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Noniineax evogatioit ef sufface gravagy waves over
                     an gneven bottoxxk

                By Y. MATSUNe
Depaytment of Physies, FaeuitÅrr of Libera•l Ayts, Ya•maguehi Universit,y,

                  Ya•maguchi 753, Japan

(Reeeived 6 August 1992 and in revised form 15 Oetober 1992)

A unified theory is developed whieh deseribes nonlinea•r evolution of surfaee gravity

waves propagating over an llneven bottom in the ease of ewo-dimeRsional
incompressible and inviseid fiuid of arbitrary depth. Undey the assumptions that the
bottem of the fiuid has a slow}y varying profile and the wave steepness is small, a
system of approxima•te nenlinear evolution equations (NEEs) for ehe surface
elevation and the herizontal compoiient of surfaee veloeity is derived on the basis of
a systematic perturbation method wiÅíh respeet eo the steepness parameter. A single
INEE for the surface elevation is also presented. These eqttations are expressed in
terms of original eoordinate variables and therefore the.v have a direct releva•nce to
physieal systems. Since the fomnalism does not rely on the often used assumptions
of shal}ow water and long wa•ves, the NEEs obtalned are gnifoma}y valid from
shallow water to deep water a•nd have wide applieations in various wave phenomena
of physical and engineering importanee. The shallow- and deep-water limits of the
equations are diseussed and the results are eompared with existing theorles. It ls
found that our theory ineludes as specific cases almost all approximate theo}'i'es
known at preseRt.

1. Introduction

  The noiilinear dynamics of surface graxrity waves on fiuid haxre been studied
extensively sinee the pionee}'ing vrorl{ of Stokes (1849). Various types of a•pproximate
nonlinear evointion equatiolls (NEIEs) have been derived aceording to the sittiations
under consideration (see, for installee Whitham 1974; I'iei 1989). Equations thus
obtained may be divided into t"wro groups, namely shallow-water theories and deep-
vt,ater theories. The Boussinesq and the IKorteweg-de Vries theonies belong to t}}e
former elass whereas the Stokes theory is a typiea} example of the latter. The finite-
depth ana}ogue of these theories has been established quite recently (]'Iatsuno 1992).
  IMost mode} equations proposed mitil now are coneerned ivith the nonlinear
evolution of surfaee gravity waves on fluid of ?Lniform depth. Ii[owever, because ofits
praetieal importanee, several attei/x}pts have been made to take into aceount of the
effeets of an uneven boteom (Mei & M6}}aut6 1966; Peregrine 1967; Madsen & ."tlei
1969; Grimshaw 1970; Kakutani 1971; Johnson l973; Wu 1981). These werlÅqs are
mainly based on the assumptions of both shallow water and }ong waves and henee
the range of applieability is sexrere}y limited. Recently, Radder (1992) developed an
explicit Haii}iltonian formulation ef surfaee wa•ves on fiuid of finite depth and
eompared it with existing theories (Broer l974, l975). IHe also discussed the limiting
cases of both shallow and deep fiuids.
  The purpose of this paper is to develop a unified theery of non}inea•y surf'ace gravity
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waves over an uneven bottom with .fin•ite depth. A new method pTesented here is a
generalization of the theery of surfaee gyavity waves on fiuid of uxxiform depth
formulated by the a•uthor (Matsuno 1992).
  We eonsider the two-dimensiona} irrotational fio"r of an incompressible and
inviscid fiuid. The bottoxx} profile is assumed to be a slowly• varying funetion of the
herizontal eoordinate. A}though this assumption is not essential in developing the
theory, it eensideyabiy simp}ifies the analysis. The formalism in this paper re}ies only
en ehe assumption of smal} wave steepness which implies that we foeus on waves ef
smal} bmb finite amaplitude. [I]he assumptions such as shallow water and long waves
are not used in deriving NEEs and this faet provides mueh greatey fiexibMty in
clealing with specifie physieal systems.
  In g2, the governing equation of fiuid motion is deseribed with the boundary
conditions in appropx'iate dimensionless form and then they are transformed into
these for a fluid region with unitbrm depth by using a eonformal mapping. The
solutions of the tyansformed eq"ations are eenseructed explicitly in g3. In g4, by
employing a systemaeic perturbation iiv}ethod with respeet to the steepness
parameter, vcTe first de}'ive appreximate NEEs in terms of transformed variab}es and
then rewrite them in oz'igina} physical variables. We thus obtain a system of
equations for the s"rfa•ee elevation and ehe herizontal component of surface velocity.
A single equation for the surface elevation is also presented. In g5, equations arising
from both sha}low- and deep-water limits of approximate equations are diseussed
and they are eompared with existing theories. Seetion 6 is devoted to eoiielusions.

2. Basic equatioRs and their traRsformatioRs

                          2•.1. Basic eguations
First, we describe the equation of motion of fiuid together with the boundary
eonditions. AI} the variab}es are non-dimensiona}ized appropriatel: as shown }ater.
Undter the asswtinption i[i}eneione{i{ in g 1, t}ie flui(l iinotion is geverned by the ILaplace

equatlon
              S2ip..+Åëyy=O in -coÅqxÅqoo, bÅqyÅqcth, (2.l)
vtribh the boundary condiÅíions

           Kht+KeÅë,, h. mEg5y on y = cth, (2..Q,)

             Ke         Åët+lisT,(82Åëg.+ÅëZ)+odi(y-yo)=e on y=cth (y,:eonse.), (2.3)

                        62Åë.b. == Åë, on y== b. (2"4)
Here Åë = Åë(.x,y,t) is the veioeity pot.ent•ial, h == h(x,t) is the s"rfaee elevation, b =

b(x) is the prefi}e of the bottom and the s"bseripts x, y and t appended to ip, h and
b denote pa}'tial differentiations. Equation (.9..1) stems from the assui[r}ption of
iryot•ationa} gow of an incompressible fiuid. Equatioxxs (2.2År and (2.3) yepresent the

kineinatie and dynaix}ic eoBditions oB the free surfaee, respective}y, while the
condition (2.4) eomes fi"om the fact that the fiow di}'ection must be that of the bottom
since the fiuid is invisci{E. rlVhe dimensional quantities with tildes are related to the

eorresponding di}r}ension}ess ones by the relations

                    // lii ("g'i./iN(, l'lÅëIbe Yz'l' ,,.g."h:.(l/bCNe31t'h,b,) (2 s)
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where l, a and c, are eharaeteristic seales of length (waveiength in a periodie wave),
amplitude and ve}oeity of the wave, respeetively, h, is a typieal vertieai Iengthseale
whieh may be ta}Åqen as an undisturbed fiuid depth at x == e and g is the aeeeleration
due to gravity. The surfaee elevation h is measured from the undisturbed fiuid
surface which is ehosen to be y = O in the present case. The dimensionless parameters
e, ct and 6 are defined by

                      6x a/Z, ct == a/h,, 6== h,/l. (2.6)
These parameters are conneeted to each other by the relation e = ct6. The e is ca}led
the steepness parameter. The e, is given by c, == (gl/K)S where K is assumed to be 6-'

in the shallow-water limit 6-ÅrO and l in the deep-water limit 6--År co in aeeordance
with the phase ve}ocity of linear surfaee gravity waves on fiuid of uniform deptl} h,.
The effect of surface tension has been neg}ected to simplify the analysis, but it can
be inelude6{ without any difficulty.
  The bottom of the fiuid is assumed to have a slowly varying profi}e and it may be
expressed in the form

                           b(x)=-1+B(ctx), (2.7)
where B represents the bump on the bottom and B(O) == e by the definition of the
present eonfiguration. This means that the measure of the changing depth is ehosen
to be the same order as that for the surface elevation. The magnitude ofB itself may
be of the order of unity, however.

                  2.2. Transfor7nations of basic eguations

In order to apply ehe method developed by Matsuno (l992), it is necessary to
transform the basic equations into those for a fiuid region with a fiat bottom. The
corresponding coordinate transformation is well known and it may be represented in
the form (Woods 196i; Byatt-Smith 1971)

                y(Sv) == -ll f-OO. ,.,.opSi+n ,".op,h.g, b-(g-6g')dg' (.9. 8a)

                         .(g, if) .. fi ay(egop',op)dg/, (2 sb)

where b(g) =: b(x) and the fluid region -oo ÅqxÅq oo, b(x) ÅqyÅq cth(x,t) has been
mapped eonformally into the region - oo Åq g Åq oo, -1 Åq op Åq cth(g, t) with h being
the surface elevation in the (g, op)-plane. Ib now follows from the differential relations

dx = xgdg+x,, dv and dg == ygdg+y, dop that

                     xg g.+x, op. = 1, xg g.+xv op.= O, (2.9 a)
                     yg g.+yv op. = O, yg gy+y,, op, == 1• (2• .9b)
On the other hand, sinee the transformation (2.8) is conformal in the sense that
x+i6y is an analytic funcbion of 6"g+iop, the following Cauchy-Riemann relatiens
result as an equivalent eondition:

                          xg=y,, x,=:-62yg. (2.le)
Consequently, x and y are found to satisfy the same Laplace equation as (2.l). By
eombining (2.9) and (2.10), we obtain the impertant formulae which will often be
used in this paper

              g. == y,/J, g, :62yg/J, ep.=-yg/J, ep, :y,/J, (2.11a)
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wkere Jx62yi+y,2,, (2.llb)
is the Jacobiall of the transformation (2.8).
  Equatiolls (2.1)-(2.4) a}'e then tran$formed into the following forms :

             S2Åëgg+Åë,, ==e ln -co ÅqgÅq oo, -1 Åq op Åq atZM,, (2.12)

      h-`+,fKy6,,(Y'iÅë-grmYgÅë-vÅr2iYliSfzfiliiiliii)I,E-+.ct6Y2yghig "6,,Kry,(62ygÅërmg+ywip-v) on op =cth-, (2•l3)

            Åërm,+.g,Ks',e.J(S2Åëwug2+Åëww,3)+ctmi[y(g,n)-y,] =O on op == cth-, ("g.14)

                          Åë,i ==O on v=:-1, (2.l5)
where Åë(g,op,t) = ip(x,y,t) and the surfaee elevations in original and transfermed
systems are re}ated to eaeh othe}' by

                h=" -SI2 fwwco. ,., .Åí:+"gS-',h.g, bM(g- 6g') dgi. (2.i6)

Equatiok (2.I2) fbllows immedia•tely due to ehe eonforma} property of (2.8). This can
also be confu'med easily by a direet ealeulatlon. To derive (2.13), we first observe that
on the fiuid surface

                     ht=YvZuntt' cth•x=wwtJ,,m+ctct6Y2yghhg' (2'17a,b)

Substituting (2.17) and the relations

                    Åëx =: gx Åëg+77xÅë,i =(Y,, Åëg-Yg Åë,,)/J, (2.18a)

                   Åë, "g. ipg+op. Åë, =: (62iJg Åëg+y, Åë,,)/J, (2.l8bÅr

into (2.3) yields (2.13), while (2.14År fol}ows from (2.11b) and (9.,.18). [l]o verify (2.15),

we first note that on t.he bottom of fiuid the re}atlon op(x,b(x))==-1 holds.
Dfferentiation of it with respect to .x yields ?7.+ ?lyb. =: e. Substituting t}}is equation
toget}ier wit}} (2.11) and (2.18) into (2.4), we a,rrive at (2.15). It sheuld be stressed

that the transformed equa•tions are va}ld as long as the Jaeobian (.9,.1lb) does not
vanish.

3. Solutions of transformed equations

  Onee the basie eqwations have been transformed into those for the fiat bottom,
solutiens ean be construeted fol}owing the proeedure developed by the author
(MatsuRo 199.9,). In this seetion we sha•ll suiinn]arize the method of sol"tion and
present exp}icit so}utiens.
  We take the solution of (2•.12) whieh satisfies the bottom boundary ebnditioll ("9.15)

of the form

                    ip =-i[f.(g-i6v,t)-f-(g+i6op,t)l, (3.lÅr
where f.(g,t)(f-(g,t)) is an analyeie funetion of g(=:g+iop) in the strip OÅqopÅq
26( -2S Åq 71 Åq e) a•nd given explieitly by the lntegra} representation

               fÅ}(g, t) =" Å}Ell/I}E f-co,. eoth [E(g'-g)/2slf(gx,t) dgi. (3.2)
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Herefis an arbit}'ary real functlon defined appropriateiy on the real axis. If we take
the boundary va}ues off+ when 77 -År Å}O, we obtain t•he impo}'t•ant• re}citions

                        f.(gÅ}iO,t) =- i(ITi7i)f(g, t), (3.3a)
where the integra} operatoi' 7i is defined by

                rl'f(g, t) =: ll3pfff.L coth lsc(g'-g)/26] f(g',t) dg'. (3.3b)

The syiinbo} P in front of the integral sign 6ienotes the Cauehy prineipal val"e
integra}. It readily fo}lows from (3.3) that•

                      f.(g+io, t) +frm(g-io, t) == f(g, t), (3.4ce)
                    f.(g+io, t) -frm(g-io, t) = -iTf(g, t). (3.4b)
Ifwe use (3.1) and the re}ation e =: ct6, we ean evaluate the deriva•tives of the xre}oeity

potential on the free surface as follows:

                  ÅëgL,=.-, == -i[f.,g(g-iEh,t) -f-,g(g+iElb,t)], (3.5 ct)

                  ip,I,,...f, == rm 6[f+,g(g-ielb,t) -l-frm,g(g--l- ieh,t)], (3.sb)

                  ip,[,,=.,-, == -i[f.,,(g-ieh, t) -f= ,(g -}- i6h, t)]. (3.sc)

Substitution of (.9,.8) and (3.5) into (2.13) ancl (.9..l4) yields the e.z'ctct systein ofNI'EiEs

for h and f.

4. Approximate equations
  Sinee the s: stem of equations obtained in g3 ls int•raetable as it staRds, we must
introduee soiine approxlinations to si}/Rplify the equatioRs. IB'or the purpose, we first
note that in the case of f[uiCl with finite clepth, the pa•ra•i:neters 6 ai}d K' inay }[)e takeR

to be of the orde}a of "nity wheyeas the steepness pai'amete}i e is assmned to be siiRa•ll

eompared to unity. Except for the profile of the bottom of the fiuid (see (2.7)), this
is the only assumption used in the present• theor: r. The piiob}em under conslderation
now reduces to the expansion of various qiiantit•ies in power serles of 6 or in ct by
virtue of the re}ation e = ct6. In this seetion, we derixre the NEEs eorrect up to O(e).
Extensions to higher-order equations can be iinade straig}}tforwai"Cl}y but with
tedious caleu}ations. XVe first eonsidey the equat•ions with transfo}-med variables and
t•hen reNNrri'te them wieh the orig2nal physieal variables.

                  4.1. k"gzeations •tvith trcen6fo7o?zea va7'iabZes

If we expand (3.5) in powers of" e and use (3.4), we obt•a/iB t•he first two terms of the

expanslells
                       Åëgl,...i-, =-"I'fg-elofgg+O(e2), Åq4.la)
                       Åë,,l ,, ...Jnv, = -6[ fg. -61e 7ltg+O(e2)], (4.l b)

                       g6tl,,..od-, =-r/Zif,-6hfE,A-0(eL'). (4.lc)
At this stage it is convement t•o introdllce the horizonta} eomponenÅí of the surfaee
xrelocity :

                               zrme =: Åë,cl,,..af,• (Åq{:.2)
Thenfin (4.1a) ean }Åre solved iterative}y in tei'ms of 2rm{ as.

                        f, == -7'2un,+e7'(h7'of,,)+O(e2), (4.3 a•)
                                        s                         s
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where the operator di is the inverse of T, namely Tdi== diT=:J and it is given

exp}ieitly by
                 diz-e(g• tÅr --StsP f-co. ,i.h [#-igg,' itt )g)/2a] dg'• (4.3b)

Substitution of (4.3) into (4.1 b) and the g-derivative of (4.1c) yields

                Åë,I,,...h- -- -a[-T2wwe+e{hi-Lg+fZ'(hTzww`g)}+O(62)], (4.4)

                   (9-5tl,...h-)g == ilt+e(h-g t2?T,t-h-t C71ilg)+O(e2). (4.5)

  Next we derive the approximate expressions for yg, yv and J on the free surfaee
v == cth. It readily follows from (2.8) and (2.11) that

                   yg"mmbgh+O(ct3), y, =" rmb+O(ct2), (4•6a, b)

                             J.. b2+O(ct2), (4.7)

where b(g) =:-1+B(ctg). (4.8)
Note that b- g = cxB'(ctg) = O(ct) where the prime denotes differentiation with respect
to ctg se that yg tums out to be O(ct2). Substituting (4.2) and (4.4)--(4.7) into (2.13) and

the g-derivative of (2.14), we obtain a system of equations foy h and •uM:

                 h-t rm i-;i, C7iil + ge-S [(z-,h-),: + di(h-T'"ilg)] + O(e2) =: e, (4.g)

                 Z-`t'(bwwt)g+i-li,[Kzww`2ww`g+bww2hwugCZ+(b-h-g)]+O(e2)==O. (4.10)

It is also possible to derive a single equation for h by eombining (4.9) and (4.10). To
show this, we fust multiply (4.9) by b2 and then operate with T on the resuking
equation. It leads, after iterating wieh respect to 2-e, to

                 Kiww` -- T(b-2h-,) + K'e[7i(2-eh-)g+ h-T"'ilg] + O(62)

                    == T(b-2h-t)+e[T{h-T(b-2h-t)}g+h-(bww2hwwt)g]+O(E2). (4•11)

Operating with T on (4.10) and substituting (4.11), we arrive at the desired equation
for h:
      bww2hwwttmKT"'(b-hww)g+e[Kb-h-h-g+h-tT(b-2hwwt)+Sf7(b-h-t)2+Kf7i{h-fZNi(5h-g)}

                                        +5t7'(T(tb-`h-t))2]g+O(e2) = O' (4'12)

IE[ere, h- ,, has been replaced in the O(e) terms by the approximate equation h,t =
(K/ bww2 ) t2'(b-h- )g + O(e) .

                    4.2. .llgztations with original va7'iables

In order to transform equations (4.9), (4.10) and (4.12) into those with original
physieal variables, we firse introduce the horizontal eomponent of the surfaee
veloeity by

                              i` :gb.l,".h- (41,.13)
Evaluating the relation Åëg == xg ip.+ygÅëy on the free surfaee, we obtain

                            uww m- xg z`+O(ct2), (4.l4)
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where the approximate expression (4.6) has been iised together wieh the definition of
2wwt. X?Ve e}/x}ploy (2.8) to ea}eulate x'g on op == ath. The res"lt is expressed in the fo}'m

               xci7,-=ar• = -5+: Loo. g(,fi,iik/grm,/5,(5) dg' + o(ct2)

                        - 62 ua 64 -
                     =-b -i- s' bgE- +:li;rt bgggE. +•••+0(ct2), (4.l5)

w• kere, in the second line, integratlons have been performed a,fter expanding b(g- 6g')
w• ith respece to 6g'. Then following the pyocedure due to Radder (1999.,), we define t•he

funetion A = A(x) by
                          Xgl?i==Å}ai-t == m(1+A)b• (4.16)
IntroCiucing (4.16) into (6.l5) yields a non}ii}ear equa•tion for A and it can be so}ved
by iteration. The result is

                   A =-gS2(bg+bb..)+0(ct2)

                     ==-ge2{B'2+(-1+B)B"}+O(ct2). (4.17)
Thus we obtain, within the approximatlon considered here, the expression

                tx,tl,...f, =: -b(x') -l- O(ct2) =: 1-B(occv)+O(oc2), (4,.l8)

and henee 2-L =-bie+O(ct2). (4.l9)
On the other hand, in viev;r of (2.l6) the surface elevation h can be represented in
terms of h as

                          h=-h/b+O(ct2). (4.2e)
It cilso fol}ows from (2.10), (2.11) alldL (4.18) that

                   g== -]lg bS.X,')+o(ct2) on op :cth- (4 2i)

IFinally using (2.8) and (4.18), the g-derivative oB the surfaee ean be rewrititen in the
.z'-derivative as

                  a-e                 EFg = (xg+ oehg txv) Iv-=ait of. }. =: -biil.i.+ O(ct2)• (4-22)

If we substitute (4.19År-(4.22) into (4.9), (4.IOÅr and (4.l2), xve finc%IIy obtain the
equat2ons expressed in terms of the original variables :

            bh,+KrLZ-"l, ?`+Ke[b(zeh).+ CZ,{(h/b2) t7i,(bze.)}]+0(e2) =: O, (4.23)

                zet+h.+e[K?ett,.+(1/b)h. ii, h..]+O(e2) :O, (4.24)
     bh,, - Krt77, h. - eb[Khh... -i- (1/b) h, tZL h, -} itZ,(h?/b) + i( tZ-b[(h/b2) t7,i h.l

                                     +$7Ni,{(T, lb,)2/b3}].+O(62) == O. (4.25)

IHere the integral operators T, ancl dib are defined by

             Tb ze(x,t) == -SttPfNco. coth [Si} LX' bS.X,1')] zeÅqx'.t) dkV, (4 26a)

                 dib z`(x t) == Sisrpfrmco. ,.h [i.iiiXitxt)bs..stÅr] dx' (4 26b)



  Throughout the paper, the bottom topography has been assumed to be slowiy
varying' with a eha}'aeteristie iengthseale of O(ctm'). However, if we further assume

that the bump on the bottom is six}a}1 and has the form

                            B(ctth") =: ctB(ctc ), (4.27)
equations (4.23)-(4.25) are eonsi(lerably simplifieC{. Indeed, earrying out the

perturbatien ana}ysis, one finds that
            h, -KC712` + Kt6[(zeh).+ TN(ht7i2L.)+(1/6) (tr, z`).] +O(e2) == O, (4.28)

                    zL,+h...+6(Kzeze.-h. 7'"'h.)+O(e2) :9 (4.29)
   h,, + K-a-"ih. + E[ - Khh. + 2h, r/Z"h, + riih? - K-T'"Åqh7NJh.) - (K/8) T, h.]. + O(E2) = O, (4.30)

where the operator trb is eefined by

            fb ze(x, t) ": Sttss pu f-oo. dx' ,.h (Åí`/(X23')t().,- ...) f.X, B(ctx") dxL (4 3o

and in deriving (4.3e) we ha,ve used the formula

                      di(fg) -= di[(aN'f)(7Nig)]+fdig+g7Nif. (4.32)

                                                -v -  When the bottem of the fiuid is fiat or b = - i, tZJb and CZTb reduce to T and T given
respeetively by (3.3b) and (4.3b), and (4.23)-(4.25) and (4.28)-(4.3e) reduce to those

eerresponding to the fiat ease already derived by NMatsuno (i992).

5. Shallow- and deep-water limits
  The approximate equations obta,ined in g4 can be used to cieseribe various wave
phenoi:nena over a wi(le range of fiuid depth. IIIowever, sinee the effeet of all uneven
bottom would be primarily iinportant in shallovLi water, we fu'st discuss the. shallow-
water limit of the equations and compa}'e the resuks with existing theories. After

that we brllefly eomment on the deep-water }imit.

                         5.1. Shallozv-water limit
In the shallow-water limit 5--År O, xve employ the Boussinesq approximation, namely
the parameters ct and S a}-e assumed to be small but finite and they are connected to
eaeh other by the re}ation ct = O(62). To derive Napproximate equations correet up to
O(ct,62), we first expand the operators Tb and Tb defined by (4.26) in powers of 6 as

                  Tbf(x) = ltlS6 f-oo. sgn (x'-x)f(x")dx'+O(S), (s.la)

                  ti7bf(tT) == -8b2fx-g63b`fxxx-Sbbxf+ O(65), (5.ib)
wheye sgn (x-x') is the sign functien. Note that b. == ctB'(ct.x') == O(ct) == O(62). In ?he

                                           Taking this faet and the relationshallow-water limit, the parameter K beeomes 8i.
e = ct6 into aceount, (4.23)-(4.25) yeduce, after substituting (5.t) into them and

retaining the terms ttp to and including O(ct, 62), to the equations

                 h,-(bzt)..-g62b32t....+ct(zLh).+O(ct62, 64) == O, (5.2)

                        u,+h.+ctzLze.+O(ct62) =O, (5.3)
      htt + (bhx)x + g{S2L)3hxxxx

                - ct [hh. + ll;' Jwwce. sgn (x' - .x) h,(x' - k', t) dxv].+o(ct62 {s`) = o (s 4)
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In the ca,se of t•he flat bottom b x - 1, these equa•tions coineide xirith t•hose obtained

by Mats"no (1992).
  Broe}', van Groesen & [l]i}[t}iiners (1976) have developed a• ]. I{cft•milto- nian i[nethod fo}'

long wa•ter waves ovei' a bottom profi}e of small slope. [l]hey obta•ineCl a,n explieit
Hamiltoniaii under the sa•ine assumptions a•s those employed here (see eq"at2oi}
(7.ll) in their pa•per). In ter}/y}s of our notation, it can be writ•teR in the fo}'m

            i! = fr'. [-sbÅëg+ye2+Eil'l b3ip.2...,,+S, hÅë.2.+e(ct62, 64)] d.xh, (s..s)

where t•he deriva•tives of the velocity potentia} are evaluated on t•he fi'ee surface y =:

cth. Now, Hamilton's equatioRs of motion, h, = S.;(f/6ip cftncl Åë, =-6.;(f/6h yield a
system of NEEs for h a,nd ip :

                h, = (bÅë.).+g62(b3ip....)..-cr.(hip..).-l-O(ct62,6a), (s.6)

                         Åë, m-h-llocg51,+0(ctS2 .. 6`). (s.7)
If we use (2.2) and G.13) and note b... -- O(ct), NNe find tha•t (5.6) aiid the ,pm
differentiation of (5.7) coineide "ith (5.2) a•ncl (5.3), respectively within the
approximation up to O(ct, 62). Slnce (5.2) a,nd (5.3) haxre been obta•iiied as g. pecial eases

of (4.23) and (4.24), i"espectively, it is natural to stispect whether the latter equations

are o{' Hamiltonian t.ype. rl"his question is, howeve}', Rot• solxred as yet.
  E(ltuation (5.4) is an aiialoglle of the Boutssinesq equa,tion in shallo" -water theory
and it deseribes }ion}inear waves p}'opagating in bot•h tl}e rig'ht and left direetions. In

order to obtain an equation cleseribipg a unidireetiona} motion to the right for
instanee, it is approp}'iate to introduee a new coo}'dina•te system caeeording to

                       x' -- J,X (- Ci X,))t, -t rii =cr.t (s s)

Then, equa•tion (5.4) }'eduees to a va•riable-eoeffieieRt Korteweg-de XJ' ries equation
(lÅqalÅqutani t971)

                 hT + 4b,X,b lb-ii/lr' bhxJx• i\ ww ltiXb hlb.xt + O(oc, 62) =: O. (s.g)

N•ote, ln this equation, tl}at bx = ctb. d"e to bt =: O.

  Equation (5.9) is approp}'iate foi' so}x'ing Åí}}e initial value prob}eme. Another
coordinate ti'aBsfiormation is possible xv}}ick is eenvenient• fbi' k'eating the bounda•ry
xra}ue prob}em. Explicitly it• ma•.x'• be written in the form

                       AT -nv f: (wwX:l;))s-t y=.,, (s lo)

T}}e equation eori'es}/ oi3cling' Åío (5.9) no" takes t!}e forin (.lx,},kut•a,iii l97i ; tJohnson

1973)

                       62' , 3                  b              h}'+\/ h+{i•il}E.. ( wu L})T'lt .\r v.E,- {- xt(-b)t/ !i li .x-+O(ct, (År"'a) := e. (s.11)

                                                         -A fvirther reduct•ion et/•n be mt).,cle if xv( cle{line t•he ne" N uiables 7t. 7 t}nd z }:)År' (Ono

1972)

                h == ig(lll2 bD- fi, 7- - tig]/J fj.,{-bo")}ri• dÅr". 7. - x. (s•i2)
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Eqtiation Åq5.ID then beeomes

                     A AA A A                     h. -i- 6hh, -i- h,,, -l- vh+0(ct, S2) : O, (s.13 (t)

where v== v(7) =gb./b, (5.13b)
represents the effeet of an tmeven botto}iy}. ly
  In the same wa.y, by "sing t}ie expansion 7N}f == - 6Bf+ O(63) toget•her with (5.I) we

cckn show that (4.28)-(4.30B'edgce to the f"ol}owing equations:

               ht +(l-ctB) ?L.+gS2zt... -f- ct(2eh),, -l- O(cz62, 6`) = O, (5.l4,)

                        z{,+h.+ctzezL.+e(ct62) == e, (s.is)
      htt ww hxx - g621bnv.x-x

          +cti-hh..+.ZI}h.+h,fce sgn(x'-,x')h,(xi,t)d,x/1 +O(ct62,6'i)=o. (D".16)

             L J--oc., jx
b"or t•he purpose of eomparing these equatlons with existing ones, we introcluee the
la:rer-mean horizonta} veloelty by

                    U-- 1mufm.i, rmth Ji'l..,i 95x(tT y, t) dy (s l7)

A{'tey some ealc"lations, we find that Ll' is related to zt by the re}ation

                         z(, == u-g62u..+o(aa). (s.ts)
Sybstituting (5.18) into (5.14) and (5.l5) and using the approximation AU. =
(BU).+O(ct), they are reeast in t•he forms

                   h,+I(1-ctA+cth) U]..+0(ct62, (S`!) =: O, (5.l9)

                    U,+h.+ctUU.-g62 U,,..,+O(ct62) == e. (s.2e)

This system o'f equations is in agreement with thcftt de}"ived by Lee, Yates & Wu
(1989) ln the speeifie case ehat the surfaee presstue is const•ant and the bottom profile
is inclependent of t in their equations.

                          5.2. Deepu-water limit

Next we sha•11 investigate NEEs resu}tiBg froi:n the deep-water limit• S-År co. In this
ease 2t is appropriate to resca,le the vert•ieal eoordinate as y--År y/6 before taking the
Ilmit. If we eonsider a far-fie}d yegion ef the fiow foy which e.x = O(1), the bottom
pyofile may be expanded in inxreyse poweys of 6 as

               b(x) =-l+B(e.x/6) =: -1+ (e,x/6) B'(O)+O(6-2), (5.21)

where we have use{l B(e) == O. Then (4.23)-(Åq1.25) reduce to

                  h, -Y ,liirz,+e[(2eh). -I- II(hl'Ite.)l -F O(e2) == O, (5.22)

                    z{t+h.+e(2tze.+h. ftlh.)+0(e2) == e, (5.23)
              h,,-Hh...-e[hh.+U(hllh.)+fl(ffh,)2]... -i- O(e2) = O. (5.24)

Here t•he operator Ji is the Hilbert tyansfomn defined by

                       Hh(x, t) =: ilpfrV. h.(,Xi"Åí) d.x', (s 2,s)
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and in deriving (5.24) use has been made of the formula

                     ff(fg) == fl{(fff)(llg)}+f"g+gflf, (5.26)
which is the deep-water analogue of (4.32). The above equabions eoincide perfeetly
with those obtained by Matsuno (l992) in the case of infinite and uniform fluid depth.
Thus we find that in bhe deep-water limit an uneven bottom has no effect on the
evolution of surface gravity waves, whieh is in aeeordance with physieal intuition.
  In this paper, we have been concemed with approximate equations correct up to
O(e). However, beeause of eurrent interest in deep-water phenomena sueh as higher-
order modulation effeets (Dysthe 1979; Su 1982; Lo & Mei 1985; Brinch-Nielsen &
Jonsson 1986; Al{ylas 1989, 1991) and instabilities (Yuen & Lake 1982), it is
meaningful to take the approximation further. In bhe ease of fuid with infinite depth
this can be easily performed. For referenee NEEs correet up to O(62) are eibed in the
Appendix.

6. Conclusions
  In this paper we have presented approximate NEEs describing nonlinear surfaee
gravity waves on fluid of varying depth. One advantage of our formalism is that the
equaeions are writeen in terms of original coordinate variables and therefore they
have a direce relevance to physieal systems. These equabions are uniforrrily valid
from shallow water to deep water and have wide applications in various wave
phenomena of current interests such as the defermabion of a solitary wave climbing
a beach, the refleetion of waves by a shelf and the evolution of a solitary wave passing
over a submerged obstaele, ete.
  Although we have restrieeed our eonsideration to waves of small but finite
amplitude, the NEEs derived here ean easily be extended to inelude higher-order
nonlinear effeets. In all eases, higher-order linear dispersion effeets ean be fully
iReorporated. The generalized equations would be partieularly suitable to describe
highly nonlinear phenomena such as the highest solitary wave (Miles 198e) and the
breaking wave (Peregrine 1983, 1987). From the mathematical point of vievvr,
however, the expansion may be valid only in asymptotic mean and it is probable that
solutions are not eonvergent beyond a eertain wave steepness, in analogy wibh the
well-1Åqnown Stokes' expansion for gravity waves (Sehwartz 1974; Cokelet 1977). This
is a highly delicate mathemabieal problem and ib should be pursued further in detail.
In the future work, we shall invest!gate these impertant problems on the basis of the
rriodel NEEs obtained in this paper.

  The auehor wishes to thank Professor M. NishiolÅqa• for eontinual encouragement.

Appendix. Higher-order NEEs for deep-water waves
  In this Appendix, we describe higher-order INEEs for deep-water waves correet up
eo O(e2). The details of the derivation are omitted and only the final results are
quoted. Equations eorresponding to (5.22)-(5.24) are now written as follows:

     h, + Hze + e[(uh). + H(hHu.)]

                   +E2[H{hff(hH2`.).}+Sff(h22`..)+g(h2flze.).]+0(E3) =rr e, (A 1)

     2tt + hx + 6(UUx + hx Hhx)

            + e2[2h. H(teze.) - 2h. ?eHze. + h. ll(hHh.). + hh. h..] + O(e3) == O, (A 2)

                       htt r.lilh.+eF.+e2G.+O(e3), (A 3)



132 Y. iifcttszmo
where If" = hh.+tLl(hl['Zlh.)+,Fl(ftlh,)2 ..

      a :S(h2Ilh.).+H{hH(hlllb..)...}+}H(h2h...)rmh...(Hht)2

                            + 2II{lbl'I(ht 1?txt)} - 2ht I'I(hl'Iht)x + 2I-I(h,x• ht IIht)•

  As a]:y app}ication of (A 3), we can show witk the aid of the formulae

                             ffeiL'X :isgnlceii"'X",

                           H(.x'f) - ,xflf+fce fdx,

                                         "- •rJ

that it exhibits a steady periodic wave k"ain of the form

       h == eonst+acosg+5elea2eos2g+ge21c2ct3eos3g+O(e3) (g = lc.x-(t)t),

with cti =lc'/i{1+l,e21c2a2-FO(e3)} (lcÅrO).

(A 4)

(A 5)

(A 6)

(A 7)

(A 8)

(A 9)

The expression (A 8) ls a• eorreet fourin of t}}e first three terms of the Stokes expa•nsion

fb}' cleep-water gravity waxres. This shows the validity of (A 3).
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