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Two-dimensional dynamical system associated with Abel’s nonlinear 
differential equation 

Y. Matsuno 
Department of Physics, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi 753, Japan 

(Received 18 July 1991; accepted for publication 22 August 1991) 

A two-dimensional dynamical system is proposed that is described by a pair of nonlinear 
ordinary differential equations(ODEs) with a complex parameter. It reduces to Abel’s 
nonlinear ODE of the first kind by an appropriate transformation. Using this fact the 
properties of solutions are investigated in detail with the aid of numerical computations. It is 
found that various types of bifurcation phenomena occur depending on the values of 
the parameter. In particular, the solution is shown to blow up in finite time under certain 
conditions. In order to visualize the behaviors of dynamical motions the trajectories 
of solutions are depicted in the plane. Finally, a discussion is made on some generalizations 
of the proposed system. 

I. INTRODUCTION 

In this paper we shall study the following nonlinear 
ordinary differential equation (ODE) for a complex func- 
tion z, 

i=Im z + nlz12z, z=x + i~7, (1.1) 

where x=x(t) and y =u( t) are real functions of time t, A 
is a complex parameter, and an overdot on z denotes 
differentiation with respect to t. If we put il=a 
+ $(a,fl:real> and equate the real and imaginary parts, 

respectively, Eq. ( 1.1) is decomposed into the system of 
nonlinear ODES for x and y as follows: 

x=y + (ax - Py> (x2 +v’), (1.2a) 

i=(Px+ay>b2+3). (1.2b) 

Equation ( 1.2) describes dynamical motion of a point 
z( =x + ir> in the (x,~) plane. 

For ,% = 0 Eq. ( 1.1) becomes integrable, namely, it 
has an explicit solution of the form 

z=yot + x0 + iyo, (1.3) 

where x0 and y. are initial values of x and y, respectively. 
The trajectory ( 1.3) represents a straight line parallel to 
the x axis. 

The purpose of this paper is to investigate the effect of 
the nonlinearity on the time evolution of z given by ( 1.3). 
In so doing we have taken into account a simplest non- 
linearity nlz12z, as indicated by Eq. ( 1.1). It is seen that 
an addition of such a term changes drastically the prop- 
erties of solutions; various types of bifurcation phenom- 
ena occur depending on the values of the complex param- 
eter A. 

In Sec. II it is shown that Eq. ( 1.1) can be trans- 
formed into Abel’s nonlinear ODE of the first kind by 
means of an appropriate dependent variable transforma- 
tion. In Sec. III the two special cases a#O, P = 0 and 
a = 0, /3#0 are analyzed in detail. For these cases the 
solutions are obtained explicitly by quadratures. The time 
dependence of z is then expressed in terms of rational 
functions in the former case and Jacobi’s elliptic func- 
tions in the latter one. In Sec. IV we first discuss on the 
stationary solutions of Eq. ( 1.1) and investigate their lin- 
ear stability. Then the properties of solutions for the gen- 
eral case afl#O are studied in detail. Since in this case the 
explicit solutions cannot be obtained by quadratures, we 
have performed the numerical integrations using the 
Runge-Kutta-Gill method. The trajectories of solutions 
thus obtained are drawn graphically in the (x,y) plane. 
We find that for a > 0 the solutions blow up in finite time 
while for a < 0 they tend asymptotically to stationary so- 
lutions as the time goes to infinity. The blowup time is 
estimated both numerically and analytically. Section V is 
devoted to concluding remarks, where a few generaliza- 
tions of Eq. ( 1.1) are proposed. 

II. REDUCTION TO ABEL’S EQUATION 

A. Abel’s nonlinear ODE 

Abel’s nonlinear ODE of the first kind is written in 
the formiM3 

z=ao + sly + uzv” + aly3, (2.1) 

where aj (j = O-3) are known functions of t. Equation 
(2.1) can be put into the standard form as 

$2 +p(t), (2.2) 
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by introducing the following transformations: 

Y=a(t)z(x) + b(r), (2.3a) 

s 

t 
x= a2a3 dt, (2.3b) 

with 

a(t)=exp[ J’ (aI -2) dt] , (2.4a) 

b(t) = - a2/3a3. 

Here p(t) in (2.2) has the form 

(2.4b) 

p(t)= 
1 ala2 2 a; 1 d a2 

Qo-3 a ,f~~+~-&- 
3 

(2.5) 

If a3 = 0, Eq. (2.1) reduces to the famous Ricatti equa- 
tion. For a0 = 0, al#O and either a2 = 0, a3#0 or a2#0, 
a3 = 0, it becomes the nonlinear ODE of Bernoulli type, 
which has an explicit general solution.‘-3 Although the 
solutions for Abel’s nonlinear ODE cannot be obtained 
by quadratures, in general, certain nonlinear superposi- 
tion formulas are already known.4’5 

B. Reduction to Abel’s ODE 

In this section we show that Eq. ( 1.2) can be reduc- 
ible to Abel’s nonlinear ODE. For this purpose it is ap- 
propriate to introduce the polar coordinate (r$) by the 
relation 

z=x + iy=reie, x=r cos 19, y=r sin 8. (2.6) 

Equation (1.2) is then transformed into the form 

i=r sin 6 cos f3 + a?, 

cj= -sin28+fir2. 

If we define a new dependent variable p by 

p=r2/(#3 r2 - sin2 e>, 

then Eq. (2.7) can be recast into the form 

p=(w2 + 1)2/[2a(w3/3 + W) - 11, (3.3a) 

(2.7a) w=cot 8. (3.3b) 

(2.7b) Here the initial condition pe= lr,2 = - 1 has been used. 
Substitution of (3.3) into the relation 

r2=p sin2 e/(flp - 1) = - p sin2 8, (3.4) 
(2.8) 

which stems from (2.8) and j? = 0, yields 

r2=(c0t2e+ l)/[l -2a($c0t3e+c0te)]. (3.5) 

The time evolution of 8 is obtained by integrating (2.7b) 
with j? = 0 and using the initial condition 8,,. = rr/2 as 

cot 8 = t. (3.6) 

It is seen from (3.5) and (3.6) that r2 evolves as 

r2=(tZ+1)/[1-2a(t3/3+t)]. (3.7) 

J. Math. Phys., Vol. 33, No. 1, January 1992 

z=z=2p(fip - 1) [ - (a + p cot ejp f 2 cot 61. 

(2.9) 
Obviously Eq. (2.9) is a special case of Eq. (2.1) with 

ao=o, (2.10a) 

al= -4COt8, (2.1Ob) 

Y. Matsuno: Abel’s nonlinear differential equation 413 

a2=2(a + 3p cot e), (2.1Oc) 

a3= -2P(a+Bcote). (2.10d) 

One can easily transform Eq. (2.9) into the standard 
form. The details are, however, omitted here. 

Finally, we shall discuss the initial condition. In or- 
der to solve Eq. (2.7) the initial condition is specified as 
r = ro, 8 = 0, at t=O for instance. However, as is easily 
seen, Eq. (2.7) is invariant under the scale transforma- 
tions r -+ ror, a -+ a/& and B + p/d. Hence, we may 
put r. = 1 without loss of generality. Furthermore, we 
take 0, = 7r/2 for simplicity since the detailed investiga- 
tion shows that the properties of solutions do not criti- 
cally depend on the value of &,. The initial condition that 
we use in the following sections is therefore r= 1, 
8 = 7r/2, or, equivalently, x=0, y= 1 due to (2.6). 

Ill. SPECIAL CASE 

A. a#O, fl=O 

In this case, Eq. (2.9) becomes 

dP a=2p(ap - 2 cot e). (3.1) 

Since Eq. (3.1) is a special case of the Bernoulli 
equation, I-3 

4 
~=ay’+ by, a=a(t), b=b(t), (3.2) 

it can be readily integrated. The result is expressed as 
follows: 
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0 . 

FIG. 1. The blowup time tb as a function of a. FIG. 2. The time evolution of r for positive a. 

I 

In the following we shall investigate the two cases a > 0 
and a <O separately. 

1. a>0 

In this case r is a monotonically increasing function 
of t and it blows up at a finite time tb The blowup time 
tb is determined by solving the following algebraic equa- 
tion of order three: 

t3 + 3t - 3/2a=O. (3.8) 

Explicitly, tb is written in the form 

tb’ .y3 - q, 

with 

(3.9a) 

rl=( Jm + 3/2a)/2, 

r2= ( Jm - 3/2a)/2. (3.9c) 

The blowup time tb as a function of a is plotted in Fig. 1. 
We see from (3.9) that tb - (3/2a)1’3 for a(1 and tb 
- 1/2a for a>l. Figure 2 shows the time evolution of r 
for various values of a. 

2. a<0 

In this case r becomes a monotonically decreasing 
function of t for la I > $. On the other hand, for Ial < 3 it 
has two extremums at t = t, and t = t2. Here tl and t2 are 
positive roots of the algebraic equation t4 - 3t/lal 
+ 3 = 0. In both cases r tends to zero as t+ 00. Hence 

the trajectory in the (x,y) plane approaches the origin 
indefinitely as the time goes to infinity. Figure 3 depicts 
the time evolution of r for various values of a. 

Now it follows from (2.7) with p = 0 that 

0 ’ I I 1 1 
0 0.2 0.4 0.6 0.8 1.0 

t 

dy isin0+rt,cose - la/r2 sin2 8 
-= 
dx icose-rirsine =sin 8 - lair2 cos 8 ’ 

(3.10) 

so that Idy/dxl + CO when the equation 

sine- lalr2cose=o (3.11) 

is satisfied. Substituting (3.5) into (3.11) yields 

Cot3 e- 3 tote- 3/lal =o. (3.12) 

From this equation one can obtain the corresponding 8 
coordinate. The trajectory of the points at which Idy/dxl 
becomes infinite is readily derived by eliminating a from 
(3.5) and (3.12) and it reads in the form 

r2= (cot2 e - 3)/3. (3.13) 

I 
Oo 

I t I 1 
4 8 12 

I 
16 20 

t 

FIG. 3. The time evolution of r for negative a. 
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X 

FIG. 4. The trajectories of solutions in the (x,y) plane for various 
values of a, where B  = 0. 

Since r * > 0 the inequality 0 < 8 < r/6 must hold. When 
6-0, r* - l/( 3 sin* 0). Therefore the trajectory ap- 
proaches a straight line y= l/d as 8-O. In Fig. 4 the 
trajectories of solutions are depicted in the (xg) plane for 
various values of a. The arrow in the figure indicates the 
direction of the motion. 

B. a=O, p#O 

In this case Eq. (2.9) reduces to 

dP 
z=2p’Pp- l)( -flp+2)cot8. (3.14) 

Since the above equation is a separable ODE, the integra- 
tion is readily performed. The result is written in the form 

p(pp - 2)/(/3p - 1)*=c/sin4 8, (3.15) 

where c is an integration constant. Transforming back to 
r * by (2.8) and using the initial condition re=,12 = 1, we 
obtain 

r4- (2/fi)r2sin28- (/3--2)@=0, (3.16) 

which represents the trajectories of solutions in the (r,O) 
plane. Various possibilities arise according to the values 
of fl, which we shall describe in order. 

7. P>2 
It follows from (3.16) that 

r*=[sin*e+ Jsin48+@(fl-2>]/& (3.17) 

which, combined with (2.7b), yields 

fZi= Jsin4f3+P(/3-2). (3.18) 

Since b>O, as seen from (3.18), the trajectories of solu- 
tions move counterclockwise. The time evolution of 19 is 
now determined by the relation 

s e d+ 
t= 

d2 Jsin44+B(D-2)’ 
(3.19) 

After some calculations we find that the right-hand side 
of (3.19) can be reduced to an elliptic integral. The final 
result is expressed as follows: 

Cot* 8 = 
MT&) + p sn(7,k)]* 

rl[cn(T,k) - p sn(T,k) 1’ ’ 
(3.20a) 

with 

7=y(t + to), (3.2Ob) 

k= ,&i?, (3.20~) 

Y=[ &mz/&pl Jr + (P- 1)&P-2), 
(3.20d) 

p= d( 42 - Jr- q)/( 42 + Jl - q>, (3.20e) 

q= &F=i//(P - 11, (3.2Of) 

sn(yto,k) = - 1/ $T7, (3.2W 

where sn(r,k) and cn( r,k) are Jacobi’s elliptic functions 
and k is a modulus.6 Hence, the trajectories of solutions 
are closed periodic orbits in the (xy) plane and the pe- 
riod is given by 4K/y, where 

s T/2 
K= 

oJiS& 
(3.21) 

is the complete elliptic integral of the first kind. It should 
be noted that for 2 <fi< 1 + fi, Idy/dx) becomes infinite 
when 

sine= \I( --p2+2p-t. 1)/2, (3.22) 

in addition to 8 = 0, P while for fl> 1 + fi the same 
situation occurs only at 8 = 0, 7r. 

2.8=2 

In this special case (3.16) yields 

r=sin 8, 

and (2.7b) reduces to 

tLsh2 8. 

(3.23) 

(3.24) 
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The time dependence of r and 0 are readily obtained from 
(3.23) and (3.24) as follow: 

r= l/ J;zT-T, (3.25) 

00t 8 = - t. (3.26) 

The trajectory is a semicircle with the radius f and the 

center (O,$) in the (xy) plane. One can observe that the 
trajectory approaches the origin as t-r CO. 

3.O<P<2 

In this case it follows from (2.7) and (3.16) that 

r*= [sin* e* &in4 8 -p(2 -p)]@, (3.27) 

i= f &in4 8 - p(2 - p), (3.28) 

where the plus(minus) sign in (3.28) corresponds to the 
plus(minus) sign in (3.27). These signs must be chosen 
appropriately to satisfy the initial condition. Since r2 is a 
real quantity the solution exists only in the range 

e,Ge<r - 0, (3.29a) 

where 

e+i+p(2 -/3)]1’4 (o<eccd2). (3.29b) 

The 1!7 changes its sign at 8 = 8, and 8 = rr - t9, where 
the corresponding value of r is given by 

r=rc= [ (2 - p)/fi] 1’4. (3.30) 

The trajectory consists of the upper branch r ) r, and the 
lower one r < r, and it is symmetric with respect to the 
y axis. The time dependence of 8 is now obtained by 
integrating Eq. (3.28) as 

e 
t=zk 

I 
d# 

Jsin4+-l?P(2-D) ’ 
(3.31) 

e, 

where f3, is a constant determined by the initial condition. 
After some manipulations we obtain the following ex- 
plicit form of cot* 6 in terms of Jacobi’s elliptic function 

00t*e= 
(2 - l)sn*[ @( ft + to)&] 

2~ - (E - l)sn*[ J2/e( ft + to)&] ’ 
(3.32a) 

In this section we shall seek stationary solutions of 
Eq. ( 1.1) and study their linear stability. It will be seen in 
B that they are closely related to the asymptotic values of 
the general solutions for large time. The stationary splu- 
tion is simply obtained by setting r=8=0 
in Eq. (2.7). The resultant solution reads in the form 

r,= &GG?Fi, (3.32b) 

(3.32~) 

J. Math. Phys., Vol. 33, No. 1, January 1992 

tan es= - ~/CL 

where to is a constant depending on 6,. 
As an example we consider the case where 1 CL? -C 2. 

For the upper branch r > r, the solution reads from 
(3.27) and (3.32) as 

r*=[sin*e+ Jsin48-P(2-~)]/fl, (3.33) 

Cot2 8 = 
(2 - 1 )sn*( JEt,k) 

2E - (E - l)sn*( J22/Et,k) * 

416 Y. Matsuno: Abel’s nonlinear differential equation 

(3.34) 

For the lower branch r < r, on the other hand, it is 
written in the form 

r*=[sin*e- &in4e-fl(2--~)]/fl, (3.35) 

(2 - l)sn*[ JZT;(t + to)&] 
(3.36) 

with to = &%. Here K is the complete elliptic integral 
of the first kind with a modulus given by (3.32b). The 
trajectory is seen to be a closed path moving counter- 
clockwise with the period &K. The similar results also 
hold for the fl within the range 0 < fl< 1. The only differ- 
ence is that the trajectories always lie in the region y> 1. 

4. /3<0 
In this final case r* and b are given, respectively, by 

r*= [ - sin* 8 + &in4 8 +P(P - 2)14PI, (3.37) 

fL - ~~h4e+~(p-2). (3.38) 

It turns out that the trajectories of solutions are closed 
paths moving clockwise because the sign of 4 is always 
negative by (3.38). One notes that Idy/dxl becomes infi- 
nite only at 8 = 0, 7r and for these values of 8, r = ( 1 
+ 2/(@( ) “4 > 1. Therefore the existence region of the tra- 

jectories is outside a circle with the radius 1 and the 
center being the origin. The time dependence of 8 is sim- 
ply derived from (3.20) by replacing t by - t. The typ- 
ical trajectories for the cases l-4 mentioned above are 
depicted in Fig. 5. 

IV. GENERAL CASE 

A. Stationary solutions and their stability 

(4.la) 

(4.lb) 
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In other words, when we start from x=y=O at t= 0, the 
solution remains at the origin forever. 

8. General solutions for @#O 

We now consider the general case, namely a#0 and 
p#O. In this case, however, we have not succeeded in 
integrating Eq. (2.9) in contrast to the two special cases 
described in Sec. III; it does not reduce to any of special 
ODES where specific solution methods are applicable.1-3 
Hence, we have employed numerical integrations. Before 
entering into the detail, we shall investigate the generic 
properties of solutions. For this purpose, we use Eq. 
(2.7). If we put II = l/r*, it is transformed into the 
system of ODES, 

-1.51 I I 
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 

X 

FIG. 5. The trajectories of solutions in the (x,y) plane for various 
values of 8, where a = 0. 

Obviously p must be positive to yield real r, 
Now we investigate the linear stability of the solution 

(4.1). To do so, we put 

r= r, + 6r, (4.2a) 

e=e, + se, (4.2b) 

and linearize Eq. (2.7) around r, and 0, It then turns out 
that the following system of linear ODES for Sr and 68 
arises: 

Sk (f sin 28, + 3a<)Sr + r, cos 2e, 68, (4.3a) 

Sb= 2pr, Sr - sin 2e, se. (4.3b) 

Assuming that Sr a P’, SB a e@‘, we obtain from (4.1) 
and (4.3) the eigenvalue equation for w as follows: 

J - [&@/(a* + /3*)]0 + W*/(a* + 8*)=0. (4.4) 

The roots of Eq. (4.4) are given by 

w=2a~/(a2+/3*)*[13/(a2+8*)l $@TT. 
(4.5) 

If a > 0, then Re o > 0. This means that the solution be- 
comes unstable for infinitesimal disturbance. On the other 
hand, if a < 0, then Re o < 0 irrespective of the magni- 
tude of la( and the solution is stable. We note that in 
another stationary solution r=O, 8 = O(mod P) exists. In 
this case it follows from (2.7) that if r=O and 
0 = O(mod n) hold, thend”r/dt” = dW/dt” = O(n > 1). 

zi= -usin28-2a, (4.6a) 

L - sin2 8 + ph. (4.6b) 

Since Eq. (4.6a) is a linear equation for II, it can be 
immediately integrated to yield the expression 

1 
r2=-= f(t) 

’ I-2a 
s 

; f(t’)dt” 
(4.7a) 

where 

f(t) =exp( J+ sin 20(t’)dt’). 

If we define the function F(t) by 

F(t) = (4.8) 

then F(t) =f( t) > 0 and F(0) =O. This implies that F(t) 
is positive and a monotonically increasing function of t 
for t > 0. It readily follows from this fact that 
lim,,, F(t) -+ 00. Hence, there always exists a finite 
time tb satisfying the relation 

(4.7b) 

F( tb) = l/&X, (4.9) 

provided that a > 0. At this time the solution blows up as 
proved from (4.7). On the other hand, for a < 0, one can 
easily show that r remains a finite value for all time. It is 
worthwhile to remark that the above facts are generic 
properties of solutions independent of initial conditions. 
In the general case considered here the four combinations 
are possible according to the sign of a and fl; ( 1) a > 0, 
P>O, (2) a>O, B-CO, (3) a<O, 8>0, and (4) a-co, 
p < 0. We now investigate these cases separately. 

Y. Matsuno: Abel’s nonlinear differential equation 417 

J. Math. Phys., Vol. 33, No. 1, January 1992  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.62.137.102 On: Wed, 05 Feb 2014 06:14:45



418 Y. Matsuno: Abel’s nonlinear differential equation 

l.(r>O,P>O 

As already noted, the solution always blows up for 
a > 0. To obtain an insight about the characteristic of the 
blowup time, we first consider the situation & 1. In this 
case an inequality fl/u$l holds and Eq. (4.6b) may be 
approximated by the equation 

b=p/tl. (4.10) 

If we put 1c, = &, then (4.6a) and (4.10) yield the linear 
ODE for IF, as follows: 

dt+h 2a 
-jg=p 1c, + sin 28. (4.11) 

Integrating Eq. (4.11) under the initial condition 
$e=lr/z - (P/u)o=~~z=P, we obtain 

r2=[1 -P/2(a2+P2)lexp[(2a/B)(6-~/2)] 

- [1/2(a2 + P2)](a sin 28 + fi cos 28). 

(4.12) 

Furthermore, if we assume 8 - rr/2)P/2a, which corre- 
sponds to the final stage of the time evolution of the 
solution, the second term on the right-hand side of (4.12) 
is negligible when it is compared with the first one, so that 
(4.12) can be approximated by the equation 

r2= l- ( 2(aiS+p2j)exp[F (e-g)]. (4.13) 

Therefore 

e-/3r2=Bexp[ (2a/P>(8 - q/2)], 

with 

(4.14a) 

P=P[l -P/2(a2+P2)]. (4.14b) 

Integration of Eq. (4.14) is readily done and yields the 
result 

e=d2 - (P/2a) In( 1 - 2El), 

with 

(4.15a) 

Z=a[l -P/2(a2+$)], (4.15b) 

where the initial condition et=c = ?r/2 has been used. Sub- 
stituting (4.15) into (4.13)) we obtain the explicit time 
dependence of r as 

(4.16) 

Hence, the blowup time tb is found to be as follows: 

0 2.0 4.0 6.0 8.0 10.0 
6 

FIG. 6. The blowup time fb as a function of 8. Solid line: numerical 
values; broken line: analytical expression (4.17). 

tb=l/{2a[l -@/2(a2+P2)]). (4.17) 

We have performed the numerical integration of Rq. 
( 1.2) by using the Runge-Kutta-Gill method. Figure 6 
illustrates the p dependence of tb6, where a has been taken 
to be 1. The solid line in the figure plots the numerical 
values while the broken line shows the analytical expres- 
sion (4.17). The coincidence of both curves is excellent 
for p>5. 

For small fi, tb may be approximated by the expres- 
sion (3.9). Indeed (3.9) with a = 1 gives tb = 2”3 
- 0.51’3 = 0.466 while the numerical value forp = 0.01 is 

0.467. The tb has a maximum value 0.568 when p = 2.5. 
Figure 7 depicts the trajectories of solutions in the (x,y) 
plane for various values of p. For all cases we have taken 

-\ 
-6.0 I l . 1 

-6.0 -4.0 -2.0 0 2.0 4.0 E 
X 

i. 

FIG. 7. The trajectories of solutions in the (x,~) plane for various 
values of positive p, where a = 1. 
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X 

FIG. 8. The trajectories of solutions in the (xy) plane for various 
values of negative 8, where a = 1. 

a = 1. The arrow in the figure indicates the direction of 
the motion. The trajectories exhibit spiral motions 
around the origin and they tend to infinity as the time 
approaches the blowup time tb It is interesting to note 
that the numerical results are well simulated by Eq. 
(4.13) for 825, even in the range 8 - r/2>W2a. 

Za>O,P<O 
In this case the qualitative features of solutions are 

similar to those for the case 1; the behaviors in the (X,JJ) 
plane show divergent spiral motions. The only difference 
is that the direction of the motion is always clockwise 
irrespective of the magnitude of I/3/. This fact is a direct 
consequence of Eq. (4.6b) with negative p, namely 4 < 0. 
On the other hand, in the case 1, one can observe that the 
trajectory with small /3 moves clockwise in the initial 
stage of the time evolution and then changes its direction 
counterclockwise in the later time (see the trajectory for 
/3 = 0.1 in Fig. 7). Figure 8 shows the trajectories of 
solutions for various values of fl with a = 1. For /al>5 it 
is seen that these are well approximated by Eq. (4.13) 
when 18 - IT/~ I > IPl/2a. The blowup time as a function 
of p has a similar profile as that shown in Fig. 6 and 
hence it is not presented here. We only remark that the 
coincidence with an analytical expression (4.17) is excel- 
lent for [@1>5. 

3.ff<QP>O 
For negative a the denominator on the right-hand 

side of (4.7a) diverges when the time goes to infinity, as 
already noted in a sentence following (4.8). Therefore the 

FIG. 9. The trajectories of solutions in the (xg) plane for three typical 
values of positive 8, where a = - 1. 

two possibilities arise according to the limiting value of 
f(t): (i) lim,,,f(t) -+ CO, (ii) limm...,f(t) + finite 
value. In case (i) it follows from (4.7) that r2 tends to 
finite value while in case (ii) it approaches zero. The case 
considered here corresponds to case (i) since the station- 
ary solution exists only for positive fi, as is evident from 
(4.1) . Figure 9 represents the trajectories of solutions for 
typical values of p where a is taken to be - 1. It is 
important to observe that each trajectory approaches the 
corresponding stationary point (4.1) . As seen from (4.5) 
with a = - 1, the eigenvalue is real and negative in the 
range 0 <fl< 1. The corresponding stationary point then 
represents a stable node.’ For 0 > 1, on the other hand, it 
is a stable focus since the eigenvalue appears as complex 
conjugate with negative real part.’ In the latter case the 
trajectory exhibits a spiral motion around the stationary 
point (see the trajectory with /3 = 5.0 in Fig. 9). 

4.a<O,P<O 
This corresponds to case (ii). Since in this case there 

exist no stationary solutions except for the origin, all tra- 
jectories approach the origin as t+ 00. Figure 10 illus- 
trates the situation where only two examples are exhib- 
ited. 

V. CONCLUDING REMARKS 

In this paper we investigated the nonlinear dynamical 
system described by Eq. ( 1.1) and showed that it is as- 
sociated with Abel’s nonlinear ODE of the first kind. The 
behaviors of solutions are found to depend critically on a 
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FIG. 10. The trajectories of solutions in the (xg) plane for two typical 
values of negative 8, where a = - 1. 

complex parameter L The characteristics of the bifurca- 
tion of the solutions were studied in detail with the aid of 
the numerical analysis. 

One can generalize Eq. ( 1.1) by incorporating a more 
generic nonlinear term as 

i= Im z + Lg( /212)z, (5.1) 

where g=g( 5‘) is an arbitrary real function of 6. A simple 
choice of g is, for instance, g = r (v: real constant). 
Introduction of a variable p by the relation 

p=r2v/(fl r2v - sin2 e) (5.2) 

enables us to recast (5.1) into the following nonlinear 
ODE: 

(5.3) 

Obviously for v = 1, Eq. (5.3) reduces to Eq. (2.9). 
Since Eq. ( 5.3 ) is a special class of Abel’s nonlinear ODE 
of the first kind, it cannot be integrated in general by 
quadratures. However, the two exceptional cases arise 
when v = - 1, 0. In the case v = - 1 Eq. (5.3) reduces 
to an ODE of the separable type, 

dP 
z=2p2Wp- l)(a+Bcote), 

and integration of which yields an explicit solution 

(5.4) 

(fi - p - 1) ,(BP) - I = cgam sin2 0 , (5.5) 

where c is an integration constant. The expression (5.5) 
can be rewritten in terms of the variables r and 8 in the 
form 

r2eS-‘(B-r2sin2e)=,2~e/st (5.6) 

which represents the trajectory of solution in the (r$) 
plane. In the case v = 0 Fq. (5.3) is satisfied identically 
by (5.2). Equation (5.1) then becomes linear with re- 
spect to z and it can be trivially integrated. 

Another generalization of special importance is to 
introduce spatial structure in z; z=z(&t), with c being a 
spatial variable. However, since Eq. ( 1.1) does not in- 
clude a spatial derivative, { may be regarded as a param- 
eter. The initial value problem for Eq. ( 1.1) is then 
solved by specifying the initial value z(&O) at t=O. It is 
quite interesting to note that Eq. ( 1.1) with pure imagi- 
nary ;1 satisfies the following bilinear equation for z: 

(z*z),=Im Zz. (5.7) 

Here the subscript t denotes partial differentiation with 
respect to 1 and * means complex conjugate. The above 
equation has already stemmed in the bilinearization of the 
sine-Hilbert equation, 

He,= - sin 8, e=eg,,t), (5.8) 

where H is the Hilbert transform operator.‘-” Indeed, if 
we introduce a dependent variable transformation of the 
form 

em =i ln[z*K,MGO I, (5.9) 

where z*(z) is an analytic function with zeros in the 
lower (upper)-half 6 plane, then Eq. (5.8) is trans- 
formed into Eq. (5.7) due to the relation HO, = 
- (In z*z) p8-10 Thus there arises a possibility that the 

solutions of Eq. ( 1.1) also solve Pq. (5.8) if the analytic 
condition imposed on z is fulfilled. This problem will be 
dealt with in the future work. 
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