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(Received 13 December 1991; accepted for publication 20 April 1992) 

A nonlocal nonlinear evolution equation is proposed that describes pulse formation in a 
dissipative system. A novel feature of the equation is that it can be solved exactly through a 
linearization procedure. The solutions are constructed under appropriate initial and 
boundary conditions and their properties are investigated in detail. Of particular interest is 
pulse formation, which is caused by a balance between nonlinearity and dissipation. 
The asymptotic behavior of the solution for large time is then represented by a train of moving 
pulses with equal amplitudes. The corresponding position of each pulse is shown to be 
characterized by the zero of the Hermite polynomial, irrespective of initial conditions. 

1. INTRODUCTION 

The study of dissipative nonlinear systems is current 
interest in physics.’ The systems considered are usually 
described by nonlinear evolution equations (NEE’s) with 
small dissipative perturbations. Of particular importance 
is the situation where in the absence of dissipations the 
systems become completely integrable, namely they are 
characterized by soliton solutions, infinite number of con- 
servation laws, Backlund transformations, and so on. In 
general, however, the presence of dissiapations prevents 
exact analytical treatment of the problems. One must re- 
sort to approximate methods. For this purpose various 
perturbation theories have been developed,1-3 but their 
applicability is limited to the cases where perturbations 
are small. In addition, these methods seem to be far from 
completed from a mathematical point of view. In this 
sense solvable model equations are of great value, even if 
they have no direct background in physics. Motivated by 
these facts, we have recently found a few solvable dissi- 
pative NEE’s.~*’ 

In this paper we present a novel example, which can 
be solved exactly by a linearization procedure. The equa- 
tion that we propose here is written in the form 

Or= -p sin 8+eH8, 0=0&t), (l.la) 

where the operator H is the Hilbert transform defined by 

He(x,t) =; P 
s 

- ew 
- 4, 

--m Y--x 
(l.lb) 

the subscripts 1 and x denote partial differentiation and p 
and E are real parameters. Equation ( 1.1) may be inter- 
preted as a nonlinear diffusion equation for positive E. 
Indeed, if E > 0, then the second term on the right-hand 
side of Eq. ( 1.1) produces a short wavelength dissipative 
effect. To see the contribution of the term to the time 
evolution of 8, we consider the equation 8,=eH8, and 
substitute a solution of the form 8 a eikx+*‘. We then ob- 

tain the dispersion relation (T= --E ( k I 
term with positive e exhibits the dissipative nature. Under 

. Obviously, the 

3 

certain conditions this will result in stationary solutions, 
which stem from a balance between nonlinearity and dis- 
sipation. One notes that Eq. ( 1.1) has similar structures 
to those of the NEE’s of the Fisher type, in which there 
are no convective terms.677 In this respect the famous 
Burgers equation in one-dimensional gasdynamics be- 
longs to a different class of nonlinear diffusion equations6 
Although Eq. ( 1.1) has been derived on a mathematical 
aspect, it is worthwhile to remark that in the static case 
8,=0, it reduces to the Peierls equation in the theory of 
dislocations.8*9 In what follows, we solve Eq. ( 1.1) under 
the boundary conditions OX-+0 as 1 x I-+ ~4. 

In Sec. II, Eq. ( 1.1) is solved by means of a linear- 
ization procedure. In Sec. III, the properties of solutions 
are investigated in detail. Three types of solutions, that is, 
stationary, blowup, and decaying ones are found accord- 
ing to the sign of p and E. In particular, in the case of 
positive p and E, the asymptotic form of the solution 
u z 0, for large time is shown to be represented by a train 
of pulses with equal amplitudes, and their positions are 
characterized by the zeros of the Hermite polynomial. 

II. EXACT METHOD 

A. Linearization 

In this section we show that Eq. ( 1.1) can be linear- 
ized through an appropriate dependent variable transfor- 
mation. First of all, we introduce a new dependent vari- 
able f by 

8=i ln(f*/f ), 

with 

f = ,ij b-xjw I, 

(2.la) 

(2.lb) 
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where xi (i= 1,2,...,N) are complex functions of t whose 
imaginary parts are all positive, and the asterisk denotes 
a complex conjugate. The above transformation has the 
same form as that used in the linearization of the sine- 
Hilbert equation.‘0-12 Substituting (2.1) into (1.1) and 
using the relation He,= - (lnpf ),, which stems from 
the analytical conditions Im Xi> 0 (j= 1,2,...,N), Fx+ 
( 1.1) is transformed into the following bilinear equation 
for f and f*: 

iCJTf -Pf,> = -k (f*-.P’> -4Pf ), . (2.2) 

Further reduction is possible if we modify (2.2) in the 
form 

+f* -if$ (P-f> +Ef, 4. (2.3) 

Equation (2.3) is then satisfied automatically, provided 
that the following linear equation for f holds: 

ft= -ip Im f -kfx . (2.4) 

Equation (2.4) is a linearization of IQ. ( 1.1) and is a 
main result in the present paper. Before solving Eq. (2.4)) 
we derive the equation of motion for the pole xP To do so, 
we divide (2.4) by f, substitute (2.1)) and then compare 
the coefficients of (x-x$ -’ on both sides. The resultant 
expression reads in the form 

/A nfc*(xj-xZ) . 
xj=-Z n~z,cMj,(~j-~k)+'E9 (2.5) 

where an overdot denotes differentiation with respect to t. 
By taking the imaginary part of Eq. (2.5), we have 

Im ij;i= - Gj Im xi+ E, 

where 

(2.6a) 

(2.6b) 

Integration of Eq (2.6) yields an important relation: 
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ImXI(t)=[Imx,(O)+E~~dt’exp( Jt G,(r”)dr”)l 

Xexp( - Ji Gj(t’)dt’). (2.7) 

In the case of E > 0, (2.7) would ensure that if the con- 
dition Im Xi(O) > 0 is satisfied, then the same inequality 
holds for later time. On the other hand, if E < 0, Im Xj( t) 
becomes zero at finite t under the appropriate initial 
condition and that leads to blowup of the solution. 

B. Solutions 

Let us now solve Eq. (2.4). We first expand f as 

f= jio (-l)jSjxN-j, (2.8) 

where se= 1 and Sj (i= 1,2,...,N) are elementary symmet- 
ric functions of x1,$ ,...) XNt 

sl= j$lxj* s2= j$k xjxk,***,sN’ ,fil xj - (2.9) 

Substituting (2.8) into IQ. (2.4) and comparing the co- 
efficients of p-j on both sides, we obtain the following 
system of linear differential equations for sj: 

Sj= -ip IIIlSj+k(iV-j+ l)Sj-1 (i= 1,2,...,N). 
(2.10) 

In order to solve Fq. (2.10), we specify the initial condi- 
tions for Sj as 

Sj(0) =bj+kZj (I= 1,2,...JV), (2.11) 

and those for Xi as 

Xi(O) =6j+iij 9 Zj> 0 (j= 1,2,...,N). (2.12) 

In view of (2.9) these parameters are linked to each other 
by the relations 

a,= ji,%, bl= ji,G, (2.13a) 
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b2= 5 (+ik+i&), 
jck (2.13b) 

It now follows from the real and imaginary parts of 
IQ. (2.10) that 

(2.14a) 

ImSj=-p ImSj+e(N-j+l)Resj-t . (2.14b) 

Integration of Eq. (2.14a) with the initial condition 
(2.11) gives 

ReSj=-e(N-j+l) Im sj-1 dt+bj. (2.15) 

Substituting (2.15) into Rq. (2.14b) and integrating with 
the initial condition (2.11), we obtain, after some manip- 
ulations, the following integral equation: 

Im Sj'pj Im sj-2 dt-e-p” 
s 

’ ept Im Sj-2 dt 
0 

+9j, (2.16a) 

where we have put 

pj’ - (P//J) (N-j+ 1) (N--j+219 (2.16b) 

for simplicity. Frthermore, if we introduce a linear in- 
tegral operater I,, defined by 

F-g= gdt--e-p ‘e@gdt, 
s 0 

Eq. (2.16) is written compactly as 

ImSj=Pj?pIIllSj~*+~j. 

g=&?(t), (2.17) 

(2.18) 

Iteration of (2.18) immediately yields the formal solution 
as follows: 

Im Sj= ‘(jz’ ( ii Pj-2s)$qj-2k+qj (.&3)- 
(2.19) 

Here the notation [x] means the maximum integer not 
exceeding x. If we take into account (2.16b) and (2.16~)) 
we find that the problep underzonsideration reduces to 
evaluate the integrals IF1 and IFe-“’ (n) 1). However, 
since the latter integral is derived from the former one by 
the formula 

%e--pt=( -1)“e-P’$l (n>l), (2.20) 

it is sufficient to evaluate ?P1. 
Now we can easily surmise that J,,=$l will be ex- 

pressed in the form 

n-l 
J,,= j~oa:“‘tj+e-“’ 1 /$“‘d. (2.21) 

j=O 

In order to determine the unkzown coefficients aj”’ and 
/3(“‘, we use the identity J,,= IpJ,+ t. Substituing (2.21) 
i&o this expression and comparing the coefficients of / 
(j=O,l,..., n) and eVPt$ (j=O,l,..., n-l) on both sides, 
we obtain the following recursion relations for ajn) and 
p(n). 

J ’ 

(-p) zap--p/n, 
” 

(2.22a) 

(j= 1,2 ,..., n - 1 ), 

n-1 &l-l) 
QO 

(n)= C J 
j=O (-PFL)j+l 

I$!?,= 

-pl”-;‘) 

n-l ’ 

p!“‘= 
-@“T” 

J 
j 

(j=1,2 ,..., n-2), 

(2.22b) 

(2.22c) 

(2.22d) 

(2.22e) 

(2.22f) 

Here (r) is a binomial coefficient. In principle, these re- 
lations can be solved successively, starting with aAl) 
= - l/p, al’)= 1, and PO (‘) = l/p. Although the explicit 
solutions have not been found for general n, those of 
(2.22a) and (2.22d) are easily obtained. They read in the 
forms 

cp = l/n!, (2.23a) 
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(2.23b) 

and will be used in Sec. III to derive the long time be- 
havior of the solution. Once Im Sj have been obtained, the 
solutions for Re Sj follow immediately from (2.15) by a 
simple integration. 

Thus the construction of solutions for Eq. (2.14) has 
been completed. We only quote the first two of them, 
which are given by 

$=b,+i[ -(o,-EN)(l-e-“)+o,], (2.24a) 

2 
4=-IN(N-l)I--; (N-l) +v 

( 1 

x(1-e+‘)+bz+i 
E(N- 1) 

Q2- P bl 

x(1-e+“)+a2 . 1 (2.24b) 

III. PROPERTIES OF SOLUTIONS 

In this section we shall investigate the properties of 
solutions. The solutions 0 obtained in Sec. II may be 
called the kink solutions, in analogy with those of the 
sine-Gordon equation; this can be seen by rewriting (2.1) 
as 8= 2 tan- ’ (Im f/Re f ) . However, for the purpose of 
visualizing the solutions it is convenient to introduce the 
function u = 0,. It then follows from (2.1) that 

N  

II= c 
2IIIlXj 

j=l (x-Rexj)2+ (Im xi)’ ’ (3.1) 

The expression (3.1) indicates that the solution u is rep- 
resented by a superposition of iV pulses. Thejth pulse has 
a Lorentzian profile with the amplitude 2/Im Xi and the 
center position Re xj We now consider the cases N= 1 
and general N separately. 

A. N=l 

The expression (2.24a) with N= 1 gives 

xl=s,=b,+i[-(al--E/~)(l-e-~‘)+~,l 

(a, > O), 

and (3.1) becomes 

(3.2) 

2Imxi 
*=(x-Rex1)2+(Imx1)2’ (3.3) 

1.5 

l.O- 

e 

0.5- 

-10 -7.5 -5.0 -2.5 0 2.5 5.0 7.5 
x 

FIG. 1. Tie evolution of u for case 1. 

It is seen from (3.2) and (3.3) that the pulse does not 
propagate and only the amplitude changes. As already 
pointed out in the Introduction, Eq. ( 1.1) exhibits a dis- 
sipative nature only for positive E. However, we also ex- 
amine the characteristics of solutions for negative E. Then 
three types of solutions, namely stationary, blowup, and 
decaying ones arise according to the sign of p and E: 

1. p>o, e>o 
Since s ,-b,+i(dp) as ~-+co, the solution ap- 

proaches a stationary profile as time evolves. The asymp- 
totic expression of II takes the form 

The corresponding 19 may be written as 

e--n+2 tan-‘[ (p/6)(x-bI)], (3.5) 

where we have assumed the boundary condition 8-O as 
x-+ - ~4. It then turns out that (3.5) represents a wave 
front connecting two constant states, f3=0 and 8= 27r, 
which are exact solutions of Fq. ( 1.1). The theory of 
linear stability shows that these states are stable. Indeed, 
if we linearize Eq. ( 1.1) around f3= 0,2~ as 

et= +e+aex, (3.6) 

and substitute the solution of the form O~eikx+Ot, we 
obtain the linear dispersion relation 

CT=-p--ElkI. (3.7) 

Obviously, for positive /.J and E, (3.7) gives negative a, 
implying that the two states are stable against small dis- 
turbances. A remarkable feature of (3.4) is that the am- 
plitude does not depend on initial conditions. It is also 
interesting to remark that (3.5) has essentially the same 
functional form as that found by Peierls in his theory of 
dislocations.’ Figure 1 represents the typical time evolu- 

J. Math. Phys., Vol. 33, No. 9, September 1992 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.62.137.102 On: Wed, 05 Feb 2014 06:12:27



Y. Matsuno: Pulse formation in a dissipative nonlinear system 3043 

FIG. 2. Time evolution of u for case 2. FIG. 3. Time evolution of u for case 3. 

tion of U, where the parameters are chosen as ~=0.5, 
E= 1.0, uI= 1.5, and b,=O. 

2.p>o,e<o 

As is easily confirmed, Im x1 becomes zero at t 
= ( l/p)ln( 1 +,~a,/[ E I), at which instant the solution 
blows up as 

u-2di(x-b,), (3.8) 

where S is Dirac’s delta function. In deriving (3.8) we 
have used the formula lim,,ee/(~~+P)=&(x). The 
corresponding 8 takes a form of step function with its 
discontinuity at x= 6,. To interpret these results we use 
(3.7). It now yields the linear dispersion relation u= -p 
+ 1 ekl. Thus, the short wavelength component of the 
disturbance becomes unstable. One notes that in addition 
to 8=0, 2n another constant state f3=rr exists for Eq. 
( 1.1). However, it is not stable in the present situation, as 
seen from the corresponding linear dispersion relation o 
=p + 1 ek I. Consequently, a singularity has been formed 
at x=b,, as indicated by (3.8). The time evolution of II is 
shown in Fig. 2. The parameters are the same as those 
used in Fig. 1, except E= - 1.0 and u,=4.0. In this ex- 
ample the blowup time of the solution is estimated to be 
2.197. 

3.p<o, P>O 
In this case Im x1 increases indefinitely so that the 

amplitude approaches zero as t+ 03. The relation (3.7) is 
now written in the form o= 1~ 1 --EI k I. This means that 
the constant states 8=0, 27r become unstable for large 
wavelength disturbances. As a result, the system has 
evolved into another constant state 8=rr (or equivalently 
u=O), which is seen to be stable in view of the corre- 
sponding linear dispersion relation o= - j ,V 1 - E I k I . The 
time evolution of u is depicted in Fig. 3. The parameters 
are the same as those used in Fig. 1, except ,u= -0.5. 

0 
-10 -7.5 -5.0 -2.5 0 2.5 5.0 7.5 

4./X<O,E<O 

In this situation, the constant solutions 8=0, 2~ are 
unstable and two different asymptotic states are possible, 
depending on the initial condition. If al > E/P, then 
Im x1 --) co as t-* co, so that the behavior of the solution is 
similar to that of case 3. On the other hand, if 0 <a, 
<E/P, the solution blows up like (3.8) when t 
=(l/p)ln(l--pal/e). 

B. General N 

As in the case of N= 1, three types of solutions are 
found for general N. However, we restrict our consider- 
ations to case 1 in Sec. III A, namely ,U > 0 and E > 0. The 
main reason is that only in this situation pulses with finite 
amplitudes are formed that develop no singularities. Also, 
we shall be concerned with the asymptotic behavior of the 
solution for large 1. 

First, consider even N (N=2n, n=1,2,...). Then 
(2.8) reduces to 

n-1 
f = j$os2jx2c-jj- C S2j+,X2n-2j--1. (3.9) 

j=O 

The leading terms of the long time behaviors of S2j and 
S2j+l are readily derived from (2.15), (2.19), (2.21), and 
(2.23) as follows: 

(2n)! 
5!(2n-2j)! tJp (3.10a) 

Im S2j- -e-l 
(2n-l)! 

(j- 1)!(2n-2j)! +-I* 
(3.1Ob) 

Re s2j+ I- 
(2n- l)! tj rjl(2n-2j-l)! ’ (3.1Oc) 
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FIG. 4. Time evolution of u for N=2. 

-2 i+l 
ImSzj+l---E -1 - 

( 1 
(2n)! 

J(2n--2j- l)! 
d. 

P 
(3.1od) 

To determine the locations of the poles, we must solve the 
algebraic equation f =O. A detailed inspection shows that 
the roots can be expressed in the leading order of the 
large time expansion as 

X- &7jiitcz+i(dP)P. 

Substituting (3.10) and (3.11) into (3.9), we find that, 
cz.s are given by 2n roots of the algebraic equation, 

c n Gwmva2(n-j)-o 
j=o $(2n-2j)! - , (3.12) 

and p is determined to be 1. In the case of odd N (N=2n 
+ 1, n=O,l,... ), one can obtain the similar results. The 
equation corresponding to (3.12) now becomes 

c n (-1)j(2n+l)!a2n+l-2j-0 
j=o /!(2n+ l-2$! - , (3.13) 

and p= 1. Here we notice the definition of the Hermite 
polynomial 

[n/21 (_ l)in! x+2i fux)= c. j=O jl(n--2j)! 2i ’ 
(3.14) 

Let Xj,n be the jth root of H,(x). Comparing (3.12) and 
(3.13) with (3.14), we see that thejth root of Eqs. (3.12) 
and (3.13) is related to xj,N by a simple formula 

aj=dhj,J (j= 1,2 ,...) iv). (3.15) 

If we use (3.11), (3.15), and p=l, the asymptotic form 
of u for large t can be expressed in the form 

FIG. 5. Time evolution of u for N=3. 

2(dp) 
U- ,?, (X- J(&ji)tx’N)2+ k//d2 * 

h 

(3.16) 

The profile of thejth pulse is the same as (3.4), but in the 
present case it propagates with the velocity &Z&Zxj,~ 
Hence (3.16) represents a train of N moving pulses with 
equal amplitudes. However, due to the property of the 
root Of H,, we can put Xj,2n= -Xj+n,2n (i= 1,2,...,?2) for 
N=h and Xj,2n+l=-Xj+n,2n+l (j=lA..,n), ~2~+1,2,,+1 
=0 for N= 2n + 1 without loss of generality. This implies 
that for even N the n pulses propagate to the right direc- 
tion and the other ones to the left direction, while for odd 
N the same situation occurs, the only difference being 
that one pulse remains at the origin. It is interesting to 
observe that the asymptotic values of the amplitude and 
the position of each pulse do not depend on initial con- 
ditions in the leading order of the large time expansion. 
In terms of the original variable 8, the expression corre- 
sponding to (3.5) may be written in the form 

e--NV+2 2 tan-‘[(p/e)(x- &iiZjZ~~,~)]. 
j=l 

(3.17) 

It represents N moving wave fronts connecting N+ 1 sta- 
ble constant states 8=2m (n=O,l,...,N). The location of 
the jth front is given by (24/p) tXj,N 

Typical time evolutions of u for N= 2 and N= 3 are 
illustrated in Figs. 4 and Fig. 5, respectively. The figures 
show the profiles of pulses emerged from a single pulse 
located initially at the origin. In Fig. 4 the para_mete_rs are 
chosen as ~=0.5, e=l.O, Zi=4.0, Z2=2.0, b1=b2=0, 
and in Fig. 5 they_are_give_n by ,u=O.5, e=l.O, Zt=S.O, 
c&=5.0, &=3.0, bl=b2=b3=0. 
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