
Linearization of novel nonlinear diffusion equations with the Hilbert kernel and
their exact solutions
Y. Matsuno 
 
Citation: Journal of Mathematical Physics 32, 120 (1991); doi: 10.1063/1.529134 
View online: http://dx.doi.org/10.1063/1.529134 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/32/1?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.62.137.102 On: Wed, 05 Feb 2014 06:15:55

http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1722768765/x01/AIP-PT/JMP_CoverPg_1113/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Y.+Matsuno&option1=author
http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://dx.doi.org/10.1063/1.529134
http://scitation.aip.org/content/aip/journal/jmp/32/1?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


Linearization of novel nonlinear diffusion equations with the Hibert kernel 
and their exact solutions 

Y. Matsuno 
Department of Physics, Faculty of Liberal Arts, Yamaguchi University, Yamaguchf 753, Japan 

(Received 28 November 1989; accepted for publication 5 September 1990) 

Two novel nonlinear diffusion equations with the Hilbert kernel are proposed. The equations 
can be linearized by introducing appropriate dependent variable transformations. The initial 
value problems for the proposed equations are then solved exactly through the linearization 
and explicit nonperiodic and periodic solutions are constructed. The properties of solutions are 
investigated in detail, It is found that the blow up of solutions occurs at a finite time for both 
the nonperiodic and periodic cases due to the breakdown of certain analytic conditions 
imposed on the dependent variables. 

I. INTRODUCTION 
The study of soliton equations has made remarkable 

progress owing to the development of various exact methods 
for solving nonlinear evolution equations ( NEEs) . In par- 
ticular, the bilinear transformation method (BTM) IA3 has 
enabled us to analyze some classes of nonlinear integrodt&-- 
en?&/ evolution equations (NIDEEs). The essence of the 
BTM is to investigate bilinear equations that are obtained by 
means of appropriate dependent variable transformations of 
given NEEs. The first success of the method when applied to 
NIDEE is the case of the Benjamin-On0 (BO) equation.3v4 
The mathematical structure of the BTM has now been clari- 
fied considerably by the Sato theory.‘-’ 

Recently, the BTM was applied to the sine-Hilbert (sH) 
equatior?’ ’ 

HO, = - sin 8, f3 = 8(W), (1.1) 
and the NIDEE of the form” 

8, = -,&$Re(e-ieHei”), 19=6(x&, (1.2) 
where the operator H is the Hilbert transform defined by 

HB(x,t) = 2-P r = ew dv, (1.3) 
T J-, y-x -- 

and Re denotes the real part. However, in a striking contrast 
to the BO equation, the above two equations are reducible to 
linear equations by introducing appropriate dependent vari- 
able transformations and hence the initial value problems for 
the equations can be solved exactly. A few classes of lineali- 
zable NIDEEs are also known at present.‘3-“6 In this paper, 
we propose new examples of NIDEEs that can be trans- 
formed into linear equations. 

The basic equations that we present here are the follow- 
ing two nonlinear diffusion equations with the Hilbert ker- 
nel: 
U, - VU,, + Y(uHu), -pIH(sin 81, = 0, (1.4) 
u, -vu,, + v(uHu), +pH [Re(e-i@He’e)]X = 0, (1.5) 
where 

x 
e(x,t) = 

J- 
U(X’J)dX’, (1.6) 

andp and Y are positive constants. In the limit of ~40, Eqs, 
( 1.4) and ( 15) are reduced, after integrating once with re- 
spect to X, to Bqs. ( 1.1) and ( 1.2 ) , respectively. On the other 
hand, in the limit ofp -0, these are reduced to a nonlinear 
diffusion equation that has already been studied by Sat- 
suma.’ 

The outline of this paper is as follows. In Sec. II, the 
nonperiodic solutions of Eqs. ( 1.4) and ( 1.5) are construct- 
ed through the linearization and the properties of the solu- 
tions are investigated in detail. It is found that when Y#O, 
the solutions blow up at a finite time. The characteristics of 
the solutions are a striking contrast to those of the case, 
Y = 0 where the blow up occurs only at an infinite timeUG’12 
In Sec. III, the periodic case is considered in the same way. 
Section IV is devoted to concluding remarks. 

Il. THE NONPERlODlC CASE 
A. Linearization 

First, let us introduce the following dependent variable 
transformation 

f? P u=i--ln-, 
& f 

with 

(2.la) 

where xi ( t) ( i = 1,2,...,N) are complex functions oft whose 
imaginary parts are all positive and * denotes the complex 
conjugate. Substituting (2.1) into ( 1.4) and ( 1.5), integrat- 
ing once with respect to x and taking an integration constant 
to be zero, both equations are reduced to the following bilin- 
ear equation for f and f *: 
iCf*f-fff*) - i~tf*,f-fxdf*~ 

-(p/2)(f2+f*2-2f*f)=0. (2.2) 
Here, we have used the formulas 

af/f* - 1) =i(f/f*- l), (2.3a) 
R(f*/f- 1) = -icf*/f- l), (2.3b) 

whichstemfromthefactthatf/f * - l( f */f - 1) isanana- 
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lytic function in the upper( lower)-half plane and vanishes at 
infinity. Furthermore, Eq. (2.2) is modified in the form 
f*[f - vf,, - wwf---f*)] 

=f [f*, - vf*xx + Q.do(f* -f I]. (2.4) 
Hence, one sees that Eq. (2.2) is satisfied identically pro- 
vided that the following linear equation for f holds: 

J; - A - (p/2i) (f -f*) = 0. (2.5) 
This expression is nothing but a linearization of Eqs. ( 1.4) 
and (1.5). 

When ,u = 0, Eq. (2.5) is reduced to the well-known 
linear diffusion equation while when Y = 0, it coincides with 
a linearized equation for Eqs. ( 1.1) and ( 1.2) .*-‘* It should 
be noted that a term of the form, Kf(K:a real constant) may 
be added on the right-hand side of Eq. (2.5). However, one 
can easily show by investigating the asymptotic behavior of 
Eq. (2.5) for large x that the K must be taken to be zero. The 
situation is different from the periodic case treated in Sec. III 
where the nonzero K will be maintained. 

Now, in order to derive the time evolution of 
x, (t) (n = 1,2,...,N), we substitute (2. lb) into (2.5) and 
then take the coefficients of (x - x, ) - ’ to be zero. The re- 
sultant expression has the following form: 

i, =$ @x,, -x*.) 
J 1 

J (:Fi,(xn -+))-’ 

-22y 2 -J- (n = I,2 ,..., iv), (2.6) 
j=1 Xn-Xj 

(j#n) 

where a dot appended to x, denotes the time differentiation. 
Thus the problem under consideration is seen to be equiva- 
lent to the finite-dimensional dynamical system whose mo- 
tion is governed by Bq. (2.6). It follows from (2.6) that the 
time evolution of the imaginary part of x,, namely, Im x, is 
described by the equation 

Imi:,= p Im fi X;Iy! 
K 

j= I n J 
(ifn) ) 

+2vi l 
j=1 IX,, -Xjl* Imxn 
(ifn) 1 

N Im xj 
- 2y lJfi) Ix, _ xjl2 (n = 1,2,--,N). 

(2.7) 

Because of the presence of the second term on the right-hand 
side of Eq. (2.7), the condition, Im x, (t) > 0 that has been 
assumed in deriving Eq. (2.2) will be broken down at a finite 
time even if it holds at an initial time. This fact will result in 
the blow up of solutions of Eqs. ( 1.4) and ( 1.5) as shown 
explicitly in subsection C. In the case of y = 0, this condition 
is satisfied for all finite time if it holds at an initial time.’ 

6. Exact solutions 

In this subsection, we shall solve Eq. (2.5). To do so, we 
expand f as 

f = i ( - l)jsjXN-j, 
j=O 

(2.8a) 

where sj are elementary symmetric functions of x, , x2, . . . . 
XN: 

N 

so = 1, sl = C xj, 
j= 1 

N N 

s2 = 1 XjXk ,...,sN = n xjt (2.8b) 
j,k= 1 
(i-ek) 

j= 1 

substitute (2.8) into (2.5) and then take the coefficients of 
xN-j( j = 1,2,...,N) to be zero. The time evolution ofs, thus 
obtained is now written in the form 
so = 1, 
s1 =pa,f+b, +ia,, 
.ij = p Im sj 

(2.9a) 
(2.9b) 

where a, > 0 and b, is a real constant. The system of linear 
differential equations (2.9~) can be solved successively 
starting from (2.9a) and (2.9b). 

Indeed, it follows from the real and imaginary parts of 
Eq. (2.9~) that 

Reij =p Imsj + Y(N+ 2 -j)(N+ 1 -j)Res,-,, 
(2.10a) 

Irni, = v(N+ 2 -j)(N+ 1 -j)Imsj-,. (2.1Ob) 
Expanding Re sj and Im sj in powers of it as 

lCi+ I)/*1 
Resj= C c;"(vt> lCj+ I)/21 --s , (2.11a) 

s=O 

l(i- I)/21 
Imsj = C dj.y)(Yf)l(i- I)/*1 -s, 

s = 0 
(2.11b) 

and substituting these expressions into (2. lo), we obtain the 
recursion relations for the coefficients c,: j) and d ,i j) as fol- 
lows: 
c(j) _ (N+2-j)(N+ l -j) c(j-*) 5 - 

[(j+ 1)/2--1 s 
-1 

+ 
[(j+Y),Z -S3 diJ’ 

(s=O,l,..., [(j- 1)/2]), 

Ci$+ I)/* 1 = bj, 

(2.12a) 
(2.12b) 

d(j) = (N+2--j)(N+ 1 -j) s d(i-2) 
[Cj- 1)/2-s] s 

(s=O,l,..., [(j-3)/2]), (2.12c) 
d (j!- 

[(J iv21 =aj9 (2.12d) 
where aJ and 6, are real constants and the notation 
[( j + 1)/2] means the maximum integer not exceeding 
( j + 1)/2. The solutions for the recursion relations (2.12) 
are given explicitly in the forms: 

For even N 

Res,, = i c~*~)(Y~)‘-* (n = 1,2,...,N/2), (2.13a) 
s=O 
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n- I 

Ims,, = C df2n)(vf)“-s-’ (n = 1,2,...,N/2), 
s=O 

(2.13b) 
and for odd N 

n+l 

Res,,,, = c ~~~“~‘)(vt)“-~~’ 
s=o 

[n = 1,2 ,..., (N- 1)/2], (2.13~) 

Im szn + I = S$od~z’“+l~(vt)“-’ 

[n = 1,2 ,..., (N- 1)/2]. (2.13d) 
Here, various coefficients in (2.13) are defined by the fol- 
lowing relations: 

n-s-2 
c(*~) = a:!?: b,, + pv- ia2cS + ,) C 

2(2lr-2m-22) 

’ I me0 n--m--s-l 
m  (N-2n+21+2)(N--n+21+ 1) 

xri 
I=0 n-s-, 1  
py- l;i (2JI) 

+ s azcs+ ,) (s= O,l,..., n  - 2), (214a) 
n-s 

d2:), = (N- 2n  + l)(N- 2n  + 2)b,,,- ,) +,~-‘a~,,, n  
(2.14b) 

C(2n + 1) 
I 

n-s-, ;i(2tl-22m- I) 

=d:?:“b,,+, +pvS1als+, 2 ’ 
?7l=O n-m-s 

m  (N-2n+21+l)(N-2n+21) 
xri 

I=0 n-s-Z+1 

+ 
fly- t;i;*n+ 1) 

n-s+1 
a2s,I (s=O,l,..., n- 1), 

(2.14~) 
c!,*~+‘)= (N-2n)(N-2n+ l)b,,-, +pv-‘a2,,+,, 

(2.14d) 
d (2n) = 2 (*nja 

5 s 2cs+ ,), (s= O ,l,...,n - 21, (2.14e) 
d i2?, = a*,,, (2.14f) 
d(2”+I)=;i(2n+l,a * v *s+,, (s=O,l,...,n - 11, (2.1%) 

d”“n+=)ca 
n *II+ I, (2.14h) I, an> _ “-‘-’ (N-2n+2m)(N-2n+2m+ 1) 
9  - mx n-s-m 

(s = O ,l,..., n  - 2), (2.14i) 
;I(Zrtfl) 

5 

‘-‘-’ (N-2n+2m+ l)(N-2nf2m) 
= go n-s-m 

(s= O ,l,..., n - I), (2.14j) 
2  yl; = 2  (J’;’ 1) = 0, (2.14k) 
b, = 1. (2.141) 

Explicitly, the first few of sj read in the forms: 
s, = [pa, + vN(N- l)]t+ b, + ia,, (2.15) 
sj =,w(N- l)(N-2)a,t* 

+ [pa, +vN(N-- l)(N--2)b,]t 

+b3 +i[v(N- l)(N-2)aftfa3], (2.16) ’ 
s4 = [pv(N- 2)(N- 3)a, 

+;tiN(N- l)(N-2)(N- 3)]t’ 

+ [pa, + v(N- 2)W- 3)b,]t+ b, 
-1-i[~(N-2)(N-3)u~t+a~]. (2.17) 

In the lim it of y-+0, sj has a  very simple expression as 
sj =,uajt+bj +iaj (j= I,2 ,,.., N). (2.18) 

The above solution may be  derived directly from Eq. (2.9~) 
with Y = 0. It should be  remarked, however, that various 
restrictions must be  imposed on real constants, aj and 
bj(j= l,Z,...,N) to satisfy the conditions, 
Im xi > 0( i = 1,2 ,.*., N). 

C. Properties of solutions 

In this subsection, we shall investigate the properties of 
solutions. Instead of entering into the discussion on  solu- 
tions for general  N, we consider the first two cases, namely, 
N = 1  and N = 2  in detail. 

l.Iv=i 

It follows from (2.8) and (2.9b) that 
f=x- (pa,t+b, fiat) (a, >O), (2.19) 

and in this casef does not depend on Y. Then ( 2.1) yields a  
solution of the Lorentzian profile 

26  tL= 
Ix-pa,t--b,)*+a: ’ 

(2.20) 

which represents a  pulse moving with a  constant velocity. 
One can observe that the propagation velocity of the pulse is 
inversely proportional to the amp litude and hence a  tall 
pulse propagates more slowly than a  small pulse unlike the 
behavior of the usual soliton that propagates with a  velocity 
proportional to its amp litude. 

2. N=2 
One finds from (2.8), (2.9a), (2.9b), and (2.15) that 

f = x2 - (pu, t + b, -I- ia, )x + (pa, + 2v)f + b2 + ia,. 
(2.21) 

The time  evolutions of x, and x2 are obtained by solving the 
algebraic equation, f = 0  and they are expressed as follows: 

x1,* =+-[A -&sgn(D)(C+yy/’ 

Si B& 
[ ( 

- c + p-T-F “2 
2 > II I (2.22) 

where the upper(lower) sign corresponds to x1 (x2 ) and A, 
B, C, and D are defined, respectively, by 

A=pa,r+b,, (2.23a) 
B=a,, (2.23b) 
C = (pa,t)* + 2[p(a,b, - 2a,) - 4v]t 

- a: -46, + b;, (2.23~) 
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D=2pa:t+2a,b, -4a,. (2.23d) 
It is easy to show that the conditions, Im xj > 0( j = 1,2) are 
equivalent to the following ones: 

aI >O, (2.24a) 
2vaft<a,b,a, -a: -a:b,. (2.24b) 

In the present case, one can observe that the condition, 
Im x, > 0 breaks down at t = tc with 

t, = (a, 6, a2 - a: - a: b, )/2va:, (2.25) 
where, of course, the inequality, a, b, a2 - a: - a: b, > 0 
must be assumed in order to yield a positive t,. The break- 
down of the conditions (2.24) also implies the blow up of the 
solution of Eqs. ( 1.4) and ( 1.5). To show this, we first exam- 
ine the behavior of x, and x, near t = t,. One finds from 
(2.22) that 

x,-pa,t+b, -a2/a, +ia,, (2.26a) 

x2 -a,/a, + i(2va,/d7SF)I,=,c (t, - 0, 
(2.26b) 

Then, the solution u given by (2.1) takes the form 

U= 
21mxj 

j= I (X - Rexi)’ + (Imxj)2 

(x -pa, t - 6, + a,/a, )* + a: 

where we have used the formula 

lim ’ ~ = &(x),[S(x):Dirac’s delta function]. 
c-.0 x2 + 2 

(2.28) 
The first term on the right-hand side of (2.27) has the same 
form as (2.20) except for a “phase shift,” - a, /a, and the 
second term shows that the blow up of the solution takes 
place ?t x = a, /a, . The blow-up time and position are also 
obtained directly from (2.21) by solving the algebraic equa- 
tion, f = 0. In this case, however, the variable x must be 
regarded as a real number. Indeed, rewriting (2.21) in the 
form 

f = x2 - (pa, t + b, )x 

+ (pa, + Wt+ b, - i(a,x - a2 1, (2.29) 
and taking both the real and imaginary parts off to be zero, 
the results mentioned above are reproduced. 

Finally, we consider an initial condition that is com- 
posed of a superposition of two pulses, each one is represent- 
ed by (2.19). In this case, we have 

f(x,O, = [x - (6, + iii,)][x- (6, +iii2)] 

(5, >o,ii, >O>. (2.30) 
If we compare (2.30) with f given by (2.21), we find that 
the constants a,, a,, 6, , and b, must be taken as 

a, =c?, +ii,, (2.31a) 
a2 =ii,&, +ii,6,, (2.31b) 
b, =h, +h2, (2.31~) 

b, =6,&, -E,ii,. (2.31d) 
The blow-up time of the solution is obtained by substituting 
(2.31) into (2.25) as 
tc =iiJ,[(zr, +?r,)z+ (6, -h2)2]/[2v(n, +ii2)2]. 

(2.32) 
The positiveness oft, is obvious from the above expression. 

D. Remark 

In the case of Y = 0, the blow up occurs only at an infi- 
nite time for solutions with general N.8-‘2 Instead of writing 
down the condition’ for Im xi > O( j = 1,2,...,N), we shall 
present an explicit example of a set of constants, aj and bj 
that realize these conditions. They read as follows: 
aj = [(IV- l)!/(N-j)!12/( j- l)! (j= 1,2,...,N), 

(2.33a) 
bj = [N!/(N--j)!]2/j! (j= I,2 ,..., N). (2.33b) 

Asymptotic behavior of u for t-+ + CO is then given by 

24 N-l 
U- 

(X --pa, t - b, + a,/a, )2 + ai 
+2r 2 s(x-Sj)Y 

j= I 
(2.34) 

where gj ( j = 1,2,...,iV - 1) are N - 1 zeros of the Laguerre 
polynomial of order N - 1, namely, 

L N-l('$j)G~~~ ~~v1s)*!~~t~,~2[j=o* (2.35) 
. . 

The expression (2.34) shows that the blow up takes place at 
the N - 1 positions, gl, g2, . . . . gN- , . 

III. THE PERIODIC CASE 
A. Linearization 

In the periodic case, we introduce the following depen- 
dent variable transformation 

(3.la) 

with 

f= fi /?-‘sinP[x-xj(t)](Imxj>O), (3.lb) 
j= I 

where p is a positive constant. In the limit of p--+ 0, (3.1) is 
reduced to (2.1) . We first consider Eq. ( 1.4). The bilinear 
equation corresponding to Eq. (2.2) now takes the form 

iU*f-ff*) - iWf*,f-fxJ*) 

- (p/2) (f’ +f *2 - 2cf *f) 
= - 2Sf *A (3.2) 

where S is a real integration constant and c is a positive con- 
stant given by 

c = exp 
[ 

- 2fi 2 Imx,]. 
j= I 

(3.3) 

The constancy of c in time will be proved later [see ( 3.17) 1. 
In deriving (3.2), use has been made of the formulas 

H(f/f*-CC) =i(f/f*-c), (3.4a) 
H(f*/f-c) = -i(f*/f-c), (3.4b) 
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which are reduced, in the limit of p-0, to (2.3a) and 
(2.3b), respectively. Moreover, we modify Eq. (3.2) as 

f *U - vfxxx - (pu/20 ( f -f *) 
+i[S- (pu/2)(1 -dlf~ 
=fIf*r -vfvf*xx + WW(f*-f) 

- i[S - (/J/2) (1 - c) It”*). (3.5) 
Thus we may decouple Eq. ( 3.5) in the form 

f, -vfx,, - (pm)(f-f*) =p(r]--ia)f; (3.6) 
and its complex conjugate expression. Here, we have chosen 
the integration constant S as 

s= (p/2)(1 -cl +pA, (3.7) 
where /z is a positive constant and v is a real constant to be 
determined later. 

Next, we consider Eq. ( 1.5 ). The linear equation corre- 
sponding to Eq. (3.6) is given by 

f, -&x - (pcLW(f-f*) =pc(v- US (3.8) 
which is transformed into Eq. (3.6) by resealing the time 
and space variables as t -* c - ’ t and x -+ c - “2x. Hence, we 
shall be concerned only with Eq. ( 1.4) in the following. 

Now, the time evolution of x, is obtained from (3.1) 
and (3.6) as 

i, =$,fi/?-‘sinP(x, - x*j, 
J 1 

x fi P-‘sinB(x, -xj) 
-I j=I 

(Jim) 

-21/p i cotfl(x,-x,) (n=1,2 )...) N). (3.9) j= 1 
(ifn) 

The system of Eqs. (3.9) describes the dynamical motion of 
N variables, x, , x2 , . . . . xN I It is reduced, in the limit of/?-O, 
to Eq. (2.6). As in the nonperiodic case, the second term on 
the right-hand side of Eq. (3.9) will result in the blow up of 
solutions as shown in the subsection C. 

6. Exact solutions 
In order to solve Eq. (3.6)) we expand f as 

f(&t) = i c, (t)e’“@, (3.10) 
n= -N 

and substitute this expression into Eq. (3.6) to obtain the 
following linear equation for c, : 
k” + v(nP) 2c, - (pm) (c, - c* - n 1 

=j.L(q - U)C” ( - N<n<N). 

By comparing (3.lb) and (3.10), one finds 
(3.11) 

C -N(t)=(-2ZB)-Nexp(dj~,xj), (3.12b) 

and 

%?I+ I (t) = c- (2rnf I) (t) =o (07 =O,l,..., M- l), 
(3.13) 

for N = 2M and 
c2,(t) = c-2m(t) = 0 (m = O,l)...) M), (3.14) 

forN= 2M+ 1. Substitutionof (3.12) intoEq. (3.11) with 
n = N yields the time evolution of X,“= , xj : 

j= I 

>I -tP(rl- i/z), 
(3.15a) 

+pcl(q - fh). (3.15b) 
For both equations to be consistent, the unknown real con- 
stant 9 must be chosen as 

rl = p - ‘Gw 2, (3.16) 
so that the integration of Eq. (3.15) is readily performed to 
yield the solution 

j$,xj=$h+b+i --&ln(U + 2y+ 1), (3.17a) 

where y is a positive constant defined by 
y= [/%(A + 1)]“2. (3.17b) 

A simple evolution of Z,“= , xj should be remarked. In partic- 
ular, the imaginary part of it does not depend on time, which 
proves the constancy of c defined by ( 3.3 ) . 

The general solution of Eq. (3.11) is given by 

c n (t) = et&N2 - At 
1 c, (0) [cos ypt 

- (i/2)(1 +ZA)(sinypt/y)l 

+ ’ -p*-Jo) sm I ( - N<nd?), Y 
(3.18) 

which, together with (3. lo), constitutes the general solution 
for the initial value problem of Eq. (3.6). 

C. Properties of solutions 
Let us now investigate the properties of solutions given 

by (3.10) and (3.18}. Since it is difficult to obtain a clear 
picture of the behavior of solutions for general N, we restrict 
ourselves to solutions for N = 1 and N = 2. 

l.N=f 

For N = 1) it readily follows from (3.17) that 
xl (t) = (py,/,@t + 6, + i(1/2P)ln(Z/Z, + 2y, + I), 

(3.19a) 
with 

y1 = [A, (A, “I- l)]“2. (3.19b) 
The above expression may be rewritten in a more transpar- 
ent farm as 

x1 (t) =pa,t+ b, + i(sinh-’ 2pa,/2@), (3.20) 
by introducing a parameter a, through the relation 
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yi = a,/% (a, >O). (3.21) 
Then, (3.1) yields a periodic solution of Eq. ( 1.4) of the 
form 

%P2 II= 
(1 + 4a;p2)“z -cos2P(x-pua,t-6,). 

(3.22) 

The solution (3.22) is independent of Y and as is clear from 
(3.20), the condition, Im x, > 0 holds for all time. There- 
fore, the blow up of the solution never occurs. The situation 
is the same as that for the nonperiodic case with N= 1 al- 
ready presented in Sec. II. One can easily confirm that 
(3.22) is reduced to (2.20) in the limit ofp--+O. 

2. Al=2 
The case N = 2 is somewhat complicated. To simplify 

the discussion, we consider the following initial condition for 
f: 

f(x,O) =~-2sin~[x-x,(0)]sin~[x-x2(O)], 
(3.23a) 

with 
xi(O) = bj + i( l/w)ln ej (j= 1,2), (3.23b) 

where we have put 
E,=u,+2Yj+l, Aj>O (j=1,2), (3.23~) 
y, = [A,(A, + 1)]“2 (j= 1,2). (3.23d) 

The expression (3.23) represents a superposition of two pe- 
riodic pulses, each one is given by (3.19) with t = 0. Owing 
to the relation (3.17a), the parameters b and R must be cho- 
sen as 

b=h, +i,, (3.24a) 
R =a2/(l +2a), (3.24b) 

where 
a=2M, +Y,)(A +y21+& +A, +y, +y*. 

(3.24~) 
Then, we find from (3.10) and (3.23) that at the initial time, 
t=O 

co(O) =po + fqo, (3.25a) 
where 

po = 4~2 ‘[(i)“‘+ (~)“*]cos~(~, -i,,, (3.25b) 

q” = 4~2 ‘[(i)‘” - (~)‘“]sinfi(~, - 6,). (3.2%) 

Now, the time evolution of co follows from (3.18) and 
(3.25) as 

c,(t) =e 4r@Ypo cos ypt + q. ( 1 + il) (sin ypt /y) 

+ i[qo cos ypt -p,il(sin ypt/y)]l=p + iq. 
(3.26) 

Here, p and q represent the real and imaginary parts of co ( t), 
respectively. Finally, the expression forf(x,t) is given from 
(3.10), (3.12), (3.17), and (3.26) as follows: 

f(x,t) = - (4P ‘6 - “‘) - ‘z - (4p 2d’2z) - ’ + p + iq, 
(3.27a) 
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where we have put 
z = exp[2i,B(x - (y,/2P)t - b/2)], 

e=U+2y+l, 
for simplicity. 

(3.27b) 
(3.27~) 

The time evolutions of x’ and x2 are obtained by solving 
the algebraic equation for z, f = 0 and these are expressed in 
the forms 

x,,,(t) =Wt+b+lt,-1 
28 2 2p 

--&ln[(P fR)‘+ (Q f3’1, (3.28) 

where the upper( lower) sign corresponds to x’ (x2 ). Here, 
P, Q, R, and S are defined, respectively, by 

P = 2fl2p/c=, 

Q = 2P 2q/d/2, 

R = (1/$)[P2-Q*-E-’ 

(3.29a) 
(3.29b) 

s= 

+&P2-Qe2-~-1)2+4(PQ)2]“2, 

[sgn(PQ)/@] [ - (P2 - Q2 - E- ‘) 

+ J(P’- Q2 - E- ‘)2 + 4(PQ)2]“2. 

(3.29~) 

(3.29d) 

The x’ (x2 > is shown to be a periodic analog of the xl (x2 ) 
given by (2.22). One can also easily check by a direct calcu- 
lation that the relation (3.17) is satisfied by (3.28). The 
expressions (3.28) are valid in so far as Im xi > 0( j = 1,2), 
However, these conditions will be broken down at a finite 
time. As seen from (3.28), this happens when 

(P + R)* + (Q fS>’ = 1. (3.30) 
We shall now derive a breakdown time t, on the basis of 
(3.30). First, if we use (3.29), the relation (3.30) is consid- 
erably simplified as 

p2/(A + 1) + q2/A = (4P2) - ‘. (3.31) 
Furthermore, substituting (3.25) and (3.26) into (3.3 1 ), we 
find that the t, is determined by the relation 
exp( - 8v,l?*t,) 

= [(E’ + E, )*/(E,e* + 1)2]cos2p(& - 6, ) 
+ [(El -E,)2/(E,E2 - 1)2]sin2P(~, - 8,). 

(3.32) 
It is worthwhile to note that the right-hand side of (3.32) 
does not depend on yand that it is always less than unity due 
to the inequalities 

O<(E, +E*V(E,E* + l)<l, (3.33a) 
- l<(E’ -E*V(E,E* - l)<l, (3.33b) 

where E’ > 1 and E, > 1. Hence, we see that (3.32) gives rise 
to a positive t,. At the instant of c = t,, the solution (3.1) 
blows up and which is the same situation as that has already 
been encountered in the nonperiodic case with N = 2. The 
position the blow up takes place is obtained from the real 
part ofx,(t,). 
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5. Remark 

In the limit of p-0, various results presented here are 
shown to be reduced to those for the nonperiodic case. In 
concluding this section, we shall demonstrate this for the 
blow up time t,. For the purpose, we put 

yj =iij’,B (j= 1,2), (3.34) 

and take the limit p-0. It then turns out that 
E~=I+~~~~+~~~~*+O(P~) (j=1,2), (3.35a) 
(E, + e2 )/(E,E~ + 1) = 1 - 22r,ii,B’+ OM3), (3.3%) 

(E’ - 62 )/(E,E* - 1) = (5’ -ii, l/(6’ + 52 1 + O(P), 
(3.35c) 

cos2j3(h, - 8,) = 1 - (6, - &,,“fl’+ O(p4), (3.356) 
sin*/?(&, - 6,) = (6, - &,)*/?‘+ O(fi4). (3.35e) 
Substituting (3.35) into (3.32) and retaining the terms of 
the order of ,L? * on both sides, we can recover the blow-up 
time t, for the nonperiodic case [see (2.32) 1. 

IV. CONCLUDING REMARKS 

In this paper, we have proposed two novel nonlinear 
diffusion equations with the Hilbert Kernel. By means of the 
method of linearization, the initial value problems of the 
proposed equations have been solved exactly for both non- 
periodic and periodic cases. A common feature of solutions 
thus obtained is that the blow up occurs after a lapse of finite 
time even if we assume smooth initial conditions. In this 
respect, it should be remarked that a nonlinear diffusion 
equation of the form 

fi, - YU,, - UHU = 0, (4.1) 
has been proposed as a model vorticity equation describing a 
viscous incompressible fluid flow.” A particular solution of 
Eq. (4.1) has been shown to exhibit the blow up at a finite 
time.” However, in contrast to theequations proposed here, 
Eq. (4.1) cannot be linearized and hence it seems to be in- 
tractable in comparison with our equations. In particular, 
the initial value problem has not been solved as yet for Eq. 

In concluding this paper, we note that Eqs. ( 1.4) and 
(1.5) may be generalized by introducing the following sin- 
gular integral kernelsI in place of the Hilbert kernel 

Tu(x,t) = $ P 
m 

I [ 
coth n(U-X) 

-co 2s 1 u(v,t)&, (4.2) 

t 
T,u(x,t> = 

s [ 
cot w -xl 

2L I 
uWMy, (4.3) 

--L 
In the limit of S- 00 (L + CO ), the operator T( T, ) is reduced 
to the Hilbert kernel defined by ( 1.3). To investigate these 
generalized equations will be left for the future work. 
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