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Dynamics of solitons in a damped sine-Hilbert equation 
Y. Matsuno 
Department of Physics, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi 753, Japan 

(Received 29 October 1991; accepted for publication 18 March 1992) 

A damped sine-Hilbert (sH) equation is proposed. It can be linearized by a dependent 
variable transformation which enables one to solve an initial value problem of the equation. 
The N-soliton solution is obtained explicitly and its properties are investigated in 
comparison with those of the N-soliton solution of the sH equation. In particular the 
interaction of the two solitons is explored in detail with the aid of the pole representation. It 
is found that the interaction process is classified into the two types according to the 
initial amplitudes and positions of both solitons. In the general N-soliton case the long-time 
behavior of the solution is shown to be characterized by the positive N zeros of the 
Hermite polynomial of degree 2N. Finally, a linearized version of the damped sH equation is 
briefly discussed. 

I. INTRODUCTION 

In a series of papersle5 we have studied the analytical 
properties of the sine-Hilbert (sH) equation6” A re- 
markable feature of the equation is that it can be linear- 
ized by an appropriate dependent variable transforma- 
tion. This fact has enabled us to solve an initial value 
problem of the sH equation. As special cases, soliton”2 
and periodic3 solutions have been derived. It is also re- 
marked that for a more general initial conditions, the sH 
equation has been solved by means of the inverse scatter- 
ing method.* A novel characteristic of one-soliton solu- 
tion is that the propagation velocity is inversely propor- 
tional to the amplitude. Hence, a tall soliton propagates 
more slowly than a small one unlike the behavior of the 
usual soliton which propagates with the velocity propor- 
tional to its amplitude. Furthermore, in the interaction of 
N solitons only one soliton propagates with a constant 
velocity after multiple collisions of solitons, whereas the 
other N- 1 solitons are decelerated with increasing am- 
plitudes, and eventually in infinite time, the amplitudes 
blow UP.~ However, the occurrence of singularities in so- 
lutions would be unreasonable from the physical point of 
view. Therefore, it is quite natural to ask whether an 
addition of a damping term to the sH equation can sup- 
press the blowup of solutions. 

Motivated by the above-mentioned facts, we intro- 
duce the following damped sH equation 

He,= -sin f3--EI~,, e=ecx,t). 

Here the integral operator H defined by 

(l.la) 

HB(x,t) =a P 
s 

w ew 
- dv 

--co Y--x 
(l.lb) 

is the Hilbert transform, the subscripts t and x appended 
to 8 denote partial differentiation and E is a positive con- 

stant representing the magnitude of the damping. The 
main reason why we have added a damping term of the 
form -&, is that the equation is linearizable and conse- 
quently it can be solved exactly without any approxima- 
tions. This remarkable aspect of the proposed equation 
should be stressed since to solve dissipative nonlinear ev- 
olution equations one must recourse to perturbation 
methods.“” However, the applicability of the methods is 
usually restricted to the system of equations with small 
perturbations. The famous Burgers equation in one- 
dimensional gas dynamics is an exception which can be 
linearized by means of the Hopf-Cole transformation. In 
this paper we solve Eq. ( 1.1) under the boundary condi- 
tion e,.+o as Ix]+ 03, which results in soliton solutions. 

In Sec. II it is demonstrated that Eq. ( 1.1) can be 
linearized by introducing a dependent variable transfor- 
mation. Using the pole representation of the solution, the 
linear partial differential equation thus obtained is re- 
duced to a system of N ordinary differential equations. 
An explicit rational solution is then constructed which 
corresponds to the N-soliton solution of Eq. ( 1.1). In 
Sec. III the properties of the N-soliton solution are inves- 
tigated for N= 1, N= 2, and general N separately. In 
particular the interaction of the two solitons is explored 
in detail with the aid of the pole representation. It is 
shown that the interaction process can be classified into 
the two types according to the initial amplitudes and po- 
sitions of both solitons. The results are also compared 
with those for the sH equation [Eq. ( 1.1) with e=O]. For 
general N it is found that the asymptotic behavior of the 
N-soliton solution for large time is characterized by the 
positive N zeros of the Hermite polynomial of degree 2N. 
In Sec. IV an initial value problem of a linearized version 
of Eq. ( 1.1) is solved by means of the Fourier transform 
and the characteristics of the solution are compared with 
those of the full nonlinear case treated in Sec. III. Section 
V is devoted to concluding remarks. 
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II. METHOD FOR EXACT SOLUTION 

A. Linearization 

Here we show that Eq. ( 1.1) can be linearized. Let us 
first introduce the following dependent variable transfor- 
mation 

8=i ln(f+/f- ), (2.1) 

where f + (f - ) is an analytic function with zeros in the 
lower (upper) complex plane. Substituting (2.1) into Eq. 
( 1.1) and using the relation 

He,= - Mf+f-11” (2.2) 

which stems from the analytical property of the functions 
f *, Eq. ( 1.1) is transformed into the following bilinear 
equation for f&t: 

(f+f-),=(1/2i)(f2_-f2+)+~df+,f--f+f-,X)* 
(2.3) 

Furthermore, Eq. (2.3) is modified in the form 

+f+[f-,t-(1/2i)(f--f+)+i~f-,Xl=0. (2.4) 

Therefore, one sees that Eq. (2.4) is satisfied identically if 
the following system of equations for f A holds 

f+,t+(1/2i)(f+-f-)-i~f+,X=i~f+, (2Sa) 

f-.,-(1/2i)(f--f+)+i~f-,X=-iAf~, (2Sb) 

where /I=A(x,t) is a real function of x and t. In general 
A will depend on f * in a very complicated way except for 
a special case described in the following. The solution 
method of Eq. (2.5) for general /2 is beyond the scope of 
the present paper. 

Now, in order to obtain soliton solutions we set A =0 
and assume the functional forms off A as 

f+=P, f-=f9 

with 

(2.6a) 

f= ,fi, [x-xi(t)], ImXj>O. (2.6b) 

Here xi (j= 1,2,...,N) are complex functions of t whose 
imaginary parts are all positive and the asterisk denotes 
complex conjugate. It then turns out that Eqs. (2.5) are 
reduced to a single linear equation for f as follows: 

ft= (l/29 (f -f*) -ief,. (2.7) 
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The initial value problem of Eq. (2.7) can be solved 
exactly provided that the initial profile f (x,0) is specified 
appropriately. In the present situation we first expand 
(2.6b) as 

f= j~o (-l)jSjXN-j 

(SO= 1, Sj=Sj(t), j= 1*2,*.*,N), (2.8) 

where Sj are elementary symmetric functions of xi, x2, . . . . 
x,.,7: 

N 

s1= c xj (2.9a) 
j=l 

(2.9b) 

N 

sN= r]: xk (2.9~) 
j=l 

Then we substitute (2.8) into (2.7) and compare the 
coefficients of xN-j on both sides. Thus we arrive at the 
following system of linear ordinary differential equations 
for sj: 

sj=Imsj+i~(N--j+l)Sj-, (j=l,2,**.,N)* (2.10) 

Here an overdot appended to Sj denotes the time differ- 
entiation. The above system of equations is a main result 
in this paper. We now specify the initial values of Xi and 
sj in the forms 

xi(O) =b,+iq (j= 1,2,...,N), (2.11a) 

sj(O) =bj+iaj (i= 1,2,---~V), (2.11b) 

where ~j, b, ait and bj are real constants. It should be 
noted that the conditions ~j> 0 (j= 1,2,...,N) must be 
satisfied to fulfill the analytical requirement for Xj [see 
(2.6b)l. One can see from (2.9) that these constants are 
related to each other as 

a,= 2 ii) b,= 2 bj (al>(l), 
j=l j=l 

N 

(2.12a) 

‘12~ j5k (zjbk+zJj) b2= ,gk ( --iijZk+gjbk), 

(2.12b) 
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aN=Im jrl - ‘- 1, b,=Re[ PI (b;:+i$]. n (bj+zaj) 
(2.12c) 

Next we derive the equation of motion for Xi (j 
= 1,2 ,..., N). A simple way is to divide (2.7) by f and 
then compare the coefficient of (x--xi)-’ on both sides. 
The resulting expressions read in the forms 

'Fk [ i, (xi-xZ) ( Ii?& (Xj-Xkl)-'1 

+k (j= 1,2 ,..., N). (2.13) 

Hence, the problem under consideration has been re- 
duced to solve dynamical motions of N complex variables 
Xl,XZ,...,X~ However, in the present case the solutions for 
Eqs. (2.13) are obtained directly by solving the algebraic 
equation of degree N, f =0 where f is given by (2.8). If 
we take the imaginary part of Eqs. (2.13), we have 

Im Xj=Gj Im Xj+e (j= 1,2,...,N), (2.14a) 

with real functions defined by 

Gj=Im i xi-X if 
k=l xj-xk . 

(2.14b) 

(k#j) 

Integrating (2.14) yields the important relations 

Xexp( Ji G,(t’)df) (j= 1,2 ,..., N). (2.15) 

Equations (2.15) would ensure that if the conditions 
Im Xi(O) >O o’= 1,2,...,N) are satisfied, then the same 
inequalities hold for a later time, i.e., Im Xj( t) > 0( t > 0, 
j= 1,2,...,N). Thus the analytical condition for f neces- 
sary in deriving (2.2) would be fulfilled for all positive 
time. 

The solution (2.1) with (2.6) may be called the N- 
kink solution by analogy with kink solutions of the sine- 
Gordon equation; this is easily seen by rewriting (2.1) in 
the form e=iln(f*/f )=2tan-’ (Imf/Ref ). How- 
ever, it is more convenient to introduce the function 
u=e, instead of 8 to visualize the solution 

where 
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2IlllXj 

The expression (2.16) is the so-called pole representation 
of the N-soliton solution. In what follows we term Uj the 
jth soliton. In the pole representation the jth soliton may 
be regarded as a particle located in the complex plane. In 
the terminology of particle physics the interaction of soli- 
tons is interpreted as inelastic scatterings between parti- 
cles since in the present situation, the dissipation of en- 
ergy is accompanied due to the effect of the damping. 

B. Exact solutions 

In this section we solve Eq. (2.10). It follows from 
the real and imaginary parts of Eq. (2.10) that 

ReSi=ImSj--E(N-j+l)Imsi_l, (2.17a) 

ImSj=e(N-j+l)Resj-1. (2.17b) 

We now expand Re Sj and Im Sj in powers of t as 

2i 
Re sj= c cpji-s, (2.18a) 

s=o 

2j- 1 
Imsj= C d, P’-‘, 

s=o (j) 
(2.18b) 

where tin and di” are constants to be determined. Sub- 
stituting (2.18) into (2.17) and comparing the coeffi- 
cients of the same powers oft on both sides, we obtain the 
recursion relations for tin and din as follows: 

(s=2,3 ,..., 2j- 1; j=2,3 ,..., N), (2.19a) 

(2j- l)c;‘J =d;” (j= 1,2 ,..., N), (2.19b) 

2jc;:“=dhj’ (j= 1,2 ,..., N), (2.19~) 

(2j-s- l)dZj’=~(N--j+ l)cij-‘) 

(s=O,l,..., 2j-2; j= 1,2 ,..., N). 
(2.19d) 

These relations must be solved under the conditions 

(2.16a) 

$‘=b) d.$L,=aj (j=1,2 ,..., N), (2.20) 

which are derived from (2.11b) and (2.18). In the ab- 
sence of the damping (e=O), the solution for Eqs. (2.19) 
is easily found and it is simply expressed as Sj=Ujt+ bj 
+iUj (j= 1,2,...,N). This corresponds to the rational N- 
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soliton solution of the sH equation.lS2 Let us now solve 
Eqs. (2.19) for even and odd s separately. 

f. s=2m; m= 1,2,-..,I- 7 

In this case (2.19a) and (2.19d) yield 

EW-j+ 1) 
(2j-2&c& 2j-2m-1 cg-1) 

-E2 m-j+ 1) w-j+21 
2j-2m- 1 

&-:j. 

(2.21) 

If we put 

,(A - 
(iV-m)!Ej-m 

2m-(2j-2m)!(N-j)! 
4: ($=bj), (2.22) 

Eq. (2.2 1) is considerably simplified as 

~~=~‘,-“--E(N-m+l)~2~~~. (2.23) 

The solution of the above recursion relation is expressed 
in the form 

(-~)~(i?) i (N-m+l) bm-k9 
I=1 1 

(2.24) 

where (iVm) is a binomial coefficient. In (2.24) we have 
assumed bo= 1 and bj=O (j<O). The solution (2.24) can 
be proved by a mathematical induction using the identity 
(i,‘) = (‘,)+(jm-i) of the binomial coefficients. If we 
employ (2.19d), the coefficient die is written in terms 
of $:‘, ’ ) as 

& = 
&V-j+ 1) 
2j-2m- 1 

&- 1) 

(N-m)!ej-m -ii-l) 
=(2j-2m- l)!(N-j)! C2m * 

Y. Matsuno: Damped sine-Hiibert equation 2757 

2. s=2m+ 1; m= 1,2 ,..., j- 1 

In this case it follows from (2.19a) and (2.19d) that 

-2 W-j)W-j+l) 

2j-2m 
d$$-“;. 

(2.26) 

Introduction of a new variable 2ig-t by 

d”’ (N-m)!ei-m 
2”-1=(2j-2m)!(N-j)! 2m-1 (;7ij11zuj)~ 

;T”) 

(2.27) 

transforms (2.26) into the following recursion relation 

;i"+ 1) _ $1 
2m+1- 2m+l --E(N-rn)&~l/. (2.28) 

One finds the solution in the form 

j-m 

dy2-l=am+ ks, (-~)~(f”) [iI (N-m+/) 
I 1 am-kp 

(2.29) 

where we have assumed cj=O(j<O) . Then &- 1 is given 
bY 

2j-2m+2 
4~- 1= E(N-j) d:‘,: ; 

(N-m)!Eiem &+ 1) 
=(2j--2m+l)!(N-j)! 2m-” 

(2.30) 

It is easy to confirm that Eq. (2.19b) is satisfied by (2.27) 
and (2.30). For later use we write down the explicit 
fOlTIX3 Of.Sj for N=l, 2: 

N=l: sl=(~/2)t2+a,t+b,+i(~~~u~); (2.31) 

N=2: s,=Et2+alt+bl+i(2Et+u~), (2.32a) 

(2.25) 1 
; f4+$ t3-t5 (b,-2c)tz + (a,-az,)t 1 

Equation (2.19~) is then automatically satisfied by 
(2.22) and (2.25). ;r?+$?+b,t ) 1 +a2 . (2.32b) 
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1.0 

E 

Eo 

$ 

. 5 

0 
0 10 20 30 40 

POSITION 

1. 
50 

FIG. 1. The time evolution of one-soliton solution. The broken line 
shows the corresponding profile at I = 6.0 in the absence of the damping. 

III. PROPERTIES OF SOLUTIONS 

A. N=l 

It follows from (2.9a), (2.16), and (2.31) that 

2 Imx, 
U=(x-Re x1)2+ (Im x1)2 ’ 

with 

(3.la) 

(3.lb) 

Imxl=et+al. (3.lc) 

The one-soliton solution represents a pulse moving to the 
right direction with an amplitude 2/( EC +a, ) and a ve- 
locity EI+CI~. This implies that the propagation velocity is 
inversely proportional to its amplitude. However, because 
of the effect of the damping, the amplitude decreases with 
time so that the velocity increases indefinitely as time 
goes. Figure 1 represents the typical profile of u at t=O, 
2.0, 4.0, 6.0. The parameters are chosen as a, =2.0, b, 
=5.0, E= 1.0. The broken line in the figure also shows the 
profile of u at t=6.0 in the absence of the damping, i.e., 
e=O. 

In Fig. 2 the trajectories of x1 are plotted in the com- 
plex plane for various values of E where the values of a, 
and b, are the same as those used in Fig. 1. The arrow in 
the figure indicates the direction of the motion and a 
small circle shows the initial position of the pole, xi 
= (5.0,2.0) in the present example. The straight line cor- 
responds to the case of E=O. For e#O each trajectory is 
deformed by the damping and it approaches the parabola 
Re x1 = (Im x1 )2/2~ after a long lapse of time. 

B. N=2 

In this case we find that the two-soliton solution is 
represented by a superposition of two one-soliton solu- 
tions as 

1( 

z 
d 
z 45 
B 
3 +I 

O I I I I , 
0 10 20 30 40 50 

REAL PART 

FIG. 2. The trajectories of the pole for various values of E. The arrow 
indicates the direction of the motion and a small circle shows the initial 
position of the pole. 

2 

II= c 
2IIIlXj 

j=1 (x-ReXj)2+(Imxj)Z’ (3.2) 

Here Xi u= 1,2) are obtained by solving the algebraic 
equation of degree two: 

x2-qx+s2=o, (3.3) 

where s1 and s2 are already given by (2.32). 
First of all we define the following quantities to sim- 

plify the notation: 

A=e?+a,t+b,, (3.4a) 

B=2et+a,, (3.4b) 

-a?-4b2+bf, (3.4c) 

(3.4d) 

The interaction process of two solitons may be classified 
by the initial amplitudes and positions of both solitons. 
The following two cases arise, which we consider sepa- 
rately. 

1. Case 7 
Case 1 is characterized by the conditions 

- - - - 
a,bl--2a2=(al-u2)(b,-b2) <O, 

ato) > 0, (3Sb) 

where l0 is a positive root of the algebraic equation D = 0. 
Its existence is obvious from (3.4d) and (3.5a). In (3.5a) 
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by and 2/s represent the initial position and amplitude of 
thejth soliton. In what follows we assume Zi > Z2 without 
loss of generality. 

Now xi and x2 are readily obtained from (3.3) as 
follows: 

A.., 

I 

-u 

----- ” 
1  

-.- lL2 

1.0 

-40 -30 -20 -10 0 10 20 30 

(a) POSITION 

1 
x1=2 A- 

l \i 
; (C+ pTm 

+‘(B-fi &LZ@Z)], (3.6a) 

-” 

)I . (3.6b) 

Upon expanding the quantities A-D in powers of t, we 
find the asymptotic behaviors of x1 and x2 for large time 
in the forms 

xl-#- &E)e?+i(l- J2/3)et, 

x2-4( 1+ JE)e?+i( 1+ &E)et. (3.7b) 

An important observation is that in the leading order of 
the expansion these expressions do not depend on the 
parameters aj and bj (j= 1, 2). In Sec. III C we show that 
this property also survives for general N-soliton solution. 
On the other hand, in the absence of the damping the 
corresponding expressions are written in the forms 

xl-a2/a,+ia,3(a,a2bl-a~b2-a;)t-2, (3.8a) 

x2-a1t+ia,. (3.8b) 

In the pole representation of the solution the distance 
I= I(t) between the two poles is given by 

I= Ixl(d--X2(t) 1 =(C2+#)‘/4. (3.9) 

It is seen that I takes one minimum value at which instant 
the two solitons collide. 

The typical profiles of ul, u2, and u( =ui +u2) are 
dipicted in Fig. 3 (a)-(c) at t=O, 0.447, 1.0. The values 
of the parameters are cl= 12.5, a2= -87.5, b,= -20.9 
b2= 50.0, E,= 1.0 or equivalently & = 10.0, Z2=2.5, b, 
= -15.0, b2= -5.0. One then sees that alb,--2a2= 
-75.0, te=O.447, and C( to) = 9.44, so that the conditions 
(3.5) are satisfied. The corresponding profile of u takes 
the form 

----- u 
1 

-.- u2 

Fi 
1.0- 

2 
3 
a 
9 

0.5- 

(b) 
POSITION 

1.5 

-” 

----- u 
1 

-.- u 
2 

l.O- 
2 
2 
J 
2 

0.5- 

0 
-40 -30 -20 -10 0 10 20 30 

(cl 
POSITION 

FIG. 3. The time evolution of two-soliton solution u with that of U, and 
I+ in Case 1. (a) t=O, (b) t=0.447, (c) t=l.O. 

20.0 5.0 
=(x+ 15.0)2+ lOO.O+ (~+5.0)~+6.25 ’ 

(3.10) 

The trajectories of xi and x2 in the complex plane are also 
drawn in Fig. 4 with the same parameter values. The 
initial positions of poles indicated by small circles are 
x1(0)=( -15.0, 10.0) and x2(O) = (-5.0, 2.5) in the 
present example. Note that the asymptotic behaviors of 
the two poles are given by (3.7). 

The interaction process of the two solitons is now 
summarized as follows: As the two solitons get close, the 
smaller soliton ui increases in height and becomes thinner 
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D- 

i - 

IL 
30 

, I I 1 I 

-20 -10 0 10 20 : 

REAL PART 

FIG. 4. The trajectories of the two poles in Case 1. 

while the taller soliton u2 decreases in height and grows 
flatter. At the instant of the collision, t=0.447 in the 
present example, the two solitons never coalesce and have 
the same profile as seen from Fig. 3 (b). After the colli- 
sion of the two solitons, the velocities of both solitons 
have been interchanged so that u2 propagates faster than 
u1 does [see Fig. 3(c)]. As time goes on, the two solitons 
are separated more and more with increasing velocities 
and asymptotically for a long time they behave like inde- 
pendent solitons. In order to compare the results with 
those for the case e=O, the figures corresponding to Fig. 
3(a)-(c) and Fig. 4 are depicted in Fig. 5(a)-(c) and 
Fig. 6, respectively. In these figures the initial conditions 
are the same as those for the case E= 1.0. In the case 
l =O, the collision of the two solitons occurs at t=0.480 
[see Fig. 5(a)]. It is worthwhile to note that the asymp- 
totic behavior of u for large time is given by 

u-2& x-5 + ( ) 
2al 

al (x-alt)2+af ’ 
(3.11) 

where S is Dirac’s delta function.2 Therefore, a, blows up 
at the position x =a2/a1 = - 7.0 while u2 propagates with 
an amplitude 2/a, =0.16 and a velocity al = 12.5 [see Fig. 
5(c)]. 

2. Case 2 

Case 2 is characterized by either the conditions 

(3.12a) 

at,, -co, (3.12b) 

or the condition 

a,b, -2a2>0. (3.13) 
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(cl 
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FIG. 5. The profiles of u, u,, and u2 which correspond to Fig. 3 in the 
absence of the damping. (a) t=0.480, (b) t= 1.0, (c) t=1.4. 

In (3.13) there are no limitations on the sign of C( to). 
The xi and x2 are then given by the expressions 

XI=; [A+& dcc+ 

+i B+ ( J ;(-c+ pT53 )I f (3.14a) 

+i(B-- j/m)], (3.14b) 

together with their long time behaviors 
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FIG. 6. The trajectories of the two poles which correspond to Fig. 4 in 
the absence of the damping. 

x14(1+ J2/3M+i(l+ J2/3)~t, (3.15a) 

x2-f( 1- $Z>fz++i( 1- &E)Et. (3.15b) 

In the case E=O the corresponding asymptotic expres- 
sions read in the forms 

xl -a,t+ial, (3.16a) 

x2-a2/a,+ia;3(a1a2bl-afb2-a~)t-2. (3.16b) 

The typical profiles of ul, u2, and u are shown in Fig. 
7(a)-(c) at t=O, 0.511, 1.0 and those of x1 and x2 are 
plotted in Fig. 8. The parameters are chosen as al = 12.0, 
a2=-kO.0, bl=-20.0, b2=55.0, e=l.O (z,=lO.O, z2 
=2.0, bl=-15.0, b2=-5.0). Then albl---a,=-80.0, 
to=0.51 1 and C( to) = - 5.98 which satisfy the conditions 
(3.12). We do not consider here the case corresponding 
to the-condition (3.13) since-under the assumption Z1 
>E2, b, must be greater than b, so that the faster soliton 
always locates to the right of the slower soliton at the 
initial time. As a result the collision of the two solitons 
never occurs. 

Now the interaction process of the two solitons is 
summarized as follows: As the two solitons get close, the 
smaller soliton absorbs the taller one. At the instant of 
the collision, t=0.5 11 in the present example, they coa- 
lesce into a single pulse [see Fig. 7(b)]. After a lapse of 
time, a taller soliton is emitted backward and eventually 
for a long time, the two independent solitons are formed. 
Therefore, in this case the two solitons pass through to 
each other in a collision process and the situation is in a 
striking contrast to that of Case 1. The corresponding 
figures in the absence of the damping are also presented in 
Fig. 9(a)-(c) and Fig. 10. In this case the collision oc- 
curs at t=0.556. The asymptotic expression of u for large 
time takes the same form as (3.11). 

(al 
POSITION 

-U 
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? 
-.- " 

2 
l.O- 

8 
& M 

““.5~ 
(b) o_40 

-30 -20 -10 0 10 20 30 I 
"r-aTIF,,-,B 

I -u 
__a-- 3 
-.- u2 

POSITION 

FIG. 7. The time evolution of two-soliton solution u with that of u, and 
u2 in Case 2. (a) t=O, (b) t=0.511, (c) t=l.O. 

C. General N 

In this section we investigate the properties of general 
N-soliton solution. In particular we focus our attention 
on the asymptotic behaviors of the solution for large time 
and show that the amplitude and the position of each 
soliton are expressed in terms of the zeros of the Hermite 
polynomial. It now follows from (2.18)) (2.22), (2.24)) 
and (2.25) that in the leading order of the large time 
expansion, Sj are approximated by 

sj-c~j)$+id~j)?j-l (j= 1,2 ,..., N), (3.17a) 

with 

(A - N!d 
co - (2j)!(N--j)! ’ 

(3.17b) 
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&I = N!E j 

(2j-l)!(N--j)! * (3.17c) 

The corresponding expression of u reads in the form 

f -xN+ ji, (2;;$‘yj), ej?jxN--j 

(-1)4v! 
(2j-l)!(N--j)! EJt2J-‘XN-J~ (3.18 1 

Suggested by the asymptotic expression of x1 and x2 [see 
(3.7) and (3.15)], we seek the solution of the algebraic 
equation f =0 in the form 

30 

1 
POSITION (c x-E(a?+ipf). (3.19) 

FIG. 9. The profiles of u, u,, and u2 which correspond to Fig. 7 in the 
absence of the damping. (a) t=0.556, (b) t=l.O, (c) t=1.4. Substituting (3.19) into (3.18) and taking the coefficients 

of 3N and ?N-’ zero, we obtain the following two equa- 
tions which determine a and fl: 

L(a)= i 
(-1)&V! 

j=* (2j-l)!(N-j)! 
aN-i 

’ (3.22b) 
H(a)=aN+ ? 

(-l)jN! 
j=* (2j)!(N--j)! aN-j=0p (3.20) 

and the prime appended to H denotes the differentiation 
with respect to a. Hence, the long time behaviors Of Xj are 
characterized in the leading order of the expansion by the 
zeros of the algebraic equation (3.20). 

At this stage we remember the definition of the Her- 
mite polynomial 

N-l 

NUN-‘+ c 
(-l)‘N! 

j=l (2j)!(N-j-l)! 
aN-j- 1 P 

(-1)&v! 
(2j- l)!(N-j)! aN-i=O’ (3.21 

[n’zl (-l)& xn-2j 
H,(x)= c j=O J!(n-Y)! 2i’ 

(3.23) It then turns out from (3.21) that 

P=-L(a)/H’(a), (3.22a) with its properties 

H;(x) =nHnml(x), (3.24a) where 
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FIG. 10. The trajectories of the two poles which correspond to Fig. 8 in 
the absence of the damping. 

H~+I(x)-xH,(~)=--H,-~(x), (3.24b) 

where [n/2] implies the integer part of n/2. If we com- 
pare (3.20) with (3.23), we notice the relation 

(-l)%v! 
H(a) = (2Njr (2a)NHd1/&). (3.25) 

Therefore, the N roots of Eq. (3.20) coincide with the 
positive N roots of the algebraic equation of degree 2N 

H&/&)=0. (3.26) 

On the other hand, the function L(a) defined in (3.22b) 
is represented by 

(-1)NNl 
L(a)=(2N-l)! (2CY)N-1’2H2N-1( l/Jz;;). (3.27) 

It is now possible to rewrite /3 in a more transparent form. 
To do so we differentiate (3.25) by a and then use 
(3.24a,b) to derive 

( - 1 )N+rNl 
H’(a)= (2N-2)! (kY)N-1&-2(l/&& 

(3.28) 

Substitution of (3.27) and (3.28) into (3.22) yields 

6 &d1/&f) 
‘=2N- 1 H2Ne2( l/ &X) * 

(3.29) 

Furthermore, if we put n=2N- 1 and x = l/ & in 
(3.24b) and use (3.26), we obtain 

(3.30) 

Finally, it follows from (3.29) and (3.30) that 

P=2a, (3.31) 

which is the desired relation. Let the positive N zeros of 
H2N(x) be xj,N G= 1,2,...,N). Then from the above argu- 
ment the asymptotic forms of xj are found to be 

xi-E(af+iPjt) (j= 1,2 ,..., N), (3.32a) 

with 

1 1 
"=2(xj,N)z ’ ‘=v 

(j= 1,2 ,..., N). (3.32b) 

The corresponding expression of u is represented by 

2 

2Epjf 
U- 

j=l (x-Eaj+)2+(&jt)z' 

(3.33) 

As an explicit example, we consider the case N=2. Since 
H4=x4-6x2+3 by (3.23), we obtain xi,,=3+ &, 

2 x2,2=3- & SO that Ur = p,/2 = 1/[2(xJ] = (1 
- 2/3)/2 and a2 = 
+ F- 

&/2 = 1/[2(x,,,)2] = (1 
2/3)/2. These results coincide perfectly with (3.7). 

In concluding this section it is worthwhile to remark 
that the asymptotic expression of u in the case of e=O is 
given by2 

U-(X,-~~~~2+il~+2~ Ni' 6(x-iCj), (3.34) 
1 j=l 

where ~j (j= 1,2,...,N- 1) are zeros of the algebraic equa- 
tion of degree N- 1 

N-l 

c (- i)japN-‘+ (- i)NaN=o. (3.35) 
j=l 

Thus the presence of the damping changes drastically the 
properties of solutions. 

IV. LINEARIZED EQUATION 

In this section we solve the initial value problem of a 
linearized version of Eq. ( 1.1) 

HB,= -e-Ee,, (4.1) 

and compare the results with those obtained in Sec. III A. 
Equation (4.1) may be derived by linearizing Eq. ( 1.1) 
around the constant solutions 8=2n~ (n=O,* l,...). The 
general solution of Eq. (4.1) can be represented by the 
Fourier integral in the form 
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FIG. 11. The time evolution of the solution for a linearized damped sH 
equation. 

@x,t) = s * $(k)e-i(~-OJt)dk, (4.2a) 
--oo 

where the Fourier component 8(k) is related to the initial 
value of e as 

8(k)=& J: 13(x,0)& dx, (4.2b) 
co 

and w =o( k) is a dispersion relation. The k dependence 
of o is easily determined from (4.1) and (4.2) by using 
the formula Heeikx= -i sgn(k)eeikr and it is written as 

w=-sgnk+ieIkI. (4.3) 

Substituting (4.2b) and (4.3) into (4.2a) and performing 
the integral with respect to k, one obtains the solution of 
Eq. (4.1) as follows: 

‘3(x,t) =; 
s 

m et cos t+ (y-x)sin t 
e(y90)dy -02 (y-x)2+ (et)2 

1 m 
=- 

P s 

cos t+y sin t 

--m 3+1 
8(x+ety,O)dy. (4.4) 

In order to visualize the profile of u = e,, we specify 
the initial condition as 
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Figure 11 shows the profiles of u with E= 1.0 at t=O, 1.0, 
2.0, 3.0. The figure may be compared with Fig. 1 which 
represents the nonlinear time evolution of the initial pro- 
file (4.5). In the linear approximation the peak position 
of the pulse goes back to its initial position, x=0 in the 
present example, with a period 2~. The feature of wave 
phenomena is quite different from that of the nonlinear 
case where the corresponding position propagates to the 
right direction as time goes (see Fig. 1). 

V. CONCLUDING REMARKS 

In this paper we proposed a damped sH equation and 
showed that it can be solved exactly through a lineariza- 
tion procedure. The soliton solutions were then obtained 
and their properties were investigated in detail. It was 
found that the presence of the damping changes drasti- 
cally the characteristics of solutions when compared with 
those of the sH equation. In particular the blowup of 
solutions was suppressed perfectly due to the effect of the 
damping. In this respect, however, it is quite interesting 
to remark that under certain situations an addition of the 
damping term makes the blowup sooner.” 

Although we have been concerned only with the non- 
periodic solutions throughout the paper, the periodic so- 
lutions will be constructed by a similar method. In this 
case it is appropriate to use Eq. (2.5) with nonzero /z 
instead of Eq. (2.7). This important problem will be dealt 
with elsewhere. 

As already mentioned in Sec. I, the damped sH equa- 
tion was introduced only from the mathematical point of 
view and hence at present it has no applications in phys- 
ical phenomena. However, one may try to derive the 
equation on the basis of the fluid equation, the Navier- 
Stokes equation for instance under appropriate initial and 
boundary conditions. 
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(4.5) 

The functional form of (4.5) is the same as that of the 
initial profile of the one-soliton solution with u1 =2.0 and 
b, =0 [see (3.1)]. In this case the y integral in (4.4) is 
easily performed by using the residue theorem to yield the 
result 
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u(x,t) = 
2(Et+2)cos t-2x sin t 

x2+ kt+212 * (4.6) 

J. Math. Phys., Vol. 33, No. 8, August 1992  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.62.137.102 On: Wed, 05 Feb 2014 06:13:48


