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Abstract

Congenital heart defects are abnormalities in the heart's structure
that are present at birth. Approximately 8 out of every 1,000 new-
borns have congenital heart defects, which can range from mild to
severe. If it is diagnosed in early stage, there will be more treatment
options available for congenital heart defects and the most defects
could be cured successfully. A ventricular septal defect (VSD), one
of the most common congenital heart defects and accounting for 30%
of all congenital heart defects, presents a hole in the septum of the
ventricles. According to the sizes of the hole, clinically, a VSD is gen-
erally classified into three types: SVSD (the defect diameter is smaller
than 5 mm), MVSD (the diameter is greater than 5 and smaller than
15 mm) and IVSD (the diameter is greater than 15 mm). As for the
different types of VSD, the treatments are very different. Therefore,
if the different types of VSD could be recognized or diagnosed with
a relative high accuracy by heart sound analysis, it could be more
convenient to the patients with a VSD.

In order to diagnose VSD efficiently based on heart sound analysis,
the accuracy to extract the heart sound feature parameters is very
important. The feature parameters in time domain and frequency do-
main proposed in our previous studies have been proven to be efficient
for diagnosing some heart diseases. However, since the waveforms of
VSD sound are too complicated and the feature parameters are very
difficult to be extracted automatically. How to segment the heart
sounds and to extract the feature parameters automatically and pre-
cisely is an important topic in heart sound analysis. In this study, a
novel automatic algorithm for segmentation of heart sounds and the



extraction of the feature parameters is proposed first. By this algo-
rithm the accuracies of the heart sounds segmentation and feature

parameters extraction have been achieved up to 97.6%.

To diagnose the types of VSD defects based on these heart sound
feature parameters, a widely used method, Support Vector Machine
classifying method, has been introduced to generate the boundary
curves surrounding the features datasets of the different types of VSD.
In this case, the cross-over areas between the feature datasets induce
the difficulty to obtain high accuracy boundary curve. In this study, a
boundary curve algorithm based on support vector machines (SVM),
is proposed based on the following improvements:

1. A reference dataset has been introduced for calculation of the
boundary curve. The idea to generate the reference dataset is
to consider the probability of the distribution of a given dataset

which is to be classified.

2. The boundary curve surrounding the given dataset is solved by
iterative calculation method with a kernel function of the vari-
able parameter until it is reached to the satisfied classification

accuracy.

Based on the proposed boundary curve method, the classification
accuracies have been achieved to 94.8%C93.7% and 94.1% each for
SVSD, MVSD and LVSD. However, the classification by the bound-
ary curves obtained directly by the SVM method is not easy to be
used in classification automatically by the computer. Especially this
method does not satisfy the clinical application or household appli-
cation if a tablet PC or smart phone is used. To solve this problem,
in the final part of this dissertation, an ellipse model is presented to
classify the VSD. The ellipse function parameters are obtained by the
curve fitting method which is applied to the boundary curve obtained
by SVM method. Based on the ellipse function parameters, a sim-

ple classification system is proposed for diagnosing the different types



of VSD. The classification accuracies achieved for diagnosing SVSD,
MVSD and IVSD are 95.7%C94.7% and 95.0% respectively, which is
almost similar to the results achieved by the SVM boundary curve
method. Finally several clinical heart sound data, which are included
the different sizes of VSD, normal heart sounds, aortic regurgitation
(AR), atrical fibrillation (AF), aortic stenosis (AS) and mitral steno-
sis (MS) sounds, are used to validate the usefulness of the proposed

ellipse model classification system.
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Chapter 1

Introduction

1.1 Background

A ventricular septal defect (VSD) is a type of congenital heart disease (CHD)
[1; 2; 3]. A VSD is a hole in the part of the septum that separates the ventricles.
The hole allows oxygen-rich blood to flow from the left ventricle into the right
ventricle, instead of flowing into the aorta and out to the body as it should
[45 5 6 7 8 9]. the Cross-Section of a normal heart and a heart with a VSD
are shown in Figure 1.1. Figure 1.1(A) shows the structure and blood flow inside
a normal heart. Figure 1.1(B) shows two common locations for a ventricular
septal defect. The defect allows oxygen-rich blood from the left ventricle to mix
with oxygen-poor blood in the right ventricle. In the normal heart, the septum
prevents blood from flowing directly from one ventricle to the other.

It is estimated that approximately 8 in 1,000 newborns have CHD [10] which
mainly includes 3 kinds of heart disease (aortic septal defect (ASD), Tetralogy of
Fallot (TOF) and VSD). Figure 1.2 shows the occupancies of three kinds of heart

disease. From the Figure 1.2, A VSD is the most frequent of the various types of
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Figure 1.1 Cross-Section of a normal heart and a heart with a ventricular septal defect.

CHD (30% of all CHD) [4; 7; 11]. Approximately one infant in 1250 will be born
with 3 VSD.

Based on the size of the defect [4], small VSD (named SVSD) whose defect
diameter is smaller than 5 mm (denoted as ® < 5 mm), moderate VSD (MVSD)
(15> ® > 5 mm) and large VSD (LVSD)( ® > 15 mm) are classified by doctor.
In patients with a SVSD, there is minimal shunting of blood and the pressure in
the right ventricle remains normal. Since the right ventricular pressure is normal,
there is no damage to the lung arterioles. A prominent murmur along the left
sterna bored heard through a stethoscope is usually the only sign that brings
the VSD to attention. Children with SVSD appear healthy, and have no growth
retardation. One-third to one-half of all SVSDs close spontaneously. This seem-

ingly miraculous event occurs most often before the baby is 1 year old, almost



1.Introduction

Others: 20%

ASD: 20%
VSD: 30%

PDA: 15%

Figure 1.2 The distribution of the occupancies for three kinds of heart disease.

always before age 4 (75% by 2 years of age). Even if a SVSD does not close
spontaneously, surgical repair is usually not recommended. However, long-term
follow-up 1s required. Children with a MVSD, the shunting of blood from the left
ventricle into the right ventricle is still restrictive. Therefore, pulmonary pres-
sures may be normal or mildly elevated, but it will cause insufficient oxygenation
of the blood and possibly left heart failure. The patient with MVSD may be
underweight. Child with a LVSD, there is significant shunting of blood from the
left ventricle through the right ventricle to the lungs and back to the left atrium
and on to the left ventricle. This causes the left atrium and left ventricle to
handle an increased amount of blood, and the workload on the heart increases.
The increased workload on the heart also increases the heart rate and cause con-
gestive heart failure, growth failure, bacterial endocarditis, irregular heartbeat
or rhythm, Pulmonary artery hypertension, ect; ultimately, the patient with a
LVSD will need surgery to "patch the hole" in the ventricular septum.
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The general methods for diagnosing heart disease include chest x-ray, echocar-
diography, ECG, clinical auscultation, and so on. Among these methods, the
heart auscultation by using stethoscope is the simplest way, and is routinely
used as an early diagnostic study. According to the different sizes of VSD, the
treatments are very different. Therefore, if the different sizes of VSD could be
recognized or diagnosed with a gratifyingly high accuracy using heart sound anal-
ysis which is the simplest and cheapest method to nominvasively diagnose heart
diseases, it will lessen the psychological and economic burden on the patients

with a VSD

1.2 Review of heart sound analysis

In recent years, many researchers proposed some automatic methods for dis-
tinguishing heart sound signal by using computer technique and digital signal
processing technology. No matter which methods they can be summarized by
two-steps: (1) how to extract the HSs analysis features using various signal pro-
cessing methods, (2) how to classify the heart disease from HSs. As for HSs
analysis methods, they can be generally divided into two approaches: the time
domain analysis and the frequency domain analysis.

In the time domain, since every cardiac cycle is usually composed of S1 and
S2, the emphasis is how to use them to analyze HSs. These analysis methods
[12; 13; 145 15; 16; 17] can be divided into two branches. One is using the features
extracted from the characteristic waveform based on S1 and S2 to analyze HSs.
Furthermore, in the study [17], the diagnostic features [T11, T12, T1, T2] in the

time domain extracted from the characteristic waveform have proven to be useful
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for identification of normal sounds and heart diseases, including atrial fibrillation
(AF), aortic regurgitation (AR) and mitral stenosis (IMS); where T11 is the time
interval of two adjacent S1, T'12 is the time intervals between S1 and S2, T'1 is the
time width of S1, and T2 is the time width of S2. The other is using the segment
between S1 and S2 to determine the time intervals of the systole and diastole used
to analyze HSs. Moveover, the researcher [18] proposed a novel characteristic
waveform (CW) for heart sounds based on the Viola integral method, which can
be calculated in real time and does not require any preprocessing to reduce the
effect of noise in fast algorithm.

In the frequency domain, many researches [16; 19; 20; 21; 22; 23; 245 25; 26;
27; 28; 29; 30] have been concerning on the characteristic extraction by local fre-
quency analysis method. In the spectral analysis, short-time Fourier transform
(STFT) [19; 20; 21; 22], the wavelet decomposition or wavelet packet decom-
position [22; 23; 24] are commonly used. However, in our previous study [31],
using two diagnostic features [Fmax, Fwidth] to detect heart murmurs has been
verified as an efficient method because the highest classification accuracies were
achieved for classifying normal and abnormal HSs. Fmax describes the maximum
peak of the characteristic waveform and Fwidth is the frequency width between
the crossed points of the characteristic waveform on a selected threshold value.
However, it is pity that there was not detail explain about how to select about
one cardiac cycles heart sound signal.

As for the classifier of the heart sounds.in the meanwhile,the artificial neu-
ral network (ANN) was a computational tool for pattern classification which has
been the subject of researchersf interests in the past years. For the classifica-

tion of cardiac sounds, ANN or NN provided the high classification rate and
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was frequently used as a classifier [19; 20; 21; 225 22; 23; 24]. Recently,the sup-
port vector machines(SVM) proposed by Vapnik [32; 33] is a new classification
technique, SVM have been used successfully for the solution of many problems
including heart murmurs classification [31], cancer diagnosis [34], handwritten
digital recognition [35], etc. When using SVM and selecting the radio basis func-
tion (RBF) as kernel function, the problems, how to optimal input features C' ,
which control the tradeoff between complexity of the machine and the number of
no separable points, and how to set the best kernel parameter, the width of RBF,
are confronted. In the study [34], the proposed grid search approach is verified
as an efficient way for searching the parameters.

However, because the mathematical expressions of the classification curves
were too complicated to be expressed by parameters. Furthermore, the compu-
tation was so huge. To simplify the mathematical expressions of the classifica-
tion curves to reduce the computation, based on the shapes of the classification
boundary curves, the models for the classification boundary curves are consid-
ered. In order to discriminate the heart sound and reduce the discrimination
error produced by observation, the numerical diagnosis system based on the nu-
merical diagnosis results is carried out to identify VSD and different sizes, SVSD,
MVSD, and LVSD. The performance of the proposed method is evaluated by

chinical heart sounds.

1.3 Aim of this thesis

This thesis focuses on the development of VSD diagnostic system. In particular,
the work focus on three points. First, the diagnostic features, which were the
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critical factors for ensuring the success of heart disease diagnosis system, were
extracted from the heart sound in the time domain and the frequency domain.
Second, boundary curves based on support vector machines (SVM), which was
used successfully for many problems including heart murmurs classification, can-
cer diagnosis, etc, was proposed to surround a given datasets and to be used as
classifier to diagnose VSD. Finally, the ellipse models based on the least squares
method was built to propose a high-efficient numerical diagnostic system for diag-
nosing the different sizes of VSD, SVSD, MVSD, and LVSD. This study includes
signal processing methods, machine learning method, and classification boundary

modeling procedure.



Chapter 2

HSs acquisition and

pre-processing procedure

2.1 HSs acquisition

Auscultation denotes the act of analyzing sounds in the body that is produced
in response to mechanical vibrations generated in the organs. The heart sounds
can be collected by an electrical stethoscope. In general there are 4 positions
shown in Figure 2.1, which are aortic area, pulmonary area, tricuspid area and
mitral area, respectively. As for VSD cases, HSs collected from tricuspid area are
reported to supply more important information [36; 37]. In this study, the HSs
were all collected from tricuspid area.

For every cardiac sound cycle, there are two primary components, S1 and S2,
which are generated at the end of atria contraction and the closure of the aortic
valve and pulmonary valve respectively. The original heart sound is denoted here

by St in the time domain and its FF'T result is denoted as Sy.
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Figure 2.2 Examples for NM sounds. (a) a typical NM sounds in the time domain
and (b) its Fourier transform results.

For normal sounds, the frequency distribution generally concentrate on the
low frequency region and the heart beat generally 50-70 beats/ min. The typical
normal sounds are named NM plotted in Figure 2.2. Figure 2.2(a) shows the
plot of a normal sound in the time domain, which is a sample from a 24 years
young healthy man with the heart beat of 68 beats/ min. Figure 2.2(b) is the the
frequency domain results, where the peak frequency are approximately 30 — 50
Hz.

For VSD sounds, in patients with a SVSD, there is minimal shunting of blood
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Figure 2.3 Examples for VSD sounds. (a), (b) and (c) 3 typical VSD sounds in the
time domain, (d), (e) and (f) their Fourier transform results.

and the pressure in the right ventricle remains normal. Since the right ventricular
pressure is normal, there is no damage to the lung arterioles and the sound is
similar to the normal sounds. A typical SVSD sound extracted from a female
(P = 4 mm, age 3, weight 30 kg, and heart beat 85 beats/min) is plotted in
Figure 2.3(a) and its FFT results is plotted in Figure 2.3(d). In patients with
a MVSD, the shunting of blood from the left ventricle into the right ventricle
is still restrictive. Therefore, it causes insufficient oxygenation of the blood and
possibly left heart failure and heart beat fast on certain degree. A typical MVSD
sound extracted from the patients with MVSD (® = 10 mm) (a female of age 3
with weight 5 kg and 94 beats/ min heart beat) is plotted in Figure 2.3(b) and
its FFT results is plotted in Figure 2.3(e). In patients with a IVSD, there is
significant shunting of blood from the left ventricle through the right ventricle to

the lungs and back to the left atrium and on to the left ventricle, which causes

10



2.HSs acquisition and pre-processing

the left atrium and left ventricle to handle an increased amount of blood, and
the workload on the heart increases. The increased workload on the heart also
increases the heart rate. A typical LVSD sound extracted from a female (¢ = 18
mm, age 5, weight 15 kg, and heart beat 124 beats/ min) is plotted in Figure 2.3(c)
and its FFT results is plotted in Figure 2.3(f). Figure 2.3 shows the fact, that is,
although the heart beats is getting faster with the size of VSD increasing (Figure
2.3(a), (b) and (c)), the frequency distribution is getting narrower. Therefore,
time domain analysis combined with frequency analysis might have the better

performance.

2.2 Wavelet-based pre-processing procedure

The cardiac sound usually included an enormous volume of the unwanted com-
ponents caused by the environmental noises, power interference, breath sound,
lung sound and etc. For reasons of the complex and highly non-stationary na-
ture of cardiac sound signals and their frequency characteristics, an appropriate
pre-processing manner for noise cancellation is demanded firstly to identify the
cardiac sounds effectively. Regarding this consideration, we used the wavelet de-
composition (WD) as the pre-processing for the identification of cardiac sounds
[38]. The wavelet transform has received attention in recent years in the analysis
of non-stationary signals. The main advantage of wavelet transform is that it has
a varying window size in which the wide one is good for slow frequency component
and the narrow one for high frequency. Hence it provides good resolution in both
time and frequency domains. In many medical applications, the wavelet trans-

form has become a powerful alternative to FFT [22; 23; 24; 39; 40; 41; 42; 43; 44].

11
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For the wavelet expansion [45; 46; 47; 48], a signal St can be described by a set of
scaling functions ¢(#) and wavelet functions ¢/(¢) that can span by various scales
of the scaling function as follows:

X X X
Sr= e+ diij i (1) (2.1
j=—o00 1= —00j=—00
In Eq. (2.1), the first summation gives a function that is a low resolution or
coarse approximation of x(t), whereas the second summation gives a higher or
finer resolution function. From Eq. (2.1), the expansion coefficient at a scale of

7 can be computed on the basis the expansion coefficient of a scale of i + 1 as

X
a(@d = hl—2)c ) (2.2

X
&)= g —2)cie1(D (2.3

In which A(t) and g(¢) denote the impulse responses of low-pass (LP) filter and
high-pass (HP) filter that decompose the original signal into the approximation
(e.g., low frequency) and detail components (e.g., high frequency). The signal is
then down-sampled to divide into every two signals so that the signal's length
does not change. At the next stage, the LLP signal is also decomposed using com-
plementary filters as LP filter and HP filter. The procedure of multi-resolution
decomposition of a signal St is shown in Figure 2.4, where Sy, h(t) and ¢(1)
denote the raw signal, LP filter and HP filter, respectively. Each stage consists of

two digital filters and two down-samplers by 2. At a result, the two-band wavelet

12
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[0 49 D1

Figure 2.4 The three-scale WD tree, where h(t) is the LP filter and g(t) is the HP
filter

system leads to a logarithmic frequency resolution. It is a fact that the low fre-
quency components have narrow bandwidths and the high frequency components
have wide bandwidths. This is called econstant-Qf filtering and is appropriate
for some applications [46; 47; 48]. In wavelet-based pre-processing, suppose the
original signal recorded using any stethoscope by St, where a bit-depth 1s 16 bits
and sampling frequency is 44.1 kHz. Nextly, WD was used for cancellation of
the unwanted frequency components over 700 Hz. The MATLAB program was
used for the WD implementation. Daubechies Db10 type wavelet [43; 49], a good
choice for our purpose as it deals with biomedical signals very well, was used as
a mother wavelet. By applying the WD to signal St to 10 level, the frequency
distribution for every level shown in Figure 2.5, the approximation coefficient
(cA10)(0— 21.5 Hz) was used to cut off the low frequency components below 21.5
Hz and the detail coefficient(cD5)(689 — 1378 Hz) was used for eliminating the
high frequency components over 689 Hz. So the resulting signal X with band

13
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Figure 2.5 The frequency distribution of every level for by applying the WD to signal
St to 10 levels

limit of 21.5 — 689 Hz was reconstructed by the components of cD10—cD6. At
last, the normalization was applied by setting the maximum of the signal X to a
value of 1.0.

2.3 Summary

In this section, firstly, the original heart sound signal noted by St is recorded
from the tricuspid area using any stethoscope, where a bit depth is 16 bits and
sampling frequency is 44.1kHz. And then based on the frequency range of heart

14
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sound and Daubechies Db10 type wavelet is a good choice as mother wavelet for
dealing with biomedical signals very well, By applying the WD to signal St to 10
level, the approximation coefficient (cA10)(0—21.5 Hz) was used to cut off the low
frequency components below 21.5 Hz and the detail coefficient(cD5)(689 — 1378
Hz) was used for eliminating the high frequency components over 689 Hz. Finally,
the resulting signal X with band limit of 21.5— 689 Hz was reconstructed by the

components of ¢cD10—cD6.

15



Chapter 3

Features extraction and heart

sounds segmentation

3.1 Heart sounds Envelope (Ep) extraction in
the time domain

The envelop cardiac sounds characteristic waveform (CSCW) proposed in our
studies [50; 51] has been reported to provide sufficient performance compared to
conventional Shannon envelope and Hilbert envelope algorithms which are used as
the empirical or manual way and the automatic selecting way to estimate cardiac
sound segmentation. However, the unexpected noises are still difficult problem
in this methods. To overcome this points, the researcher [18] proposed a novel
envelope (/1) for heart sounds based on the Viola integral method. This study
showed FEr is effective against not only amplitude variation, but also complex

background and noise. This idea is described in following.

16
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Figure 3.1 The analysis results for NM1 and NM2, the X (n) is daubed with gray, and
the waveform Er is plotted in black lines.

Consider a data series X (n) preprocessed by wavelet decomposition for cardiac
sounds signal St(n),n = 1,2,..., N, where N denotes the number of data. The

envelop Er is obtained by

1 X L — 2
Er(m) = ——— (X&) —X(K)",m= Lr+ 1L, L+ 2,...,N — Lr,
20+ 1
k=m-Lg
3.1
where,
_ 1 L

X(k) = X@). i

(k) vl (i) (3.2

Lr is the window width at point k. Since the studies [50; 52] have shown that the
duration of S1 or S2 is about 0.05 s, in following study Lt = 0.5x0.05x s = 1225
is set. Finally, the normalization is applied by setting the maximum amplitude
of Bt to 1.

As an analysis results, the envelopes for typical NM, SVSD, MVSD and LVSD
sounds are plotted in Figure 3.1. Figure 3.1(a) shows the X of NM sound and its
Er; Figure 3.1(b) shows the X of SVSD sound and its Ep ; Figure 3.1(c) plots

17
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the X(n) of MVSD sound and its Er; Figure 3.1(d) plots the X of IVSD sound
and its Fp. Here the X is daubed with gray, and the waveform FEr is plotted in
black lines.

3.2 Heart sounds Envelope (Ep) extraction in
the frequency domain

In the frequency domain, many researches [16; 19; 20; 21; 22; 23; 24; 25; 26;
27; 28; 29; 30] have been concerning on the characteristic extraction by local
frequency analysis method. In the spectral analysis, short-time Fourier transform
(STFT) [19; 20; 21; 22, the wavelet or wavelet packet decomposition [22; 23; 24]
are commonly used. However, in our previous studies [31], envelope based two
diagnostic features [Fmax, Fwidth] to detect heart murmurs has been verified as
an efficient method because the highest classification accuracies were achieved for
classifying normal and abnormal HSs. Fmax describes the maximum peak of the
characteristic waveform and Fwidth is the frequency width between the crossed
points of the characteristic waveform on a selected threshold value. However, it
is a pity that there was not detail explain about how to select about one cardiac
cycles. In order to extract the envelope for every cardiac cycle, first we segment
heart sound into every cycle. And then extract heart sounds envelope Fp for

every cardiac cycle.

18
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3.2.1 Heart sounds segmentation

Basic heart sound signals are mostly comprised of four sound types: two out-
standing sounds S1 and S2, and two weak sounds named as the third (S3) and
the fourth heart sounds (S4). Although these four sounds may be audible by the
auscultation of heart and occur in the frequency range of 20 — 2000 Hz, since
S3 and S4 appear at very low amplitudes with low frequency components and
are difficult to be caught in usual auscultation, in the meanwhile, the umtary
murmurs as a systolic ejection murmur (e.g., aortic stenosis) and a pan systolic
murmur (e.g.,mitral regurgitation) mostly appear between the S1 and S2 with
different noise patterns like the diamond and rectangular shapes [50]. Therefore,
the S1 and S2 analysis play an important role in the heart sound analysis, in
other words, to obtain the more information about S1 and S2, the segmentation
of heart sounds might be an important pre-processing for the automatic analysis
and classification of heart sounds.

In recent years, the studies of heart sound segmentation can be summarized

into three categories as follow:

(1). With the reference ECG, the performance of the heart sound segmentation
is quite good [53; 54]. However, the ECG, which is another signal source,
may not be convenient for use in a medical check-up. Furthermore, in cases
of infants or newborn children, placing the leads on a newborn is difficult
because of limited space on the torso and the babies are not cooperative.
Furthermore, performing an ECG on a newborn using the current compli-
cated leads system by inexperienced nurses is prone to error, such as wrong

leads placement, artifacts, and inadequate ECG signal acquisition.

19
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(2.

(3.

The the frequency domain based segmentation algorithm was proposed by
tracking of heart sound spectrum [37; 55; 56; 57]. With the aid of frequency
domain analysis, certain frequency components are first extracted according
to the the time domain characteristics; and the start and end points of each
cycle are determined by using the time domain search method at a given
threshold value. However, the selection of threshold and filtering of the
unexpected noise are still difficult problems in this kind of methods and

few literature mentions this issue

The envelope based segmentation method were studied by many researches
[50; 511, our previous study [58] reported that cardiac sound characteristic
waveform (CSCW) method provided sufficient performance compared to
conventional Shannon envelope and Hilbert envelope algorithms which were
used as the empirical or manual way and the automatic selecting way to
estimate cardiac sound segmentation. However, the selection of threshold
and filtering of the unexpected noise are still difficult problem in this kind
of methods. To overcome this points, the researcher [18] proposed a novel
method for the segmentation of heart sounds. In this paper, characteristic
waveform (CW) of heart sounds and the center moment character (CMW)
of CW based on the Viola integral method were proposed first. And then
each heart sound cycle can be quickly found by CMW s local extreme points.
This paper showed CW is effective against not only amplitude variation but
also complex background and noise. Moreover, using CMW s local extreme
points method for locating the segmentation not only avoids the difficulty

of setting multiple thresholds to detect S1 or S2, but also overcome the
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Figure 3.2 Examples of a very typical normal sound and 3 typical abnormal sounds.
The left parts of this figure show the filtered heart sound signal X and the right part

show the Er corresponding to the left part.

detections of the start and end points of the sounds (S1 or S2) drowned in

the murmurs. However, this paper does not provide the detailed method to

locate the CMWs local extreme points. Furthermore, the CMW might have

the different amplitude or the same amplitude for every cycle because of the

complexity of CW. Therefore, it is very difficult to search the local extreme

points of the CMW, let alone locate the local extreme points automatically.

In this section, a Moving Windowed Hilbert Transform (MWHT) method was

proposed for automatic locating the local maxima and mimima task by using the

properties of the Hilbert-transform. The Hilbert transform plays an important
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role in the theory and practice of signal processing, and it has been widely used
in many areas, such as edge detection [59; 60], peak detection [61], and so on.
The study [61] considered the even function, f(t) = 1/(1+ t?) as a R-wave
envelope model. The Hilbert transform of f(1), is given by ﬂt) = t/(1+ t?).
Therefore, the maximum value of the envelope function r(t) corresponds to the
zero crossing point of the 7(t) which is referred as odd-symmetry function. Since
the heart sounds too complicated to consider the its envelop as an even function
like f(1) = 1/(1+ (?). However, according to the envelope of heart sounds such
as the envelopes plotted in Figure 3.2. Figure 3.2 plots the normalized X of
four typical heart sound signals and its envelope curve Fr extracted by the Viola
integral approach. Figure 3.2(a) shows the case of the typical normal sound
and its Er is showed in Figure 3.2(b). An abnormal case of the typical aortic
regurgitation and its Ep are shown Figure 3.2(c) and (d). Figure 3.2(e) and
(f) show an abnormal case of the typical mitral stenosis. an abnormal case of
the typical ventricular septal defect and its Fp are shown in Figure 3.2(g) and
(h). Figure 3.2(e) and (f) also show that this method is effective against not
only amplitude variation but also complex background and noise. Furthermore,
notice that the Fr, not only for normal case plotted in Figure 3.2(b) but also
for abnormal cases plotted in Figure 3.2(d), (f) and (h), the most important

characters of Ft are summarized as follow.

(1). The area (marked by gray) close to the nadir from S1 to S2 (named as
N2, and marked by -) is basically considered as an even convex function

symmetrical with respect to the vertical line (marked by blue) crossing the
Ngis.
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(2). The area (marked by gray) close to the nadir from S2 to S1 (named as No;,
and marked by e) is also basically considered as an even concave function

symmetry with respect to the vertical line(marked by red) crossing the Ns;.

N2 can be considered as the segmentation point from S1 to S2. Ns; can be
considered as the segmentation point from S2 to S1. Therefore, locating the
points N7y can separate the S1 and S2, and locating the points Ny; can segment
every cardiac cycle. For these reasons, the automatic locating points method

proposed is detailed as follow subsection.

3.2.1.1 Continuous-Time Moving W indowed Hilbert Transform

The moving windowed Hilbert transform MW HT(f(t)) of a function f(t) is
defined by

Z

MWHT: () = () :% P WE—0i@

t—T1

(3.9

—00

where W is a window with the length W,.. Figure 3.3 shows the principle of
MW HT(f(t)). In fact, the value of f(t) is the center value of the Hilbert trans-
form of W(r — 1) f(7) at the interval 7 2 [t — %ﬁ, L+ ﬂzﬁ] The Moving windowed
Hilbert transform of the derivative of a function is equivalent to the derivative of

the Moving windowed Hilbert transform, that is

20 (W -0 ) N

t—T

N |
Ef(t)_ — (3.9)

—0oC
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Figure 3.3 The schematic diagram of MWHT

Suppose W (7 — TD1(7) is a concave even function with a nadir and symmetrical
with T'1like f,(¢) plotted in Figure 3.4, then the derivative of the function W (7 —
TDf(r), (W(r — TDR)’ < 0(r > TD. If we substitute T1 — 7 with 7, then
W () f(r1 —T1) is also concave even function, and (W (ry) f(r — T1))’ is an odd
function and (W () f(r; — T1D)" < 0(r; > T1). Based on Eq. (3.3) the f(T1) is

computed as

Z 1
F1(T1) = WMHT[f; (TD] = 1 W - TDA) dr. (3.5
T oo T1—7
If we substitute T'1 — 7 with 71 and then we get
v 127 WGeDE G - TD
[i(TD = ~ . dr = 0. (3.6)
1

—0o0
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Figure 3.4 Ilustration of the minimum finding principe. The minimum value of the
concave even function f(t) corresponds to the negative-to-positive point of the f;(t).

Based on Eq. (3.4) the flo(T 1) is computed as

Z
170 (W = TDf(n)"
— 74 (3D

AT = MwHTIE (TD]

—0o0

If we substitute T1 — 7 with 71 and then we get

Z 0 Z 0
flo(Tl)= 1 L (W ()i (r = TD) i, = 2 V(W (i (r, —TD) dr < 0.

™ T1 T T1 1

—0

(3.9

That is the nadir of the convex function corresponds to the positive-to-negative

transition points of its moving windowed Hilbert transform function. Here, the
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gaussian function f;(¢) as a concave even function is taken as an example to an-
alyze. The graphical representation of the f;(¢), f1(t), are shown in Figure 3.4.
Based on these properties of Hilbert transform combined with the points men-
tioned about the envelope of heart sounds, a moving windowed Hilbert transform
method proposed to search the peaks and nadirs of the envelope is detailed as

the next section.

3.2.1.2 Segmentation points locating logic

According to the important characters of ' summarized in Pages 22 — 23, every
period (named as Xp,) of heart sound can be located. According to properties
of Hilbert transform about a concave even function and a convex even function
summarized in the section 3.2.1.1, Based on the t-axis of the positive-to-negative
points (PNP) of the Erp correspond to the t-axis of the nadirs in the Fp, the heart
sounds can be segmented into every cardiac cycle. The detailed segmentation

procedure showed in Figure 3.5 is summarized as follows:

(a). Firstly, in the time domain, the envelope Ep like the black lines plotted
in Figure 3.5(a) for normal sound and Figure 3.5(b) for VSD sound are
extracted from the heart sounds X like yellow lines plotted in Figure 3.5(a)
and (b).

(b). Secondly, based on Eq. (3.3), The FEys like black lines plotted in Figure
3.5(c) for normal sound and Figure 3.5(d) for VSD sound are generated for
FErs plotted in Figure 3.5(a) and (b).
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Figure 3.5 Example for segmentation logic for NM case and VSD cases. The Er
plotted in (c) and (f) are generated by Gaussian Window with the Wy = 1s.

(¢). Finally, the PNP (marked by ) in Figure 3.5(c) and (d) are determined by

%ET(z)—O
PNP = i, if EETZ_DN) . (3.9

Er(i+ 1) <0

Then Xp, representing i-index cardiac cycle (Figure 3.5(a) and (b)) is calculated
by

Xp, = X(PNP;+9) — X(PNPy). (3.10)

Therefore, the heart sound X is divided into Xp, (i = 1,2, ...,1), where I is the

number of cardiac cycles included in heart sound X. Therefore, by identifying
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Figure 3.6 Example for comparative analysis the located points for AF case using
different window and different window width. The Er plotted in (b), (c) and (d) are
generated by Gaussian Window with the Wy = 2:625s; 1s; 0:325s, respectively. The
Er generated by Rectangle Window with Wy = 2:625s; 1s; 0:325s are plotted in (d),
(e) and (), respectively

the PNP of the Ep, the cardiac cycle segmentation can be located. However,
whether the located points are the real points of the Ep or not will be affected
from the selected window and its width. In other words, for different window
and different length, the located points may not be the real points of Erp of the
filtered signal X. Therefore, it is necessary to choose the appropriate window
and its width. In order to illuminate these problems more clearly, the examples

for different window and different length are analyzed and the analysis results are

showed in Figure 3.6.
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Figure 3.6 shows that the AF case whose nadir points from S2 to S1 are very
different to be located. Figure 3.6(a) shows the filtered signal X. Figure 3.6(b)-
(d) show that the Er and the located points for £ using the Gaussian Window
usually used in signal processing. Figure 3.6(e)-(g) show the Ep and the located
points for £r using the Rectangle Window which is an ordinary window. From

the results plotted in Figure 3.6, we can see that

(1. Because the Wy = 0.325s is smaller than the width which is about 0.5s
such as D1, D2, D3, and D4 in Figure 3.6(d), the false points are generated

such as Error 1-4 in Figure 3.6(d) and Error 1-6 in Figure 3.6(g).

(2). Since the Wy = 2.625s is very big, on some place the false points might be
generated such as the Error 1 in Figure 3.6(b) and Error 2 in Figure 3.6(e),
and on some place the true points might be lost such as Error 2 in Figure
3.6(b) and Error 2 in Figure 3.6(c).

(3). Since the windowed X using Gaussian window is more smoother than that
using Rectangle Window, there are no errors in Figure 3.6(c), but there are
3 errors including false points Error 1 and Error 2 and lost point Error 3 in

Figure 3.6(f).

Therefore, in order to avoid generating the false points such as the Errors in
Figure 3.6(d) and (g), the window width Wy must be greater than the width of
two consecutive convex such as D1, D2, D3, and D4 in Figure 3.6(d). In order to
avoid generating the false points such as Error 2 and losing the real points such
as Error 3 in Figure 3.6(f) at the same window wide, the window is selected the

smooth Gaussian Window in this paper. In order to avoid losing the real point

29



3.Diagnostic features extraction

such as Error 2 in Figure 3.6(b) and Error 2 in Figure 3.6(e) and generate false
points such as Error 1 in Figure 3.6(b) and Error 2 in Figure 3.6(e), the window
width Wy is not supposed to be too long but supposed to be greater than one
cycle of heart sounds, especially for not regular heart sounds such AF case in
Figure 3.6(a). Since the heart beats are from 60 to 120 per minute [62; 63], the
maximum of heart sound cycle is about 1 s. In order to make the part from S2
to Sl included in the window, comparing the experimental analysis, in this paper

the Wy 1s set as 1 s.

3.2.1.3 Performance evaluation

The proposed segmentation points detection method was evaluated using the two
parts of heart sounds recorders. One part was detected from Chinese hospital
during the period from 2011 to 2012 and its sampling frequency is 44.1kHz. It
contained 3390s CHD sounds which consisted of 620s ASD from 14 patients, 270s
F4 from 7 patients, 550s PDA from 10 patients, 1290s VSD from 33 patients
ASD and 660s mixed CHD from 12 patients and 3940s RHD sounds. The other
part was download from Michigan heart sounds database [64]. Its contained
total 1496.8s length 23 cases (named as M01, M02,...,M23) recordings sampled
at 44.1kHz.

To evaluate the performance of this segmentation method, we calculated the
quantitative results: missing nadir 12 (MN12) when a nadir from S1 to S2 is
missed, false nadir 12 (FN12) when a false nadir from S1 to S2 is generated,
true cardiac cycle (TCC) when the cardiac cycle is correctly detected, and false
cardiac cycle (FCC) when the cardiac cycle is not correctly detected. Therefore,

the accuracies for cardiac cycle (ACC) can be computed by using the following
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equations, respectively

TCC

ACC= Tee3 Fee

x 100% (3.11)

[18] has introduced a segmentation method which was better than DWT method.

A complete segmentation [18] is described briefly as follows.

(a). The Ep by setting the parameter 0.05 s and the CMW by setting the pa-

rameter 0.5s was extracted.

(b). The maximum points sequence extracted from CMW was viewed as the
close boundaries of each cycle. The minimum points sequence extracted

from CMW was viewed as the center of every cycle.

Figure 3.7 plotted two examples for two clinical heart diseases using our method
and [18]'s method. Figure 3.7 showed that it is difficult to locate the segmentation
points using the maximum and the mimimum of the CMW for these cases. If we
select the threshold value to select maximum and minimum points on CMW,
then it is also difficult to select threshold value. However, using our method it
is very easy. Furthermore, since our method locate the points by the pass-zero
points, it do not need the threshold value. Table 3.1 shows that the analysis
results of analyzing the data in this section using our method and [18]'s method.
Based on the results of Table 3.1, the proposed method achieved significantly
better performance than [18]'s methods. we concluded that the proposed method
can not only improve the accuracy of cardiac cycles but also automatically locate

using the pass-zero points. Furthermore, the proposed method does not require
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Table 3.1
Performance evaluation of the proposed method and [18]'s method using the clinical
data and Michigan heart sounds data

ACC(%)
Rec
[18]'s method Our method

PDA 89 98
RHD 81 96
NM 100 100
ASD 89 99
VSD 78 95

F4 91 99
MoO1 100 100
Mo02 100 100
MO03 100 100
Mo04 100 100
MO05 100 100
Mo6 100 100
MoO7 100 100
MO8 100 100
MO09 100 100
M10 100 100
M11 100 100
Mi2 100 100
M13 100 100
Mi14 100 100
M15 100 100
Mie 100 100
M17 100 100
M18 100 100
M19 100 100
M20 100 100
M21 100 100
M22 100 100
M23 100 100
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Figure 3.7 The examples for two clinical heart diseases. (a) plots the VSD cases and
(d) plots the RHD cases. (b) and (e) correspond to the VSD case in (a) and the RHD
case in (d) by using our method. (c) and (f) plots the CW and CMW using the Yan2010
method. Here CW 1is Er, CMW is gained with 0.5s parameter.

additional decision rules with sets of thresholds based on the amplitude of S1 or

S2.

3.2.2 Heart sounds segmentation based the envelope Efp

extraction

For every cardiac cycle, in the frequency domain, the envelope (EFr) in the fre-
quency domain is obtained by the moving average method as follows: For i-index
cardiac cycle Xp, , the envelope Iy, is obtained by

kX Lr

iXe,(Dj, k= Lp,...,N; — Ly, (3.12
l=k-Lp

EFi (k?) =

2p+ 1
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Figure 3.8 The analysis results for NM, SVSD, MVSD, and ILVSD examples, the X, s
is daubed with gray, and the waveform Ep,s are plotted in black lines.

where

X1 2r
XeW =" Xpewp(-jnl, 1=012..,N -1 (3.13)

n=1 1

Nj isthe length of Xp,, and 2Ly is the window width. Since the width of frequency
is generally greater than 16 Hz, then Ly = 8x(F}) /(IV}) is set in following analysis.
moreover, [y, is also normalized. As an analysis results, the envelopes for i-index
cardiac cycle of NM, SVSD, MVSD and LVSD sounds are plotted in Figure 3.8.
Figure 3.8(a) shows the Xt of NM sound and its Fr; Figure 3.8(b) shows the
X7 of SVSD sound and its Fr; Figure 3.8(c) shows the Xw of MVSD sound and
its By ; Figure 3.8(d) plots the Xw of IVSD sound and its Er. Here the X7 is

daubed with gray, and the waveform FEr is plotted in black lines.
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3.3 Diagnostic features definition

As mentioned in the study [50], the time interval between two abutted S1,the
interval between S1 and S2, the width of S1, and the width of S2 are very impor-
tant parameters for detecting heart disorders. A simple way to calculate these
intervals is to measure the peaks of S1 and S2. However the extracted peaks
sometimes are not correct especially for strong murmurs heart sound. To solve
this problem, in this study, the centers of segments of S1 and S2 are considered.
The concept for defining the diagnostic parameters in the time domain is de-
scribed in Figure 3.9(a). Hr is the threshold and should be selected at a suitable
value. The left and right points on the curve Er crossed by Hr line are defined
as L1 (i) and R (i)(k= 1,21 = 1,2 ....M) in a sequential order. The gravity
centers of S1; and S2; segments are defined by G1(7) and G5(i), and obtained as

follows:

P g0
SV m ox E2(m)
() = — ol T k=12 (3.14)

I R@ 92
m= L) BT (m)

So the time domain features [1'2, T}, are given by

TnG) = GG+ 1) — G16) (3.15)

To(i) = Go(i) — G1(0). (3.16)

In the frequency domain, the diagnostic features [Fax, Fyw] has been verified to

be useful for detecting heart murmurs [31], where F. is the frequency at the
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maximun value and I is the corresponding width of character waveform over
the given threshold value. However, the value I, especially in VSD sounds,
will be influenced much due to the heart murmurs. Instead of Fipax, the center of
gravity F(i) for i-index cardiac cycle is considered as a frequency index, which

is described in Figure 3.9(b), and is obtained as follows:

P [N;=2l]
. [N2 _1;] x B2 (k)
w1 B2 (k)

Fo(i) = (3.17)

The concept for defining the diagnostic parameters Fy 1s described in Figure
3.9(b). Hy is the threshold and should be selected at a suitable value. The left
and right points on i-index envelope Er, crossed by Hy line are defined as Lp(i)
and Rp(i)(i = 1,2,...,D in a sequential order. The frequency width Fyy (i) of
i-index P, is defined by Lp(i) and Rg(i), and computed by

Fw (i) = Rp(i) — Lp(). (3.19

To extract features in the time domain and the frequency domain, the value
of I17 will be a suitable value between the interval [0.2, 0.4] and //+ has good
performance in the interval [0.1, 0.2]. By experimental analysis, in this paper, the
Hy is set at 0.2. Figure 3.9(c) and (d) show the plots of [T}s. 7111 and [F, Fi],
which are extracted from samples of NM, SVSD, MVSD and LVSD respectively.

From Figure 3.9, we find that

(1). In the time domain, SVSD is difficult to be discriminated from MVSD and
NM, but in the frequency domain SVSD is very easy to be discriminated
from MVSD and NM.
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Figure 3.9 Definition of the diagnostic features [Tig; T11] & [Fg; Fw] and their scatter
diagram. (a) and (b) normal sound case, (c) and (d) VSD case, (g) scatter diagram of
[Ti2; T11], (h) scatter diagram of [Fg; Fw 1.
(2). In the frequency domain, LVSD is difficult to be discriminated from MVSD
and NM, but in the time domain it is easy to distinguish LVSD from MVSD
and NM.

(3). In the frequency domain the distribution of MVSD is close to NM and
LVSD, but in the time domain, MVSD is very different from NM and LVSD.

Therefore, the combination of feature parameters [12, 711] and [Fg, Fyy] will be
powerful to discriminate VSD.

In order to build the heart sound features data sets (DSs), 242 normal heart
sound samples (46 people in university, aged 23~27 years with a mean of 23.8)
and 226 sound samples including 62 SVSD type sounds, 90 MVSD type sounds
and 74 type LVSD sounds (37 patients in hospital, aged 4 ~ 14 years with a
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Figure 3.10 Summary of the statistical character of the data sets for NM cases and
VSD cases. (a) pu+ o for [Ty2; Tq1] in the time domain and (b) i + o for [Fg; Fwl in
the frequency domain

mean of 6.7) are analyzed. The mean values and standard deviations of 7}; and
Ti2 1n case of NM1, NM2, SVSD, MVSD, and LVSD sounds are summarized and
shown in Figure 3.10(a). The mean values and standard deviations of F; and
Iw 1n case of NM, SVSD, MVSD, and ILVSD sounds are summarized and shown

in Figure 3.10(b).

3.4 Summary

This section was very important because the diagnostic results were rooted in
the diagnostic features. The definition of diagnostic feature were summarized
as follow: Firstly, the Fr was obtained with emphasis on the first heart sound
(S1) and the second heart sound (S2) by applying the Viola integral waveform
method, and the parameter Lt was set as 0.6s. Secondly, to extract the Er for
every cardiac cycle, according to the character of Er at the area from S2 to S1, a
novel method named moving windowed Hilbert transform (MWHT) was proposed

to segment the heart sounds into every cycle automatically. Moreover, how to
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propose MWHT method, and how to set the window width and how to select
the window for MWHT were described in detail. Finally, in the time domain
the diagnostic features [T}o, 7111, the width of two abutted S1 and the width
between S1 and S2 at a threshold value, were extracted from the envelope Er.
In the frequency domain, the diagnostic features [F, Fiyl, the frequency width
and the gravity, were extracted from the envelope Fr for every cardiac cycle. AS
the statistical analysis of [T}9,711] and [Fg, Fiy], the 242 normal heart sounds
and 226 VSD sound samples ( 62 SVSD sounds, 90 MVSD sounds and 74 IVSD
sounds) were summarized. The analysis results showed that using [T, T11] and

[Fg, Fw] as diagnostic features would discriminate among VSD and NM sounds.
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Chapter 4

Classification boundary function

based on SVM

In this section, a classification boundary for feature DSs based on SVM technique
is proposed to be used as the classifier to discriminate VSD from normal sounds.
To generate a suitable classification boundary for the given feature DSs, according
to the characters of SVM and ordinary classification accuracy achieved in many
researches, another DSs generated artificially and CA-based the optimal feature

searched automatically are described as follows.

4.1 A review on SVM

SVM have been proposed as an effective statistical learning method for classi-
fication of different data classes by the classification curves which are so called
support vectors (SV) [65]. SVM have been used successfully for the solution of

many problems including heart murmurs classification [31], cancer diagnosis [34],
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—_—g(x)=0
° ® DSS(+)
. o | * DS

Variable 2

Y

Variable 1

Figure 4.1 The example for nonseparable data sets which are denoted DSs~ and DSs*,
respectively. The classification boundary curve g = 0 which can classify the input data
handwritten digital recognition [35], etc.

The main purpose of SVM is to find a classification boundary curve g(z) = O(see
Figure 4.1), which has deviated away from all the training DSs and is used to
obtain the classification function f(z). When the separating samples belong to
linear inseparable classes, generally, a non-linear mapping, usually defined as
o) *R*!  R"isused to map the input vector into a high dimensional feature

space. In this case, the classification function f(x) is defined by

f(x) = sign(g(x)), (4.1

where g(2) = WTo(x) + b. (4.2

Where z is an input vector, W is an adjustable weight vector, b is a bias, and g(x)

is the discriminant function. Consider the two classes training DSs consisting of
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the positive DSs DS and negative DSs DS, According to the structural
risk minimization inductive principle and the Kuhn Tucker optimization theory

[66], the approach to solve g(z) can be written as a classic quadratic optimization

problem
P Py P
max Q) = 111 10— 3 fi 1 JNz L @i yiy; o (DSs) ¢(DSsy) (4.9
P
subject to fl(yiyi =0, O<a<C(, (4.9

where DSg; is the ith DSs instance, y; 2 f+ 1, —1g is a label that determines the
class of DSs;, and C' is a user-defined positive finite constant. A larger C' means

a higher penalty and usually is assigned to empirical errors. The solution of Eq.
(4.3) should satisfy

h X

Q4 yi<

which has non-zero multipliers if and only if the points (termed SV) satisfy

N

The ¢(2) is determined by the SV which is a small subset of the training vectors.
Here, ¢"(DSs) - ¢(DSs;) can be replaced by a kernel function

ilch(DS%w(DSsiH b) — 11 =0, i=12...,N, (4.5

X N
6" (DSye(DSs) +b) —1 =0 (4.0

k(DSs;, DSs) = ¢"(DSs) - ¢(DSs;) (4.7

k(DSs;, DSs) may be any of the symmetric functions that satisfy the Mercel

conditions [67] and perform the non-linear mapping into feature space. In this
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paper, the Gaussian function is selected as the kernel function.
k(DSs;, DSs) = exp <—kDSSiTES%k2> (4.9

Hence the classification boundary function of x can be expressed as

p .
gle,m) = N aryexp (P 4 g (4.9
where
hp Py P i
o' =argmax Lo — 3 g oy 06055y k(DSs, DSs)  (4.10)
P
b = Ym—  ~,0iyk(DSs, DSsp), 6 0. (4.1D)

Therefore, for a testing vector g, the detection method can be determined by

8

sDSs(’) class, if gz, 7) <0
rs belongs to: . (4.12)

T DS class, otherwise

4.2 Classification boundary calculation proce-
dure

To obtain the distribution boundary surrounding a given DSs DS with SVM
technique, one needs to build another suitable DSs DSs™ which is better near
or on the distribution boundary DS . Suppose DS ) = [Ty, T11], as an
example, is a DSs which boundary is to be determined. The data sets DS is

then generated by following algorithm.
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(1.

(2.

(3.

(4).

(5).

(6).

Consider T}o, the element of DSS(_), to follow the normal distribution and

calculate its average /i1, and standard deviation or,,.

Generate a data set Tl(; ) hased on the normal distribution with parameters
fp) = piry, £ 1007, and oy = 8ory,. So that there might be around
12 12

15% data of T 1(; ) overlapped on the boundary of data set 77s.

Follow the same process to get Tl(;). The final data set is obtained as

DSs™) = [Ty, T1 I,
Determine the parameter C' in Eq. (4.4). Referring the grid search approach
[34],the range of C

logs €{-5,—4,..., 15g (4.13)
is suggested to be an efficient selection. Based on our numerical testing, we
set C' = 215,

Determine the parameter 7 in Eq. (4.8). Based on Chebyshev's inequality,
: o)
pGe ) — O <) > 1= (4.14)

for any probability distribution, if 7 is set at 20~ to 46, there will be
at least (75% ~ 93.75%) samples close to the mean 1. In our grid search
approach program, the kernel parameter 7 is set as 7 2 [20¢7, 467]. For

each 7, one can obtain a boundary curve g(x,7) = 0 based on Eq. (4.9).

To obtain the optimal parameter 7°t, based on Eq. (4.12)the classifi-

cation accuracy (CA) for the learning DSs [T, Th1] and [Tys, Ti1]) at
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7 2 [2007, 40(] is calculated by

CA(%) = FprpneTs - (4.15)

where TP represents true [T}, 711, TN represents true [T1s, 71,1, FP
represents false [T'2, T11] and FN represents false [T}2, T 1. The 7 corre-

sponding to the maximum of C'A is selected as 7 = 7P,

(7). The classification boundary function g(x,7°") = 0 is then obtained by
substituting 7 = 7°* to Eq. (4.9).

4.3 Experimental results

The total DSs including 242 normal sound samples (denoted as DSSY™ consisting
of T12 and 771, and DSSISM consisting of Fg and Fyy) from 46 healthy persons and
226 VSD sound samples (DSsy P and DSsyP) including 62 SVSD sound samples
(DSsEYSP and DSsp P from 10 patients), 90 MVSD sound samples (DSsYV5P and
DSsMVED from 15 patients) and 74 IVSD sound samples (DSsF” and DSskSP
from 12 patients) (DSsy®” and DSs)™P) are used to obtain the classification
boundary functions. Firstly, the 80% DSs are randomly selected from the total
DSs to generate the boundary curves gh™ = 0 and gh™ = 0 for normal sounds,
gy¥SP = 0 and gp/P = 0 for VSD sounds. Further, in order to reduce the influence
due to selection of the training data samples, the boundary curves were calculated
by three times randomly selected data samples. The results have shown that there
is not big difference between the obtained three boundary curves. The boundary

curves shown in Figure 4.2 are the averaged curves. Based on Eq. (4.12), by the
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Figure 4.2 Experimental results of the classifiers designed for identification of normal
and VSD sounds.

features [115, 7111 and [Fig, Fw] to detect sound for identifying VSD sounds and
normal sound, the classification labelings in the time domain (CLt) and in the

frequency domain (CLg) are introduced as follows:

8
% 1, if g¢SP <0 and ¢f™ >0
0, if g¢SP <0 and ¢gfM <O
CLy = ' ' (4.10
§ -1, if gf°>0 and AM<O
~ NaN, if ¢¢° >0 and ¢"™ >0
8
% 1, if o8P <0 and g™ >0
0, if o7 <0 and M <O
CLy = ' ’ (4.17)
§ -1, if g8 >0 and ¢NM <O
“ NaN, if g¢*>0 and ¢g"™ >0
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Table 4.1
Confusion matrix representation

Predicted
Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Actual

Finally, the detection index (DI) for identifying VSD by heart sound feature

parameters is defined by

VSD

DI= Cl + Clg (4.18

8
% > 1,

=0, Not Sure
§ < -1, Normal

- = NaN, Others

To evaluate the performance of these classification boundary curves, by the de-
tection index Eq. (5.17) and the elements of the confusion matrix Table 4.1,

classification accuracy (CA), sensitivity (Se) and specificity (Sp) value can be

defined as
8
%CA(%) = TerrprNeT X 100
gSe(%) = rpepw X 100 ; (4.19

 Sp(%) = e X 100

where TP represents true VSD sound, TN represents true normal sound, FP

represents false VSD sound and FN represents false normal sound. Using the
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Figure 4.3 Classification boundaries and the feature parameters extracted from
SVSD,MVSD and LVSD sounds.
classification boundaries to detect a new DSs consisting of 253 normal and 124
VSD sounds, our study [38] showed that the sensitivity Se was 98.8%, the speci-
fication Sp was 98.1% and the accuracy CA was 98.4%.

Since the VSD sounds consists of the SVSD, MVSD and LVSD, In this section,
62 SVSD sound samples, 90 MVSD sound samples and 74 LVSD sound samples
are used to obtain the boundary curves for SVSD, MVSD and LVSD. The bound-
ary curves were calculated by three times randomly selected data samples. The
results have shown that there is not big difference between the obtained three
boundary curves. The boundary curves shown in Figure 4.3 were the averaged
curves.

Finally, a new data set, in which 253 normal and 124 VSD (56 SVSD, 30
MVSD, and 38 IVSD) sounds were consisted, are additionally examined by the
proposed method the new sounds were used for detection. The accuracies Se, Sp

and CA are summarized in Table 4.2.
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Table 4.2
Classification accuracies for SVSD, MVSD and LVSD
. VSD(350)
Accuracies
SVSD(118) MVSD(1200 IVSD(112)
Se(%) 95.2 94.6 94.9
Sp(%) 94.2 93.1 93.6
CA(%) 94.8 93.7 9.1

4.4 Summary

This section proposed how to build the classification boundary curves as classifier
to diagnose VSD and NM sounds. To obtain the distribution boundary surround-
ing a given DSs DSs"™ with SVM technique, based on the mean value (1) and
standard deviation (¢~) of the given DSs", another suitable DSs DSs"’ which
was better near or on the distribution boundary (- was generated firstly. The ra-
dio basis function(RBF) was used as kernel function and the parameter 7 was set
at 207 to 407, and then the max classification accuracy was used to determine
the optimal 7 and obtained the classification boundary curve. The accuracies
Se, Sp, CA for diagnosing VSD form NM sounds were 98.8%, 98.1% and 98.4%.
Since VSD can be divided into three types SVSD, MVSD and LVSD, the same
method was used to obtain the classification boundary curves for SVSD, MVSD
and LVSD. The accuracies Se, Sp, CA for diagnosing SVSD, MVSD, and LVSD
were shown in Table 4.2. Although the classification boundary curves (Figure 4.2
and Figure 4.3) for a training data sets(DSs) were obtained with higher accuracies
by SVM technique, the mathematical expressions of the classification curves were
too complicated to be expressed by parameters. Furthermore, the computation

was so huge. To simplify the mathematical expressions of the classification curves
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to reduce the computation, the models for the classification boundary curves were

considered in the next chapter.
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Chapter 5

HSs Detection System

5.1 Classification model procedure

In the above section, although the classification boundary curves plotted in Fig-
ure 4.2 and Figure 4.3 for a training data sets (DSs) were obtained with higher
accuracies by SVM technique, the mathematical expressions of the classifica-
tion curves were too complicated to be expressed by parameters. Furthermore,
the computation was so huge. To simplify the mathematical expressions of the
classification curves to reduce the computation, the models for the classification
boundary curves were considered. Since the shapes of classification boundary
curves plotted in Figure 4.2 and Figure 4.3 were similar to the ellipses, the ellipse
models (EMs) for the classification boundary curves are built in this section.
Ellipse fitting based on least squares method is widely used [68; 69; 70; 71; 72;
73, 74; 75; 76]. Tt is an optimal estimation technology introduced by the maximum
likelihood when the random error is assumed to belong to normal distribution,

and it can minimize the error of measurement. Therefore, it can also be seen
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as a group from measured value and a group of unknown variables method. An
ellipse 1s a special case of the general conic which can be described by an implicit

second order polynomial
F(A z,y) = Anz?+ Agzy + Agiy?+ Apz+ Asiy+ Agi = 0 (5.1
with an ellipse specific constraint
A2 — 441 A5 <0 (5.2)

where A1;(i = 1,2,...,6) are coefficients of the ellipse, and (x, 1) are coordinates
of points lying on it. The polynomial F'(A, z,v) is called the algebraic distance
of the point (z, ) to the given conic. Based on least square method, the fitting
of a general conic to a set of points (z;,4),7 = 1,¢, N may be approach by
minimizing the sum of square algebraic distances of the points to the conic which

is represented by coefficient A:

A
min  FXA, z;, ) (5.3)
i=1
which can be solved directly by least square approach. In this paper, to describe
the significance of the ellipse model for the classification boundary curves, the
ellipse as shown in Figure 5.1 is presented by geometric parameters [z, y., a, b, 6],
where the point [z, y.] is the center, a is the semi-major length, b is the semi-
minor length, and ¢ is the counterclockwise angle of rotation from the x-axis and
the major axis of the ellipse. The [z, y., a,b, 8] corresponding to the ellipse in
Eq. (5.1) is transformed by
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a:

b=

Figure 5.1 Ellipse geometric representation in the x-y axis plane
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. 2(441114%1 + A31 A4 t A%lAGI — Ao1 AnnAsg1 — 4‘411A31A61)

(A3, — 441, 43) [® (A — Ag))2+ A3 — Ay — Agl

S
2 2(‘41114%1 + Az1An +“x4§11461 — A ApnAs — 4A11A31A61)

(A%I o 4A11A31) [_tj (All — A31)2 + A%l — All — ASI]
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8
% 0 for A21 0 and All < A31
for A21 =0 and An > Agl
(5.8
§ arccot(A“ A31)/2 for A;; > Az and Ay 6 0

S ot arccot(A“ A31)/2 for Az > Ay and A6 0

Therefor, for the points like P on the ellipse, P1 within the ellipse and P2 outside
of the ellipse in Figure 5.1, according to the definition of ellipse, the points P, P1

and P2 must be satisfied with

%JP—F1j+jP—F2j=2a

where F'! and F? are the focus points are computed by

iP1—F'j+jPl-F2j<2 (5.9)

TJP2—F'j+jP2—F?j> 2

8

gFl3(:1:0+Baz—l)zcos(«9),yc+Ba2—l)2sin(t9)) (5.10
5.10

22 (a, — B P eos(0). F, — BT = P sin(0))

5.2 Ellipse results

Based on the classification boundary curves shown in Figure 4.2, the EMs are
plotted in Figure 5.2. The geometrical model parameters of the EM, which are
denoted as lz., yc, a. b, 0] , are [0.326, 0.9985, 0.1878, 0.0689, 85.69°] and [0.290,
0.7196, 0.0655, 0.3166, 80.3474°] for NM and VSD in time-domain. In frequency-
domain they are [38.7042, 59.2052, 32.046, 8.6774, 76.39°] and [54.38, 135.28,
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Figure 5.2 The classification boundary curves and their ellipse models for normal
sounds and VSD sounds. (a) in the time domain and (b) in the frequency domain
81.68, 9.80,76.3%°]. Therefore, by lx., y., a, b, 0] we can determine the distribution
of the diagnostic features T, 111, g, and Fy. Furthermore, the angle perhaps
indicates an pertinence relation between T3 and 77; in time-domain, and between
I'g and Fy in frequency-domain. Based on those classification boundary curves
shown in Figure 4.3, the EMs are plotted in Figure 5.3. The geometrical model
parameters of the EMs, which are denoted as [z, ye, a, b, 6] , are [0.324, 0.825,
0.198, 0.021, 90.6°], [0.296, 0.757, 0.211, 0.020, 90.9°], and [0.247, 0.597, 0.171,
0.036, 84.7°] for SVSD, MVSD, and IVSD in T12-T}; domain, and in frequency-
domain they are [67.25, 185.49, 28.67, 8.52, 85.7], [55.08, 132.54, 32.39, 10.07,
76.5°], and [41.99, 91.82, 33.58, 6.83,81.29°], respectively.

5.3 Ellipse models based diagnostic method

The ellipse models are built for the boundary curves obtained for NM and VSD
(SVSD, MVSD and IVSD) to diagnose the NM and VSD (SVSD, MVSD, and
LVSD). Actually, using the ellipse models to diagnose the heart sounds is to
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Figure 5.3 The classification boundary curves and their ellipse models. (a) in the time
domain and (b) in the frequency domain

judge whether the [T2, T11] and [Fg, Fiw] are both distributed into the insides
of the ellipse models for NM or VSD(SVSD, MVSD, IVSD). According to the
relationship between the points and the ellipse using the ellipse definition, the
numerical discrimination results denoted as NDRNXM NDR%VSD, NDRTMVSD and
NDRESP in time-domain, and NDRYM, NDR§SP, NDRMVSP and NDRESP in
frequency-domain are determined as follow.

Suppose the points Pr(T}s, 711) and Pp(Fg, Fy) are extracted from one heart
sound. Here the ellipse models of MVSD are taken as the examples to check the
Pr(Tya, Th1) and Pp(Fg, Fw) whether they are inside the ellipse models (Figure
5.4), according to the ellipse definition and classification, the NDRYVSP(Prp) can

be defined as
8

E1 if jPT—F1j+jPT—F2|§2aT
NDRYVSP(pp) = (5.11)

T 1 if jPr—F1j+jPr— F2j> 2ap

where F1 and F2 are the focus of the ellipse model EM}V®P plotted in Figure
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Figure 5.4 The example for MVSD ellipse model. (a) in the time domain and (b) in
the frequency domain

5.4 (a) and computed by the center (7%, T%,), the semi-major axis (ar) and the

semi-minor axis (by) of the ellipse model EM}VSP as

q — q —

F1:(Thg+ * a® — b3 cos(Op), T+ * a3 — b2 sin(f7)) (5.12)
q q

F2:(Tyg — * a3 — b2 cos(fr), Ty — 2 a2 — b2 sin(fr)) (5.13)

, and the NDR%/IVSD(PF) can be defined as

8
§1 if jPF—F3j+jPF—F4’§2aF
NDR¥VSP(pp) = . (5.14)
Z 1 if jPe—F3j+jPpr— F4j> 2y
where F3 and F4 are the focus of the ellipse model EMAYSP plotted in Figure
5.4 (b) and computed by the center (F¢, F\), the semi-major axis (ar) and the

semi-minor axis (br) of the ellipse model EMMVP as

q q

F3:(Fg+ * a — b cos(Op), Fyy + * a2 — bZ sin(0y)) (5.15)
q q

Fa:(Fg — * ad — bEcos(Op), iy — * af — b3 sin(0p)) (5.16)
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In the same way, the NDRYM(Pr), NDRYVSP(P;) and NDRESP(Pr) of the

point Pr in ellipses in time-domain can be determined, and the NDR%IM(PF),

NDREVSP(Pr), NDRESP(Pg), NDRESP(Py) of the point Py in ellipses in frequency-

domain can be determined. The detection result (DR) for identifying heart sounds

by Pr and Py is defined by

NM for

VSD for

MVSD for

8
DR: % SVSD for

IVSD for

NDRYM + NDRIM = 2

NDR;*” + NDRy®" = 2

NDR:Y®” + NDRZ"™" = 2 .

NDR;V*” + NDRp'V*P = 2

NDRE'SP + NDRE'SP = 2
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Table 5.1
Comparative analysis for classification accuracies by the EMs and boundary curves

Accuracies Boundaries EMs

Se(%) 98.8 98.6
Sp(%) 98.1 98.4
CA(%) 98.4 98.5

Table 5.2
Comparative analysis for classification accuracies for SVSD, MVSD and LVSD by
EMs and Boundary curves

. SVSD MVSD LVSD
Accuracies
Boundaries EMs Boundaries EMs Boundaries EMs
Se(%) 95.2 95.4 94.6 95.1 94.9 95.1
Sp(%) 94.2 95.8 93.1 94.2 93.6 94.8
CA(%) 94.8 95.7 93.7 94.7 94.1 95.0

5.4 Experimental analysis

By these EMs and the boundary curves obtained in the the section 4.3 to detect
the same DSs (NM(475), SVSD(118), MVSD(120) and IVSD(112)) used in the
section 4.3, the comparative accuracy results for NM and VSD sounds are showed
in Table 5.1. The comparative accuracy results for SVSD, MVSD and LVSD are
shown in Table 5.2.

From the comparative analysis results (Table 5.1 and Table 5.2), the results
show that

(1). The Table 5.1 shows that the accuracy results for NM and VSD are not

obvious different between using ellipse models and boundary curves.

(2). The Table 5.2 shows that the performance of ellipse models seems to be a
little better than of boundary curves.
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Figure 5.5 The examples for heart sounds detection procedure. (a) The envelope
EMt and (b) the envelope EMy of the VSD. The corresponding diagnostic graphics
representations of [Ty2; Tq1] obtained from VSD at Hy = 0:4 are displayed in (c¢) and
[Fq; Fwl obtained from VSD at Hp = 0:2 are shown in (d).

Therefore, the ellipse models can replace the boundary curves to diagnose the
heart sounds.

To explain this detection procedure much better, the VSD sounds and normal
sounds (NM)are taken as the examples to be analyzed (Figure 5.5 and Figure
5.6). Figure 5.5 shows the example which signal is collected from a female patient
(P=12 mm) of age 2 with 12 kg. For the VSD sound, the threshold values Hry
and Hy are set manually at 0.4 and 0.2 in order to obtain a reasonable set of the
diagnostic parameters [112, 7111 and [Fo, Fiw] (Figure 5.5 a and b). Figure 5.5
(c¢) and (d) show the corresponding diagnostic scatter grams. It is obvious that
the plots of the parameters [T2, Th1]s and [Fg, Fiwls are both concentrated into
the ellipse model of MVSD. Therefore the VSD case might be discriminated as

MVSD, and the diagnostic result is corresponding to the clinical diagnosis because
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Figure 5.6 The examples for heart sounds detection procedure. (a) The envelope
EMyp and (b) the envelope EMp of the NM. The corresponding diagnostic graphics
representations of [Ti2; Tq1] obtained from VSD at Hyp = 0:2 are displayed in (¢) and
[Fo; Fw] obtained from VSD at Hr = 0:2 are shown in (d).

® of it is 12mm. Figure 5.6 shows the example, which signal is collected from
a healthy woman of age 22 with weight 49 kg. For NM, to obtain a reasonable
set of the diagnostic parameters [12, T11] and [Fg, Fiw] (Figure 5.6(c) and (d)),
the threshold values Ht and Hp are set manually at 0.2. The corresponding
diagnostic scatter grams are shown in Figure 5.6 (c) and (d). It is obvious that
the plots of the parameters [1}2,711] and [Fg, F] are both concentrated into
the ellipse model of NM. Therefore the VSD case might be discriminated as
NM. Therefore, this detection system can easily help the user to understand the

detecting heart sound from in-time domain and in frequency-domain.
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5.5 HSs diagnostic results for clinical sounds

To evaluate the efficiency of the proposed method, besides NM sounds from three
healthy males in yamaguchi university and two females in xithua university and
VSD sounds from patients only with VSD in department of cardiology surgery
of Chengdu military general hospital of PLA, an AR, an AF, an AS, and a MS
sounds are randomly selected to be diagnosed. The VSD sounds include two
LVSD sounds, which are from a female patient of age 6 with weight 32 kg (named
LVSD1 (¢ = 21 mm)) and a male of age 4 with weight 19 kg (LVSD2 (& = 17
mm)); three MVSD sounds which are from a female of age 2 with weight 15 kg
(MVSD1(® = 14 mm)), a female of age 2 with weight 15 kg (MVSD2 (& = 10
mm)) , and a female of age 2 with weight 15 kg (MVSD3 (& = 6 mm)); two SVSD
sounds, which are from a female patient of age 6 with weight 32 kg (SVSD1 (¢ = 5
mm)) and a male of age 4 with weight 19 kg (SVSD2 (& = 5 mm)). The four
normal sounds are collected from a female of age 23 with weight 56 kg (NM1),
a male of age 22 with weight 68 kg (NM2), a male of age 27 with weight 75 kg
(NM3), and a healthy male of age 18 with weight 70 kg (NM4). The AR, AF,
AS, and MS sounds collected from an online clinical training web site are denoted
AR, AF, AS, and MS, respectively. The features extracted from LVSD1, LVSD2,
MVSD1, MVSD2, MVSD3, SVSD1, SVSD2, NM1, NM2, NM3, NM4, AR, AF,
AS, and MS are shown in Figure 5.7, and the sound discrimination results are
shown as Table 5.3. Here, MVSDI1 is taken as an example to introduce the

performance using [T}s, 711] and [Fg, Fwl; the results of MVSD1 in Figure 5.7
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Figure 5.7 Classification models and the distribution of heart sound feature parame-
ters.

Table 5.3
Discrimination results by the numerical discrimination results

NM VSD LVSD MVSD SVSD
HS DR

NDRr NDRp NDRy NDRp NDRy NDRy NDRy NDRy DNRp NDRp

LVSD1(® = 21 mm) -1 -1 1 1 1 1 -1 1 -1 -1 VSD:LVSD
LVSD2(® = 17 mm) -1 1 1 1 1 1 1 -1 -1 -1 VSD:LVSD
MVSD1(® = 14 mm) 1 -1 1 1 -1 1 1 1 -1 -1 VSD:MVSD
MVSD2(® = 10 mm) -1 -1 1 1 -1 -1 1 1 -1 -1 VSD:MVSD
MVSD3(® = 7 mm) -1 -1 1 1 -1 -1 1 1 -1 1 VSD:MVSD
SVSD1(® = 5 mm) -1 -1 1 1 -1 -1 1 -1 1 1 VSD:SVSD
SVSD2(® = 5 mm) -1 -1 1 1 -1 -1 -1 -1 1 1 VSD:SVSD

NM1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 NM

NM2 1 1 1 1 -1 1 -1 -1 1 -1 NM:VSD

NM3 1 1 1 1 -1 -1 -1 -1 1 -1 NM:VSD

NM4 1 1 1 -1 -1 -1 1 -1 -1 -1 NM

AF -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -

AR 1 -1 1 -1 -1 -1 -1 -1 1 -1 -

AS -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -

MS -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
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show that
8

3 the plots of [T}4, T11] are distributed within: VSD, MVSD, and NM
MVSD1:

2 the plots of [F, Fiw] are distributed within: VSD, MVSD and LVSD

(5.18

Therefore, MVSD1 might be diagnosed as in the NM, VSD and MVSD classes
using only [T}s, 7111, and only using [F, Fiy] it might be diagnosed as the VSD,
IVSD and MVSD classes. However, using [T}s, 7111 and [Fg, Fiy] it might be
diagnosed as VSD and MV SD, which corresponds to the clinical diagnosis and its
detection results denoted as VSD:MVSD, shown in Table 5.3. Of course, sound is
very difficult to be diagnosed, and problems will occur in this detection system,
like for NM2. The results of NM2 in Figure 5.7 show that
8
_ 2 the plots of [T12, 7111 are distributed within: NM, VSD and SVSD

? the plots of [F. Fiy] are distributed within: NM, VSD and LVSD

(5.19

Therefore, NM2 might be diagnosed as in the NM and VSD classes (denoted as
NM:VSD), which is in keeping with the diagnosis result that the classification
accuracy between NM and VSD is 98.4% not 100%. Similarly, the detection
results corresponding to Figure 5.7 are summarized in Table 5.3. Furthermore,
the analysis results for the typical clinical AR, AS, MR, AF sounds plotted in
Figure 5.7 show that they are easy to diagnose, and are not mistaken as NM
or VSD sounds, which are contrary to the results that the VSD was incorrectly

classified as aortic stenosis (AS) or aortic regurgitation (AR), as summarized in
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[77]. Therefore, the proposed method might be efficient to discriminate VSD

sounds.

5.6 Summary

This section proposed how to build the classification model as classifier to di-
agnose VSD (IVSD, MVSD, SVSD) and NM sounds. Firstly, according to an
implicit second order polynomial of the ellipse (F(A,z,y) = Apa?+ Agizy +
Aqi2 + Apz + Asiy + Agt = 0), the ellipse models were obtained to fit the
boundary curves by the least squares method. The ellipse models were expressed
by the parameters [a, b, 2., ye, 0] . And then according to the relationship between
the points and the ellipse using the ellipse definition, the numerical discrimination
results denoted as NDRYM, NDRSVSP, NDRMVSP and NDRESP in time-domain,
and NDRM, NDRSVSP, NDRYVSP and NDRESP in frequency-domain were de-
termined. Based on these numerical discrimination results, The detection result
(DR) for identifying heart sounds were defined. Finally, By comparing analysis
of the accuracies Se, Sp, CA between using boundary curves and the ellipse mod-
els to clarify the efficient of using ellipse models to detect heart sound, and by
comparing analysis the results in the Table 5.1 with the results in the Table 5.2,

the ellipse models can replace the boundary curves to diagnose the heart sounds.
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Chapter 6

Conclusions

In recent years, many great achievements in diagnosing heart diseases using heart
sounds analysis, which is the simplest and cheapest method to nomnvasively
diagnose heart diseases, were proposed. However, to date, there was not an entire
practical diagnosis system helping an inexperienced or non-clinical experience
person to detect heart disease with the simple method. Furthermore, because the
different sizes of VSD compared to normal sound showed the different distribution
characteristics between in the time domain and in the frequency domain, VSD
was reported to be difficultly discriminated from normal sounds or other typical
heart murmurs, and still less the different sizes of VSD diagnosis. To overcome
these problems, a high accuracy numerical diagnostic system for diagnosing the
different sizes of VSD, which correspond to the different treatments for recovering

VSD, was proposed. The innovation of this thesis could be listed as follows:

e The diagnostic features, which were the critical factors for ensuring the
heart disease diagnosis system with high-efficiency, were extracted from the

heart sound.

e Boundary curves based on support vector machines (SVM) were proposed
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to used as classifiers to diagnosis VSD.

e Boundary curves models-based a high-efficient numerical diagnostic system

for diagnosing the different sizes of VSD was carried out.

To extract the high-efficient diagnostic features, the distribution characteristic
for the typical different sizes of VSD sound in the time domain and the frequency
domain is summarized. According to the distribution characteristics of VSD, the
time domain features and frequency domain features were considered. Referring
to the diagnostic features definition method in our previous studies combined with
the distribution characteristic of VSD sounds, based on a novel method MWHT,
which is proposed as a novel automatic heart sound segmentation method with-
out any amplitude threshold value and having higher performance than other
segmentation methods, the high-efficient diagnostic features [Thg, T11] in the time
domain and [F, Fiy] in the frequency domain are proposed, and the efficiency
of the features had been convinced using the statistic features of the diagnostic
features. These contents were detailed in chapter 3.

To evaluate the performance of the proposed diagnostic features, an boundary
curve algorithm based on SVM, which was used successfully for many problems
including heart murmurs classification, cancer diagnosis, etc, was proposed to
surround a given datasets with high accuracy and was detailed in chapter 4. The

chapter 4 includes:

e To use SVM technique to generate a suitable boundary curve for a given
datasets, how to generate another suitable datasets which is near to or on

the distribution of the given datasets, was proposed.
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e According to the given datasets, the range for the parameter of the function

used as the kernel function of SVM was defined.

e According to the classification accuracy, how to automatically search the
optimal parameter to generate a suitable boundary curve as classifier was

proposed.

e The performance of proposed boundary curves was evaluated by clinical

heart sounds.

To build a high-efficient diagnostic system for diagnosing the different sizes of
VSD by the diagnostic features. The contents of chapter 5 could be summarized
in the following.

e According to the shapes of boundary curves, the ellipse models are pro-

posed.

e The Feasibility of using ellipse models to replace boundary curves was dis-

cussed using the classification accuracy of classifying the same datasets.

e To reduce the diagnosis error produced by observation, according to the
function of ellipse models and the signification of classification. A numerical

diagnostic system for diagnosing the different sizes of VSD was carried out.

To validate the usefulness of the proposed numerical diagnosis system for de-
tecting sounds besides clinical different sizes of VSD and normal sounds, 4 types
common heart diseases which are aortic regurgitation (AR), atrical fibrillation
(AF), aortic stenosis (AS) and mitral stenosis (MS) sounds are used as examples

to be detected, and the performance using the accuracies is summarized. The
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6.Conclusions

results showed that the proposed method perhaps provided an efficient way to
obtain the efficient range of features which characterized different types of heart

murmurs.
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