [rIT& [rIT (rjT.juj„)„j+,'Tj(rj u „„)+—,'rI Tju „„+—rIrj„Tju,„]+O(e )] (j =1,2), (17)

(Pj, ~ „)„=u,—(
—1)~e(rj, T u, „—rj„T,u, )

+E [ It Tj( ITJuj» )» 'g» Tj( ITjuj» )i+ ggtuj»» l l»uj»i ] +O(F ) (j= 1&2)

Finally, by substituting (14), (17), and (18) into (3), (4), and (5), we obtain a closed system of NEE's for g, u „and u2 as

follows:

g, +( —1}j+'aTu +xe[(u rj)„+T (AT, .u, „)]+(—1)j+'ae [T, [AT, (rIT, u, ) j

+ ,
' T)(rj uj „„)+2' Tjuj„—+gg„T—. u „„]+O(e3)=0 (j =1 2.) (19)

ui i+&('giTlui, » 'rI T]ul, ~)+~ ['QiT1('9Ttu1, »)»»T1('9Tlu1, »)I+ j lou 1,»» &&»" &,«]

+ [uf+(T, u, ) +2e{71u,„+T,( jTr, u)jT, u, ]„+g„+O(e )

=u2
& e(7l& T2u2—„—rj» T~u~ &

)+e [&&T2(gT2u~ „)»—
rj» T2(rlT2u2» )g+ 9'p fju2»» 99»u2»t ]

+ [u2+(T~u2 } —2e[71u~ „+T~(rIT~up» ) j T~up]»+rI»+O(& ) .
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a = [(1—6)52] (21)

to normalize the phase velocity (=to/k) to unity. Under
this situation, (19) and (20) are simplified considerably as
shown below. The operators T, and T, are now reduced
to

If we express u in terms of rl by using (19) and then sub-

stitute the resultant expressions into (20), we can obtain a
s&ngle equation for g. The equation is, however, too com-
plicated to write down here.

Let us now derive a higher-order BO equation. For the
purpose, we specify the configuration such that the upper
layer is infinitely deep (5,~~), and the depth of the
lower layer is very small compared with a typical wave-
length of the wave (5z«1). As a result, there remain
only the two small parameters ai and 5i in the system un-

der consideration (note the relation e=a252). Further-
more, we assume that az has a magnitude comparable to
52 i.e., az=O(52). In the long-wave approximation,
the linear dispersion relation for infinitesimal waves
relevant to the present problem is given by
co =a(1—6)5&k +O(k ), so that it is appropriate to
choose ~ as

u i, +ai5i( r—l, Hu, „+g„Hu, , )

+ [u i +(Hu, ) ]„+il„+O(az)

=u2, + (u22)„+rl„+O(ai) . (27)

In deriving (25) and (26), we have operated T on both
sides of (19) and taken the limits. If we substitute (25)
and (26) into (27) and eliminate rl« in higher-order terms

by the first-order equation rt«=rt a2(g—,Srl, rtrI, —)„
+b,52Hq, „„,we finally arrive at a single NEE for the in-
terfacial elevation as follows:

rl „—vl„„+a2(vh Srh rP4—), 552H—th
Q

+ [rj„(Srt,) 4rlg, S—
rt, ]„

+haz5z[ H( rpl„)„+—H( rl, Sil, )„reg„—„]„
+(4 —

—,
'

)5zrl „„„+O(az)=0 . (28)

T,f-Hf,
T,f- Hf, —

while Tz and T2 are expanded in power of 52 as

T2f = Sf+ f„+O(—5' )z,
2

3

Tzf= —52f„— f„„„+O(52},

(22a)

(22b)

(22c)

(22d)

Equation (28) is suitable to describe waves propagating to
both right and left directions, and hence it can treat
head-on collisions of various wave structures. To obtain
a NEE describing a unidirectional motion to the right,
for instance, we follow the standard procedure [13]. It
then turns out from (28) that the right running waves
evolve according to the equation

2g]+n. + 22nn. +
2

haz5i+ [ ,' rlHrt„„+ ,'H—(rlrl„)„+rt„H r—l„]

where H and S are the integral operator defined by

Hf(x, t)= Pf — ' dy,
7T —oo g X

Sf(x, t}=f sgn(y —x)f(y, t)dy .

(23)

(24)

Introducing (21) and (22) into (19) and (20), and retaining
the terms up to O(a2), one obtains the following equa-
tions:

—Y3(b, —~4)52il,„„+O(a2)=0 . (29)

If we neglect the terms of O(az), (29) reduces to the
well-known BO equation [14-16]. Therefore, we call it
the higher-order BO equation.

There exists another type of higher-order BO equation
which is the first higher-order equation of the Lax hierar-
chy [17-19].Explicitly, it may be written in the form

u, +4uu„+Hu„„—e[u'+ —,'uHu„+ —,'H(uu, ) ——,'u ]„
=0 . (30)

u i
= —(1 h)52Hg, +O(a2—),

252
u2= —,'(1 6) Si), a2qSq, +— —

+aug Srl, +O(a2)

(25}
Equation (30) exhibits multisoliton solutions [17], and it
can be shown to be completely integrable. In order to
compare (29) with (30), we first transform (29) into a
reference frame moving with the phase velocity of the
wave, which is unity in the present case, and after that re-
scale the variables q, t, and x according to au, bt, and cx,
respectively„where a =3e/a2, b =325 52/81m~, and
c =4652/9e. Equation (29) then becomes

u, +4uu„+Hu —e 3u u„—", uHu ——",H(u—u„)„3u„Hu„+ (—6 —
—,')u„„„

166
=0. (31)
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Hence, we see that (29) cannot be reduced to (30) by any
scale transformation. This fact would imply that Eq. (29)
may not be integrable. To confirm this statement, we
have tried to obtain exact solutions, though the attempt
has not succeeded as yet. Therefore, we rely on approxi-
mate methods.

We shall now seek a solution of solitary-wave type by
means of a singular perturbation method based on multi-

ple time scales [19]. To begin with, we write (31) as

u, +4uu„+Hu„, =ER [u], (32)

Quo= [z=a(x ato go)=—a(x——g)],
z +1

(33)

where a and go are the amplitude and phase of the soli-

tary wave, respectively. Owing to the action of the per-
turbation eR, however, the constant parameters a and (o
are modulated slowly on the time scale t, . The time evo-

lution of a and g is then governed by the following system

of ordinary difFerential equations [19]:

4 „R[uo(z)]
2

d'
z~+1

(34a)

1 R [u(i(z)]dz .
7M 2 z2+ 1

(34b)

Performing the integrals on the right-hand side of (34),
one finds that

Ba (3Sa)

3 2

(315 +6},
Bt

(35b)

which can readily be integrated, and the results are ex-

pressed in terms of the original time variable as

a =a(0), (36a)

where R [u] represents the expression in brackets in Eq.
(31) and expand u in powers of the small parameter e as
Ll = Qp +E'Q ] + . At the same time, we introduce the
multiple times by t =e't (j =0, 1, . . .), so that the time
derivative is replaced by t)/t)t=B/t)to+ac)/Bt, +
Substituting these expressions into (32) and equating the
coefficients of like powers of e, we obtain a hierarchy of
equations for u (j =0, 1, . . . ). In the lowest order of the
approximation, (32) reduces to the BO equation for u„
whereas u for j ~ 1 satisfy inhomogeneous linear evolu-

tion equations. The BO equation exhibits an explicit
solution of the form [14,16,20]

3 0(=go+ a(0)— (316, +6) t .
166,

(36b)

Therefore, the amplitude of the sohtary wave remains

constant while the velocity is decreased by a quantity

[3ea (0)/166 ](316, +6). It should be remembered that
these results are valid only over the time interval

0 t e '. Beyond the upper limit of the interval, one

must take into account the higher-order modulation
effects. With (33) and (36},we are now ready to solve the

equation for u &. Unfortunately, an analytical solution for

u
&

has not been found as yet, and so we must use numeri-

cal procedure. However, this problem is beyond the

scope of the present paper.
On the other hand, applying the same perturbation

analysis to Eq. (30) leads to the expressions correspond-
ing to (36}as follows:

a =a(0), (37a)

(0 —3Ett (0)
0 (37b)

The author would like to thank Professor M. Nishioka
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In contrast to (36), the above results are seen to provide
an exact solution of (30). Indeed, one can show that by
virtue of (33) and (37) the hierarchy of linear equations
for u (j&1) is satisfied by u =0 (j&1). This is a com-

mon nature of the Lax hierarchy of the BO equation, ' the
functional form of the soliton solutions is the same for all

members of the hierarchy, the only difference being the
velocity of each soliton [19].

In this paper, we have derived a higher-order BO equa-

tion in a two-layer fluid system. The equation has been

investigated by means of a singular perturbation method
to obtain the solitary-wave solution. The results have

been compared with those for the first higher-order BO
equation of the Lax type. The present analysis suggests
strongly the nonintegrability of the equation. The BO
equation has various characteristics in comparison with

these for other integrable NEE's such as the KdV and
nonlinear Schrodinger equations [19]. One remarkable

aspect is the phase shift which usually occurs during the
interaction of solitons. It is known that the BO solitons
exhibit no phase shift [20,21], and this property also

holds for all members of the Lax hierarchy of the BO
equation. However, the addition of the perturbation indi-

cated in (31) may change the characteristic drastically.
Therefore, it seems to be quite interesting to study the in-

teraction process of solitary waves on the basis of Eq.
(31). This problem will be considered in a future work.
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