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Two-dimensional evolution of surface gravity waves on a quid of arbitrary depth
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Nonlinear evolution equations (NEE s) are derived that describe weakly-two-dimensional motion of
surface-gravity waves on a three-dimensional incompressible and inviscid Auid. When compared with
the Kadomtsev-Petviash. vili (KP) equation, the NEE s presented here have the following two advantages:
(a) they are applicable to wave phenomena on a Quid of arbitrary depth; and (b) they can deal with head-
on collisions of various wave structures. A discussion is then made of NEE s arising from the shallow-
and deep-water limits. It is shown that the KP equation is a special case of our equations.

PACS number(s): 47.35.+i, 03.40.Kf, 47.10.+g, 47.90.+a

Surface gravity waves in two spatial dimensions have
been studied extensively over the past 150 years [1—7].
The main reason for this research is that the phenomena
are familiar in nature and the mathematical problems in-
volved are comparatively tractable. Various types of ap-
proximate nonlinear evolution equations (NEE's) have
been derived that describe the wave motion on a Quid. A
typical example is the famous Korteweg —de Vries (KdV)
equation [2], which is the simplest unidirectional wave
equation including the effects of nonlinearity and disper-
sion.

For the three-dimensional surface gravity waves, on
the other hand, relatively little progress has been made
due particularly to their inherently higher complexity.
The satisfactory treatment of the fully three-dimensional
problems has not been established even at the present
time. However, if we restrict our consideration to
weakly-two-dimensional wave motion by assuming that a
wave field like the surface elevation varies slowly in the
direction perpendicular to the propagation of the wave,
we can obtain model NEE's which prove an accurate
description of the time evolution of the wave. In the fol-
lowing discussion, we refer to the waves as one-
dimensional or two-dimensional according to whether
their surface profiles depend on one spatial variable or
two spatial variables. Among several existing NEE's, the
Kadomtsev-Petviashvili (KP) equation [8] arises as a nat-
ural generalization of the KdV equation. While the KP
equation has been obtained in various areas of physical
sciences and it has wide applications [9], the range of its
validity is severely restricted by the following assump-
tions: The waves under consideration are (a) long com-
pared with the depth of fluid, (b) undirectional, (c) small
but finite in amplitude, and (d) weakly two dimensional.
These must be supplemented by an ad hoc condition that
the effects of (a), (c), and (d) balance in an appropriate
manner. The assumption (a) is equivalent to the so-called
shallow-water approximation. The KP equation has a
very rich mathematical structure. Its initial-value prob-
lem has been solved via the inverse scattering transform
[10]. Nevertheless, from the practical point of view, it is
quite important to remove or to weaken these assump-
tions as far as possible.

The purpose of the present Brief Report is to eliminate

(
—oo &x,y & co, —1&z &ail), (1)

with the kinematic and dynamical conditions on the free
surface

7i, +tee(P„ri +pP ri~)= —P, (z=ail), (2)

p, + [5 (p +ij,p )+p, ]+ii—ih=0 (z=aii),

and the boundary condition on the bottom of Quid

$, =0 (z= —1) . (4)

Here p=p(x, y, z, t) is the velocity potential, il=ii(x, y, t)
is the free-surface evaluation, and the subscripts x,y, z,
and t appended to p and il denote partial differentiations.

g is assumed to be negative and the origin of the coordi-
nate system is chosen such that maxi=0. qo is a con-
stant determined by the boundary conditions for P and ii

(a) and (b) in the context of surface gravity waves and to
derive NEE's which enable one to describe head-on col-
lisions of various wave structures on a Quid of arbitrary
depth. The method developed here is a generalization of
a unified theory of surface gravity waves on a two-
dimensional fiuid of finite depth [6]. The assumption
used throughout the analysis is that the wave steepness is
small, in addition to weakly-two-dimensional motion [see
(c) and (d) above]. A specific relation between nonlineari-
ty and dispersion used in the KP theory is not intro-
duced, as well as coordinate stretchings upon which most
of the singular perturbation methods rely.

We consider the three-dimensional irrotational Bow of
an incompressible and inviscid Quid of uniform depth in a
constant gravitational field. The effect of surface tension
on the free surface is neglected to simplify the analysis,
although it can be included without any difticulty. The
dimensionless spatial and temporal coordinates are
denoted by (x,y, z) and t, respectively. The gravitational
acceleration g is in the negative z direction. The waves
are assumed to be weakly two dimensional with the x
direction dominant. In the dimensionless variables, the
Auid motion is governed by the Laplace equation
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a=a/ho, 5=ho/1, e=a/1, p=(l/1') (5)

In (5) e is the steepness parameter which measures the
magnitude of nonlinearity. A useful relation e=a5
should be remarked upon. co is given by co=v gl/~,
where ~ depends on 5 with asymptotic values 5 ' in the
shallow-water limit 5—+0 and 1 in the deep-water limit
5—+ ~, in accordance with the phase velocity of linear
surface gravity waves. In contrast to the two-
dimensional case, there appears a new parameter p which
can be taken arbitrarily insofar as it is small compared
with unity because of the assumption of weak two-
dimensionality. In the present study, we specify p such
that

at infinity. The dimensional quantities, with tildes, are
related to the corresponding dimensionless ones by the
relations x =lx, y =1'y, z =hoz, t =(1/co)t,
p=(gla/co)p, and rl=a71, where 1 and 1' are characteris-
tic length scales of the wave for the x and y directions, re-
spectively, a is a typical amplitude of the wave, and co is
the phase velocity of the wave. The bottom topography
of Quid is represented by the plane z= —ho. The dimen-
sionless parameters a, 5, e, and p are defined according
to the relations

plicitly by

f (0y, t)

coth(i5B )f=iTf, t ahn(i5B, )f= iTf,— (10b)

where the singular integral operator T and its inverse T
acting only on the x variable are defined by

Tf(x)= Pf coth[vr(x' —x)/25] f(x')dx',
25

(1 la)

=+ . f coth[vr(x' g)—/25]f(x',y, t)dx', (9)
4i5

with f(x,y, t) being the Fourier transform of f, i.e.,
f(x, t)= J

" f(k, t)e' "dk.'The notations B„f=Of/Bx,
d~f =d f/c)y, and d„'f = J f(x')dx' have been used

together with the formulas

ik„x ik„x
coth(i5B„)e " = —coth(5k, )e

(10a)ik„x ik x
tanh(i5B„)e " = —tanh(5k, )e

It is worthwhile to note that the Fourier transform of
these formulas yield the corresponding representations
expressed in physical variables as

(6) Tf(x)= — P . , dx' .
oo (x')

25 —~ sinh [m (x ' —x ) /25 ]
(1 lb)

where v is a numerical constant of —1. The reason for
this choice is that it leads correctly to the KP equation in
the shallow-water limit, as will be shown below. Al-
though another scaling is possible for p which would give
rise to another type of NEE's, we shall not discuss it here
and focus our attention to the case (6).

Let us now derive approximate NEE's correct up to
0 (e) by means of a systematic perturbation method with
respect to e. The extension of NEE's to higher orders
can be made straightforwardly, and hence we shall omit
all details. We first take the solution of (1) satisfying the
bottom boundary condition (4) of the form

sgn(k ) cosh[5k(z+1)]=i P . f(k, t)e' "dk, (7)
oo sinh 5k

where the two-dimensional vectors I and k are defined,
respectively, by x=(x,y) and k=(k„,k ), f(k, t) is an ar-
bitrary function, k=(k„+pk~)', sgn(k, ) is the sign
function, and the symbol P denotes the Cauchy
principal-value integral. The next step is to expand the
integrand in powers of p [or e by virtue of the relations
(6) and e=a5] and then rewrite the resultant expression
in terms of physical variables by employing a technique
of the Fourier transform. In so doing, it is important to
recall that the depth parameter 5 is a quantity of —1.
After some calculations, we find that the desired expres-
sion can be written in the form

P= —i (1+(ive/2) I (z + 1) tanh[i5(z + I )8„]
—coth(i5B )]B '8 +O(e ))

X [f+(x i5z,y, t) f (x +i5z,y, t)]—. —

Here f+(g,y, t) [f (g,y, t)] is an analytic function of g
in the strip 0&1m/&25 ( —25&1m(&0) and given ex-

The solution (8) is the main ingredient in this article and
becomes the starting point in the following perturbation
analysis. If the y dependence is neglected, it coincides
perfectly with the corresponding solution for the two-
dimensional velocity potential obtained in [6].

Now in order to derive an approximate system of
NEE's from (2) and (3), it is necessary to evaluate the
derivatives of the velocity potential on the free surface.
This can be done by expanding f+ in e and invoking the
important relations

f+(x+iO, y, t)+f (x —iO, y, t)=f(x,y, t),
f+ (x +i0,y, t) f (x iO,—y, t)—= iTf (x,y, t)—,

(12)

(13)

which come from (9) with the help of the residue
theorem. The expressions for the first two terms of the
expansions thus obtained read in the forms

„=—Tf erlf, — (1—+T )f +O(e ), (14)
2

„=—5(f ertTf, „)— d, 'f—+O(e ),xx 2 x yy
(15)

(16)

+O(e ) . (17)

Substitution of (17) into the x derivatives of (15) and (16)

At this stage we introduce the x component of the sur-
face velocity by u =P ~, „. Then the quantity f„ in

(14) can be solved iteratively in terms of u and g as

f„=—Tu+e[T(rlTu )+(v/2)B '(1+T )u ]
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yields

(P, ~, „)„„=—5[ —Tu +a[ T(riTu„)„„+(gu ) „—(v/25)Tu +(v/2)(1+T )u„„I+0(&')],
(P, i, „) =u, +e(ri„Tu, —g, Tu„)+0(e ) .

(18)

(19)

The time evolutions of g and u follow immediately by introducing (18) and (19) into the x derivatives of (2) and (3) and
retaining the terms of 0(e). We quote only the final result as follows:

rl „, IrT—u„+me[(uri)„„„+T(riTu„)„„—(v/25)Tu +(v/2)(1+T )u„]+0(e )=0,
u, +g„+e( I~uu„—g„Tri„)+0 ( e ) =0 .

(20)

(21)

The above NEE's constitute a closed system and hence they can be solved under appropriate initial and boundary con-
ditions. However, for practical purpose, it is sometimes useful to derive a single equation for g, which we shall now
carry out. We first solve (20}with respect to ~u„and express it in terms of ri to obtain

~u„=Tri„,+e[T{riTg,)„+(qadi„,)„+(v/2)(1+T )ri, —(v/25)B 'Tri, ]+0(e ),

where use has been made of the lowest-order equation ~u = Tq, +0(e) in 0 (e) terms to eliminate u. Finally, substitut-
ing (22) into the x derivative of (21) and then operating T on the resultant equation, we find the time evolution of q as
follows:

ri «+~Tg„„+@[I ~rig„+2', Tri, +Tri, xT(gTr—i ) I „„+(xv/25)Tri~ —(xv/2)(1+ T )ri~~~]+0(a )=0 . (23)

Here in 0(e) terms, we have replaced rl«by the lowest-
order equation g„= ~Tq +O(e) and used the formula
T(fg) = T[{Tf){Tg)]+gTf +fTg

The NEE's (20), (21},and (23) are main results in this
Brief Report. If the y dependence is neglected, these
equations reduce to the corresponding NEE's for the
one-dimensional wave [6). It is easy to show with the aid
of (10) that a linearized version of (23)

ri„«+aTri„+e Tri — (1+T )g =0,

(24)

+5k sech (5k ) (25)

Lastly, we shall comment on the sign of g, which has
been assumed to be negative in the present analysis. We
show that it can be taken to be positive without changing
the NEE's themselves as follows: We first shift the origin
of the z coordinate downward by a and replace g by

I

reproduces the linear dispersion relation relevant to the
present problem as

k
co =~k„tanh(5k„)+ tanh(5k„)

25 k

—1+g. At the same time, it is suitable to replace 6 by
5+e; thereby the undisturbed depth of fluid becomes ho.
After that we expand the operators T and T in powers of
e to obtain the corresponding replacements

Tf~Tf + e( 1+T )f„+0 ( e ),
Tf~Tf —e(1+T )f„+0(e ) .

Completing all the above procedures in (20), (21), and
(23), we find that the transformed NEE's take exactly the
same forms as those of the original ones.

The NEE's obtained here are uniformly valid from
shallow water to deep water and have wide applications
in various wave phenomena of physical and engineering
importance. In specific situations, however, it is simpler
to employ NEE s arising from our equations as the limit-
ing cases of fluid depth. Therefore we next consider the
shallow- and deep-water limits of the equations and dis-
cuss the property of the resulting NEE's.

(i) Shallow-water limit (5~0). In this limit we take
~=5 ' and specify the relative magnitude of the parame-
ters a and 5 as a=O(5 ), which is consistent with the
fundamental assumption in the derivation of the KP
equation [8]. If we employ the small 5 expansions for the
operators Tf = (1/25) f „sgn(x' —x )f(x')dx'+0(5)
and Tf = 5f —(5 /3)f„„+0(5—), the NEE's (20),
(21), and (23) reduce, respectively, to

g„,+u„„+(5 /3)u„„„+a[(uri)„„+vu ]+0(a5,5 )=0,

u, +ri„+auu„+0(a5~) =0,

(26)

(27)

g« —g„„—(5 /3)g„„„„+a —gg„+g, I sgn(x' —x )71,(x',y, t)dx' —vs +0(a52, 5")=0 . (28)
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+(va/2)ri +O(a5, 54) =0 . (30)

(ii) Deep mater li-mit (5~Dc). In this limit it is ap-
propriate to choose ~= 1 and further to rescale the y and
z coordinates as y =y /v 5 and z =z /5, respectively. The
variables y and z are then related to the original physical
variables by y=(l/V'ev)y and z=lz. Consequently, in
the limit of 5~ Oo, there exists only the one small param-
eter e in the system under consideration. Since the opera-
tors T and T reduce to H and —H, respectively, where H

Equation (28) is fit to describe weakly nonlinear long
waves propagating to both right and left directions and
hence it can deal with the interaction between these
waves as well. It is interesting to note that (28) exhibits a
solitary wave solution of the form

g= A sech (k„x+k~y ro—t ), (29)

with 3 =45 k /[a(2' +k )] and ro =k, +45 k„/3
+avk, where we have assumed positive ri and vanishing
boundary value [see the comment following (25)]. To ob-
tain a NEE describing a unidirectional motion to the
right, for instance, we follow the standard procedure [3].
It then turns out from (28) that the right running waves
evolve according to the KP equation [8]

[g, +g„+—', aug„+ (5 /6)g„„]

is the Hilbert transform given by Hf =(1/m)P j (x'
—x ) f(x')dx', (20), (21), and (23) become simply to the
following NEE's:

ti„„,+Hu„„+e[(ug)„+H(tiHu )„„

+(v/2)Hu ]+O(e ) =0,
u, +ti„+e(uu +ri Hri )+O(e )=0,

(31)

(32)

H7—1„+e[ [ girl„—+2g, H ri, Hri—, H( r—iH ri„) I „„
(v/2—)Hri ]+O(e )=0 . (33)
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In this paper we have presented an alternative type of
NEE's for weakly-two-dimensional motion of surface
gravity waves on a fluid of arbitrary depth and demon-
strated that the KP equation stems naturally from our
system. Although the NEE*s obtained here are still
insufficient for the purpose of the description of
genuinely-two-dimensional wave motion, these have a
greater flexibility in applications in real physical systems
when compared with the applicability of the KP equa-
tion.
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