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Abstract

We consider second order weakly hyperbolic equations with time dependent coefficients
in the ultradifferentiable classes. Our main purpose of the present paper is an investigation
the relation between the classes of the functions to be well-posed and the following properties
of the coefficients: the order of degeneration, stabilization to a monotonic function and their
smoothness in the ultradifferentiable classes.

Dedicated to the memory of Professor Rentaro Agemi

1 Introduction

We study the Cauchy problem for second order weakly hyperbolic equations with time dependent
coefficients
{(83 —a(t?A)u=0, (t,x)€ (0,T] xR, W)

(u(0,2),u(0,2)) = (uo(x),u1(x)), =€R",

where A = Y71, 92, , T > 0, supyeory{a(t)} < oo and mingeoq{a(t)} =: ap > 0. Tt is well-
known that the energy of the wave equation with constant coefficients is conserved, but it is not
so for general equations with variable coefficients. Actually, the energy may be unbounded due
to the loss of regularity of the solution which is brought by some influence of variable coefficients.
Our main purpose of the present paper is to describe the order of regularity loss by using several
properties of variable coefficients.
Let us define the energy of the solution to (1.1) in the phase space [0, T] x RE by
. 2 | (s 2
£t €) = €17 [a(t, )1 + @ (t. ) (a0 > 0),
y - N 2 ~ 2
|a(t, )" + | (L, € (ap = 0),

where f (t,€) denotes the partial Fourier transform of f(t,z) with respect to the space variables
2. Then the order of regularity loss is represented by the following estimate

E(t,8) < exp (Cu((€))) £(0,€), (1.2)

where p(r) is a positive and monotonically increasing function on [1,00), (£) = /1 + [£]? and
C is some positive constant. In the other words, the estimate (1.2) can conclude that (1.1) is
well-posed in the space of p-ultradifferentiable functions of Beurling-Roumieu type (see [1, 3]).
If ag > 0, then we assume that

—0(1) (r— o). (1.3)



In particular, if the estimate (1.2) is valid for u(r) = 1, then (1.1) is well-posed in L?, which
means no loss of regularity occurs. On the other hand, if ag = 0, then we cannot expect the
estimate (1.2) with p(r) = 1 in general, so that it is reasonable to restrict ourselves to

log r
p(r)
instead of (1.3). Here the estimate (1.2) with u(r) = O(logr) (r — oo) implies that (1.1) is
well-posed in C™ class. If the estimate (1.2) holds for pu(r) = r'/ with s > 1, then (1.1) is well-

posed in the Gevrey class of order s > 1, and the limiting case s = 1 leads to the well-posedness
in real analytic class. Thus it is also reasonable to restrict ourselves to

=0(1) (r— o) (1.4)

MET) =0(1) (r— o0). (1.5)

If a(t) is Lipschitz continuous on [0,T] and ag > 0, then (1.1) is well-posed in L?, that is,
(1.2) holds for pu(r) = 1. On the other hand, if a(t) is not Lipschitz continuous or ag = 0, we
shall call such a coefficient singular, then the estimate (1.2) holds only if lim, o pu(r) = oo in
general; refer to [4] in case of ap > 0, and [5, 8, 9, 10, 11] in case of ap = 0 for instance. In
particular, it is examined in [2, 5, 6, 7, 13, 19] that a(t) is singular only at ¢ = T, and our main
theorem is based on their researches. Here we note that the linear wave equations with singular
coefficients are studied by motivated to apply the time global solvability of Kirchhoff equation,
which is a sort of non-linear wave equations with non-local nonlinearity; for the details refer to
[12, 15, 17, 18].

Let us review some previous works lead to the main theorem in the present paper. If ag > 0,
a(t) € CY([0,T)) and if

@/ (5] < My(T — 1),

where M is a positive constant and S € [0,1) U (1,00), then (1.2) is valid with p(r) = 1 for
B < 1,and u(r) = r'=Y8 =: ug(r) for B > 1 respectively. Moreover, if a(t) € C™([0,T)) with
m > 2 satisfies that

PwﬁﬂgMﬂT—ﬂ*B(k:L”wm% (1.6)
where M, ..., M,, are positive constants, § € [0,1], and there exist constants ap and o > 1
such that -
/ la(s) —ar|ds =0(T —a)) (t—T), (1.7)
t
then (1.2) is valid with
_ k(a,8,m) _ @
r)=r , Kla,B,m)=1-— — 1.8
p(r) (o fom) =1 = 5y (1.9

since x(a, 8, m) > 0. Here the condition (1.7) was introduced in [2] as the stabilization property,
and the constant ar is uniquely determined if a constant a € (1, () exists. We observe that
k(1,8,m) =1—-1/3, and k(a, §,m) is strictly decreasing with respect to m only if a > 1. This
means that the order of regularity loss is smaller as a(t) is more regular and stabilized in the
senses of (1.6) and (1.7). The optimality of the estimate (1.2) with (1.8) is an open problem,
but it is proved that there exists a(t) € C*°([0,T")) satisfying (1.6) for any m and (1.7) such
that the estimate (1.2) with u(r) = r" does not holds in general for any x < 1 — a/f.

The results for strictly hyperbolic problems as above can be generalized to ones for weakly
hyperbolic problems if the coefficients are singular only at t = T'. For a function A(t) € C([0,77)
satisfying

N(#) <0, A(t)>0 on [0,7) and \(T) >0 (1.9)



we define positive monotone decreasing functions A(¢) and O(¢) as follows:

T
A) = / A(s) ds (1.10)
t
and
T
O(t) :/ la(s) — A(s)]| ds. (1.11)
t
Then we have the following result:

Theorem 1.1 ([13]). Let m > 2 and a(t) € C™([0,T)). Assume that there exists a function
A(t) € CH([0,T)) satisfying (1.9) such that the following conditions (H1)-(HS3) are established:

(H1) There exist positive constants My and Cy satisfying 1 < My < Cy such that

Cy 'A(t) < a(t) < MoA(t). (1.12)

(H2)
O(t) = o(A(t)) (t—T). (1.13)

(H3) There exist positive constants My, ..., My, and v € [0,1) U (1,00) such that
AN /1 V)
M | M) | == — 1.14
’“( o (567) <@<t>>> —

Then the estimate (1.2) with u(r) = r'=17 is established. In particular, if ag > 0, then v = 1
s admissible.

IN

fork=1,...,m.

Remark 1.1. Theorem 1.1 is a natural generalization of the previous works for strictly hyper-
bolic problems. If ag > 0, then (1.13) with A(¢) = ar is a generalization of (1.7). Indeed, if we
restrict ourselves to O(t) ~ O((T — t)*) = O(A(t)*), then we see

It follows that x(«, 8,m) = k(a, a0y — (. — 1)/m,m) =1 —1/~.
Remark 1.2. Tt is obvious that ©(t) = O(A(t)) since (H1) is valid, but (H2) is not so; we shall
call the non-trivial condition (1.11) with (H2) the stabilization property. If (H2) holds, then the

smoothness of a(t), that is, the size of m has some influence of the orders of the derivatives of
a(t) in (H3), and also in (H4) to be introduced below.

Let us generalize the condition (1.14) for a(t) € C*°([0,T)) on the witradifferentiable class
to the following:

< Mpp(t)* (k=0,1,...), (1.15)

where {M}} is a sequence of positive real numbers, while p(t) € C°([0,T)) is a positive and
strictly increasing function. The function a(t) satisfying (1.15) on [0,T) is called a function in
the ultradifferentiable class; we shall denote the class of these functions by C*({Mj}). For the
sequence { M} } we introduce the following condition, which is called the logarithmical convexity:

My o My
kM1 = (k+ 1)My

(k=1,2,...). (1.16)



Remark 1.3. If {M} is a logarithmical convex sequence, then {M,if_1 JMFE |} is strictly in-
creasing and

= 0 (1.17)

if { M}, } satisfies (1.16). The logarithmical convexity in usual meaning is not (1.16) but My /M1 <
My.1 /My, (see [16]). In fact, due to the condition (1.16) the sequence {My} is increasing at
least factorial order.

C*({k!"}) with v > 1 is the Gevrey class of order v, and C*({k!}) coincides with a real
analytic class. If {M}} satisfies (1.16) and if limj_, k! /M}, = oo for any v, then C*({M}}) is
wider class than any order of the Gevrey classes. For the finite sequence {M}}]", we identify
C*({My}) with C™ class. Here we introduce the associated function of the sequence {Mj} as
follows:

Definition 1.1 (Associated function of {M}.}). For a sequence of positive real numbers { M} }72
satisfying (1.16) we define the associated function M(7) for 7 > 0 by

M(r) = M (1) = sup {Mi} .

For the finite sequence {M},}7" , satisfying (1.16) for £ < m — 1 we define

M(r) = M5 (M}) o= max {MZ}

Then we have the following lemma for the associated function M (7; {M}}):

Lemma 1.1. M(7) = M(7;{M}) is continuous and strictly increasing on (0,00). Moreover,
M(7) and its inverse function M~Y(7) are represented as follows:

k
T My, Mk+1>
M(T)=—  on , 1.18
R (1.18)
and . i
1 MY M
M (r)=Mi%  on [ k__ k“) (1.19)
VT

for k=1,2,.... For the finite sequence { My}, we have M(1) = 7™ /M, for 7 > My, /My,
and M~Y(7) = My ™p1/m for T > MP=VMP .

Proof. By limy_,o My/My_1 = oo, for any given 7 € (M /My, c0) there exists k& € N such that
T € [My,/Mj_1, My41/My), and then

kal ]\4}671 - kal

— )

Tk M1 My My, 1
M, Tkt M1 e+l
)
M1 My M1

that is, (1.18). Moreover, we have

M o (MY o (Mar Mg,
MF_, My—1) ~ My, M

The continuity of M(7) and the representation (1.19) are evident from (1.18). O



Example 1.1. The following sequences satisfy (1.16):

(i) {k"}52, with v > 1 satisfies (1.16). Then there exist positive constants dp and ¢; such
that the associated function satisfies

exp (507'%) <M(1) <exp (617%)
by Stirling’s formula.

(i) {H§:1 exp(j®)}52, with s > 0 satisfies (1.16). Then there exist positive constants dp and
01 such that the associated function fulfills

exp (5o(log(1 + 7'))1+%) <M(1) <exp (51 (log(1 + 7'))1+%> . (1.20)

Indeed, for 7 € [My/My_1, Myi+1/My) = [exp(k®),exp((k + 1)%)) and large k there exist
positive constants py and p; independent of k£ such that

k k -5
o |2 (i) = e (k0 (1250 ) ) 2 e (k).
M(7) = — . v
Mo | < o (M) = (001 ((0)° - B3 ) ) < exm k).

Therefore, noting k < (log7)'/* < k + 1, we have (1.20).

(iii) For the finite sequence {M}}]" , there exist positive constants o and d; such that the

associated function satisfies
Som™ < M(7) < 617

Our main purpose of the present paper is to generalize Theorem 1.1 for a(t) € C™ to the
similar result in the ultradifferentiable class C*({M}}). If we restrict ourselves to the finite
sequence {M}" , the assumption (1.14) of (H3), then the order of x(r) in the estimate (1.2)
are represented by (1.15) for k =0,1,...,m with

At

0 i
o =— (" (o) (1.21)

where M~Y(7) ~ 71/™ (1) =77, and

T

p(r) = ey (1.22)

respectively. Actually, our main theorem in the next section tells us that such a generalization
is realized for ultradifferentiable classes.

Remark 1.4. We can restrict ourselves that p(t) is strictly increasing and lim;_,7 p(t) = oc.
Indeed, if p(t) is bounded, then the estimate (1.2) with u(r) = 1 is obvious for m = 1 by the
usual energy method.

2 Main results

Let us introduce the following condition corresponding to (H3) for Theorem 1.1:



(H4) There exists a sequence of positive real numbers {M},}2° ; satisfying (1.16) such that the

estimate 3

al®)(t) A?)
| N0 < = Ew)”(eiw)

o)

is valid for any k € N with a positive, continuous and strictly increasing function n(7) on
[0, 00) satisfying that n(7)/7, and n(7)/(7log 7) are monotonically increasing for ag > 0,
and for ag = 0 respectively as 7 — oco.

Remark 2.1. The assumption to n(7) in (H4) implies that p(r) defined by (1.22) satisfies (1.3)
for ap > 0, and (1.4) for ag = 0 respectively.

Then our main theorem is given as follows:

Theorem 2.1. Let a(t) € C([0,T)). If there is A(t) € C1([0,T)) satisfying (1.9) such that
(H1), (H2) and (H4) are valid, then there exists a positive constant C' such that (1.2) with (1.22)
15 established.

Remark 2.2. The energy estimate of solution to (1.1) for ag > 0 and T = oo with the coefficient
in the Gevrey classes is studied in [14]. This result is corresponding to the case that \(t) = 1,
{My} = {k"} with v > 1 and n(r) =r.

Example 2.1. Let us examine the orders of {M} and p(t) corresponding to the example
Example 1.1.

(i) Let v > 1 and My = k!”. Then by Example 1.1 (i) there exist positive constants dy and
01 such that
67" (log7)” < MY (1) < 65" (log 7)". (2.1)

It follows that

plt) < 3EN() (1o 38) 155 ) =m0

(ii) Let s > 1 and M}, = H;?:l exp(j°®). Then by Example 1.1 (ii) there exist positive constants
dp and 97 such that

s
s

exp (5;?91 (log T)5+1> < M7Y7) <exp (55m (log T)ﬁ) . (2.2)

It follows that

p(t) < A(t) exp (—51_‘°L <10g gg;) Si1> n (%) =: pa(t; s).

(iii) For the finite sequence { M}, Then we get M(r) ~ ™, which follows M~ (1) =~ 71/™.

Then we have L
p(t) = A1) (1og gg) " <@L)) — paltsm).

Now we see that

pi(t;v) = o(pi(t;in)), pa(t;s) = o(p2(t;s0)), ps(t;m) = o(ps(t;mo))



for m < mg, s > sg, v > 1, and that

palts ) = o(p1(t:1), pa(tim) = o(pa(t; s))

forany m > 2, s> 1and v > 1 ast — T. Here we note that the order of oscillating speed of
a(t) satisfying (1.15) as t — T is given by MiA(t)p(t). Thus we observe that faster oscillation
is admissible for the estimate (1.2) as the order of {M}} is smaller, that is, the coefficient is
smoother.

Let us introduce concrete examples of a(t), which can be applied for Theorem 2.1.

Example 2.2. Let 2 < m < oo and w(r) € C™(R) be a 1-periodic function satisfying 0 <
w(r) <1, w(r) =0 near r = 0 and

sup { [w®)(r)

reR

}SMk (k=0,...,m)

for a sequence of positive real numbers {M;.};" , satisfying (1.16). For 0 < 6 < 1, p € N and
q > p we define {7;}22, and a(t) by 7; =T — 67 and

a(t) = {Eg _ gp (1 + w (5—jq(t — Tj))) , i E ETJ-‘,:_]-; 51’61‘] ::;T]'-,NA (2.3)
— )P, 7j 9 Tjp] =t I

for j=0,1,.... Fort € I and k =1,...,m we have

‘a(k)(t)} < l}; (?) (pli! D! (T — t)p~ o100,

"k My
<pFsile—ka) pr I=k §il(a—1) k=
<p K ; )P i
<(2p) M 900,
If we define \(t) = (T — t)?, then for t € I; U I; we have
A(t) >~ 6P, A(t) ~ (T — t)P+! ~ 7P+,

and
O(t) ~ Z slrta) ~ gilpta)
I=j
which follows that 6779 ~ \(t)/O(t) and A(t)/O(t) ~ 694~ ~ @(t)~(4=1)/(P+4)  Therefore we

have

la®)(#))| O 1\ b
o =M\ Cunpmyea™ (ew) ™))

o(t)

where C' and (4 are positive constants. From now on, we shall denote universal positive constants
by C and C (k=1,2,...). Let us examine the condition of  and the order of x such that the
estimate (1.15) for (1.21) is valid.



(i) Let v > 1 and M}, = k!”. Noting the estimates (2.1), we have
M1 (C’m’ﬁ) <6,” <1og (Cﬁﬁ» < Cy (logT)”.

Therefore, setting n(7) = Cao7(logT)¥, that is,

H(r) = =gy = (o)

we have the estimate (1.2).

(ii) Let s > 0 and My, = H?:l exp(j®). Noting the estimates (2.2), we have

M1 (C’lrﬁ) < exp <50_5i1 (log (Cm—gﬂlz)yjl) < exp (C’z (log 7) sil) .

Therefore, setting n(7) = Co7 exp(Ca(log T)TL), that is,

p(r) = 777:’(7“) ~ exp (C (logr)ﬁ) 7

we have the estimate (1.2).

(iii) Let m < oo. Noting M~1(7) =~ rm, we have

™ ()] A(t) L\
NS CM_l(A(t) <@(t)>

for k = 1,...,m, where v, = 1+ (¢ — 1)/(m(p + q)). Therefore, setting n(r) = Ct7™,
that is,

S D
u(r) =Crmr’ m,
we have the estimate (1.2). Here we note that ~,, is strictly increasing since ¢ > 1 and

hmm—>oo Ym = 1.

Remark 2.3. In [3, 10] the authors consider the relation between the smoothness of the coeffi-
cient and the order of y for the estimate (1.2). Their classes of the coefficient lie between C*°
and real analytic class, and one can identify them with the ultradifferentiable classes. Actually,
the coefficients in [3, 10] can have many zeros and the smoothness is uniform on [0,7]. On the
other hand, the coefficient a(t) in our theorem may has a zero only at t = T', however it can be
singular at t =T

Remark 2.4. The similar problem for a generalization of the equation in (1.1) to the following
second order weakly hyperbolic equation with first order terms:

(07 — a(t,0:) + B(t,05)) u =0, (2.4)
where .
at, &) = Y b B =) B,
1<5,k<n j=1

is open. It essentially needs to introduce some suitable Levi condition and stabilization property
for af(t,€)/|€|? corresponding to (1.11); however, the both of them are non-trivial. We will try
to find them in forthcoming papers.



3 Proof of the theorem

3.1 Strategy of the proof

By partial Fourier transformation with respect to x the Cauchy problem (1.1) is reduced to the
following problem:

{(az +Fa()?lE2)v=0, (t¢) € (0,T]xR", 51)

(v(0,8),v¢(0,€)) = (vo(§), v1(£)), &€ R™

A basic idea of the proof is appropriate division of the phase space into several zones and deriving
estimates of the solution in different ways in the each zone. We represent the properties of the
solution by three characters; smoothness, degeneration, and stabilization, which are described
by the orders of { My}, A(t), and O(t) respectively. These properties are possible to make some
influence to the loss of regularity of the solution, however they are not uniform in the phase
space. For instance, the smoothness of the coeflicient is not important for the estimate in the
low frequency zone, but the order of the stabilization is crucial for the estimate in there. On
the other hand, in the high frequency zone, the smoothness essentially contributes to precise
estimate of the solution, but the degeneration and stabilization do not give so big influence. We
essentially divide the phase space into three zones: Zy o, Zy 2 and Zy, which will be introduced
below, and the intermediate zones of them. Let us make preparations for the definitions of the
zones.
Let N be a large constant; more precisely, it is chosen like

2 3
N > max{ ! 2M0A(O)),64u2f<;2 (47r3]\40> } )

1 (TA0))" V3Mip(0

where x and v are constants, which will be defined by (3.13).

Definition 3.1. For r € [1,00) we define 79 = 79(r), 71 = 71(r) and 72 = m2(r) as follows:

max {t € [0,7]; Nn (Tﬂel))\(t)) = r}, re {Nn (T)\l(o)> ,oo),
o, re:l,Nn<ﬁ)),
MO s (€ 0,77 N0 (k) = e [ (k) oo0). 32
. re LN (shy))
max{tE[O,T};Nn(%):r}, TE[NU(%),OO).

It is easy to verify that

(T —10)A(10) = A(11) = O(72) = — 1~ (3.3)
(%)
since 19, 71 and Ty are positive.
Definition 3.2. For r € [1,00) we define t; = ¢;(r) (I =0,1,...) as follows:
0, re |1, NMep®)
ti(r) = [ ]%l >\]\</2)_2 p(t) Mi11 p(0) (34)
maX{tE[O,T],NMl m:'r}, T‘E|:N M, W,OO)



Definition 3.3. We define [y € N by

: 1 M1 p(0)
lo max{,mm{leN,n(@(O)_ M A0) (3.5)
Moreover, for | > ly we define s; € [0,7") and R; € [1,00) by
Aty M|
§; = max {t €(0,7); Et; = Mllill} (3.6)
l

and

U CORUCHRUC Npwsy | NEenee Ry,

From the above definitions the following properties are immediately valid:

Lemma 3.1. (i) 75(r) (j = 0,1,2) and t;(r) (r = 0,1,...) are monotonically increasing and
tend to T as r — oo.

(i) To(r) > 11(r) > 72(r) for any r € [1,00).

(#3) If ti11(r) > 0, then t;(r) > t;41(r).

(i?)) S = TQ(RZ) = tl(Rl), R; > 2/\/§ and TQ(T) < tl(r) f07‘ r > Ry.

Proof. (i), (ii) and (iii) are trivial. By (1.19), (1.21), (3.2), (3.4), the definitions of s; and R; we
(

have 7(1/6(s1)) = Bi/N = n(1/0(ms(R)))) and
o) _ etn) R ROM_plu(R)
Alst)  pm-1 (%) NM-1 ﬁ:llﬁ> N My At(Ry))

Moreover, for r > R; we have

< 1 )_T_Mz+1 U(W) _ M ”(m)
"Nemir)) "N~ M - (Amiuo M, M—l(A(tl(Rl))>




it follows that mo(r) < t;(r).

Let us define the zones of the phase space as follows:
Zyo={m((§)) <t <T},
Zwy ={n((§)) <t <7((&)},
Zyp ={m((§)) <t <m1((§)},
Zr ={0 <t <n((&)} N{(&) < Ry},
Zy ={0<t <n({&)}\ Zr.
Moreover, for k > lp we define the subzones Zp ) of Zy by

T 1,(r)

) o0 D

teo1(r) e ) tera ()

A AT

To/(T) T1I(7’) Tzl(r) r = (f )

Zap ={(t,§) € Zu; tx({§)) <t < tr—1((£))}
Thanks to (1.17) we see that Zg = Up—;, Zm.k-

3.2 Estimate in Zy

Let (t,&) € Zy . We define &y(t, ) by

&) = & (T~ 1) AP0t OF + [u1(.E)?).
In view of (1.12) we have
0i&o(t, &) = (T — 70) *A(m0)* — a(t)?) |¢]*R{vvr}

— ) 2A (70)? 9\ /402

) A M 0,
- M§(T = 70)A(ro)

< ((T—To) "A(ry) + 2 A(TOO) 0 )\(t)> (6)&(t, €).

Therefore, by Gronwall’s inequality and (3.3) we have
t (T — 10) A7
ealt. &) <éatmexp ([ (= m)am) + ML) ) asge))
<&(10, &) exp (A(11)(€) + Mg (T — 7o) A(70)(£))
B (1+ M) (&)
=E(70, &) exp (7]1(2?))

e (v 120 (19) )

uniformly in Zy o.

<

11

(3.8)



3.3 Estimate in Zy
Let (t,&) € Zg,1. We define &(¢,) by

(1.6 = 5 (M P OF + 9.

Since A(t)?A(t) is monotonically decreasing, we have

2 2
oier(1,6) =301 (20D prote o + (2D ) grom)

)‘(t)2A(t) _|_ MOQ)\(t)Q

<| AT o | e
AE)A(E) 2
A(r1)?

__p, ( 200) 2M3A<n>%A<t>%<f>) £1(1,€)
3A(7‘1)2

uniformly in Zy ;.

3.4 Estimate in Zy
Let (t,&) € Zy 2. We define &(t,€) by

(A@PIEPIvE O + v (t, ©)) -

N |

52 (t7 5) =

On account of (1.12) we have

BEa(t,€) < (A() + a(t))\) ))\(t) —af(t)

leleat, )
< (14 Mo) M) — a(d)(E)Ex(1.).

Therefore, by Gronwall’s inequality we have

E(t,€) <exp ((1 T My) / A(s) — a(s) ds(£>) E(r2,€)

<exp ((1 + Mo) O(72)(§)) E2(72,§

o (31 20 (@))gg

uniformly in Zy ».
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3.5 Estimate in Zp

Let (t,€) € Zg. In the same way as the estimate in Zy 2 we have
Ex(t,€) < exp ((1+ Mo)? A(O) Ry, ) £(0,€)

uniformly in Zg.

3.6 Estimate in Zy,,

3.6.1 Refined diagonalization procedure

Let us reduce the equation in (3.1) to the following first order system:

at‘/l = Al‘/la (39)
where
_ (v +ia@)[€lv _ (o1 b1
= ten) 4= (&)
o a(t) _dt) .
b1 = by _2a(t) o1 = 2(1(t) + 1a(t)|§|. (3.10)

Let us denote

d
P1r = R{p1} = %1082 Vva(t), ¢1s =S{o1} = a(t)€],
A= ¢1x + 1/ bl — [b1]?

_ N 2
o= N0 _ 1o (1— Ul >

and

by by 2

13

The eigenvalues {14, Al—i of A; and their corresponding eigenvectors are given by A1 = Aq,
Ai— = Ay, and {¢(1,61),%(A1,1)} respectively. Therefore, if |§;| < 1, then A; is diagonalized by
the diagonalizer =; as follows:

=145 = At 0 = Lo .
1 0 N/’ 0, 1

Let us define V5, = E;lvl. Then V5 solves the following system:

Ve = AsVa, (3.11)
. )\1 0 =1 =\ ¢2 E
= (G x) == (3 )
where
(01): :
by = _1_7|01’2 and @2 = ¢agp + igag,
and

¢2% =\ Qﬁg - |bl|2 -g {abQ} .

Generally, we have the following lemma:

13



Lemma 3.2. Let Vi be a solution to the following system:

Vi = A Vi, Ap = <¢k bk> ;
b, Ok

and the matriz =, be defined by

1 6 RO |br|?
= Loy L
’ (‘g’f 1> T, ( Drss

where ¢ = R{Pr} and dps = Hor}t. If |0x| < 1, then Vi = E;le solves the following
system:

[1]

OtVir1 = Aps1 Vit 1,

where
Ay = <¢k+1 bk+l> T D
* beyr Pki1)’ 1 — 16,2
and
o1 = 6n — Olog yT= T +1 (~tu + /6 — Il = S(Bibes) )
Proof. The proof is straightforward. O

Let (t,€) € Zy k, and denote Vi, = *(Vi 1, Vi.2). Then we obtain
| Vie* =2R (AVie, Vi) oz = 26| Vie* + 4R{bx Vie 1 Vi 2}
<2 (¢ + [bi]) Vil

which follows that
t
Vii(t,€)]* < exp <2/ (Drn(s, &) + [br(s,8)) dS) Vi(7,€)? (3.12)
for t, < 7 < t < tx_1. Thus we must consider the invertibility of Zj, the estimates for

th Orn(s, &) ds and th |br,(t,€)| ds if we derive suitable estimates in Zp j, corresponding to the
estimates in the zones Zy o, Zv 1, Zw 2 and Zp.

3.6.2 Symbol class in Zp ,,

We define the constants 1, k and v by

472 M,
Kl = 7T3 0, /-;:16/4;‘11 and v = e?Cyry. (3.13)

Let us fix a positive integer m. For integers p, ¢ and r with 0 < p < m, and positive real
numbers K and N, the symbol class S(p){q, r; K, N} is the set of functions satisfying

ok (0.6)| < Kt () (p() ™

for k=0,...,pin Zy,,. Here we introduce the notation
S®Ng,r; K, N} = S®P/{g,r; K} and $®¥{g,r;1} = S®{q,r}

without any confusion. From the definition we immediately know that S®1){q,r; K} ¢ S®2){q,r; K}
for any p; > po. Moreover, we have the following lemma:

14



Lemma 3.3. The following properties are established in Zgg

(i) If f € S {q,rK}(mdp>1 then@tfespl{qr—}—lK}

(ii) If f1 € S {q,r K1} and fy € S {q,r Ky}, then f1 + fa € S(@) {g,7; K1 + Ks}.

(iii) If f € S {q,r; K1} and Ko > 0, then Kof € SP{q,r; K1 K>}

(iv) If f1 € SP{q1,r1; K1} and fo € S(p){Q2,T2;K2}7 then fifo € S {q1+qo,m1+7r2; k1 K1 K2}
() If f € SP{q,r; K, N}, then f € Sirdem=Nig 4 1 ¢ — I K(uN~YE NY for any 1 < r < m.
(i) If f € SP{q,r; K1,N} and g € SP){—r r; Ky, N}, then fg € S®{q,r; ki K1 Ko(2vN~1)", N}

for any p <m and r < m.

Proof. (i), (ii) and (iii) are evident from the definition of the symbol classes.
(iv): Let & € N and assume that r; < ry without loss of generality. Because of Leibniz rule,
Lemma 4.1 and Lemma 4.2 we have

MT1+T2
(ri+r2+k+1)°

XZ( )Mererz-Hf j < ri+ro+k+j )2
My brgtk (Mm+j+0)(r+k—j5+1))
472 My My g7y

KK
MR e k4 1)2

(AT (vp(t))F72

‘&f (f1f2)‘ <Ki1Kj

< (AT (wp(t) T2 F.

(v): Let 0 < k < min{p,m — r}. Noting (1.16) and that p(t)/A(t) is strictly increasing, we
obtain

o 1| <K (€)™ pl)

() \ My (k12 M,
‘K<A<t><5>> My (r+k+ 12 (k+ 1)

sx(”f’(tm—l>>>TMT+’“ M oty

(vp(t)*

Nim1)(€)) My (it 12
My M1
vN\T (k+7r)---(k+1 M1 . M,
i (L) D W( . )(f“)M RN
<k (2 (,ff’“nz(upw.
(vi): Let 0 < k < p. By Lemma 4.1 and Lemma 4.2
ok tsa)] <mira (A0 ) s 1) wale)
(K (r+k+1)7° My i My j—j
x].z:;(j) it 2+ k—j+ 12 Mo
<K K s (O (wple)
vp(tm—1) \ (r+k—1)! M,
) (A(tm—l)@) (k— 1)l My’

15



Noting the estimates

' r % P M
vp(tm—1) (r+k—1!'M, < (i)r (2m)" 31,5 o
Atm—1)(&) (k—1Dlr! My —\N 7! <MMm )T
m—1
r My My r
_ (2 er_l"'lMl0< 2v
N < My, ) ~\N
mMmy,_1
for Kk <2m —r+ 1 and r < m, we complete the proof. Ul

Moreover, we show the following lemma:

Lemma 3.4. Let m, p and r be positive integers satisfying max{p,r} < m, f € S®{—r r; K N}
and N > 4Kkiv. Then there exist g1, 9o € S(min{Pvm_T}){—r, r;2K, N} such that

1

o7 1+ g1 (3.14)
and )
1—\1—f= 5f(1+g2). (3.15)

Proof. Let us denote pg = min{p, m—r}. By Lemma 3.3 (v) we have f € S®){0,0; K(vN~)" N},
it follows that |f| < K(vN~1)" < 1. Moreover, by Lemma 3.3 (vi) we see

7le s { =ik (K (20N1)) 71 N (3.16)

for | = 2,3,.... Therefore, by Lemma 3.3 (ii) and noting > 7°, (Kr1(2vN~1)")i=1 < 2 for
N > 4K kv we have

g1=>Y_ f e8P {—rr2K N};
=1

thus (3.14) is proved. Moreover, thanks to the representation
oo
1/2 I
= 2 —
n=23 (%)
I=1
and the inequality |(l1ﬁ)\ < '1/2 for any [ > 0 we have (3.15). O
For f € S(p){q, r; K} we introduce the following notation for convenience:

f S KoW{qr}=Ko®{qr}t¢).

In particular, we denote 10®{q,r} = o®{q,r}, that is, 0P {¢,7} stands for any function in
the symbol class § (p){q, r; 1}. Moreover, we introduce the following notation:

e (Scalar product) For K7 > 0 we define

Ei(KoW{g,r}) = (K1 K)o {q,r}.

16



e (Summation) For K7, Ko > 0 we define
Kla(p){Qa 7’} + KQU(p){qa T} = (Kl + KZ)U(p) {Q7 T};
this notation is meaningful by Lemma 3.3 (ii).

e (Inclusion)

K10 {q1, 11} S Koo @ {qa, 12} & SP{q1,r1; K1} C SP){qa,72; K>}
e (Multiplication) For K, Ky > 0 we define

(Kw(p){ch, 7“1}) (Kza(p){cmﬂ”z}) < kiK1 Koo P {q1 + qa, 71 + 2}

this notation is meaningful by Lemma 3.3 (iv).

By use of the above notation the properties of Lemma 3.3 and Lemma 3.4 are expressed as
follows:

Lemma 3.5. Let 0 <7 < m. Then the following properties are established in Zj m,:

(i) If p1 > pa, then oV {q, 7} < o®2){q,r}.

(i) If p>1 and f < o®{q,r}, then O f <o D{q,r+1}.

(iii) o {q,r} < (WN—Y)lgWidem=—rH o 4 1+ — 1} forl <r < m.

(i) U(p){th}U(p){QQ,m} S f?la(p){(h-i-th, ri+ra}, and U(p){q,T}U(p){—T7T} S 51(2VN_1)TU(”){Q7 r}
for any p < m and r < m.

() If f S Ko®{—r,r}, N > 4Kkv andp,r < m, then 2(1—/1 — f)/f < 142K omindpm=—rh(_p -}
for f #0 and 1/(1 — f) <1+ 2KoMidem=—Ni_p rd due to |f] < 1.

3.6.3 Symbol calculus of the coefficients

Let (t,£) € Zum. Then we have the following lemmata:

Lemma 3.6. For any k =0,1,... the following estimates are established:
M k
B@)| < M) s (o))" 3.17
D] <230 5 (ol0) (3.17)

Proof. The proof is straightforward as below:

M,
(k+1)2

(ezp(t))k .

M

’a(k) (t)) A6 Myp(t)* = A(t) ((k: +1) P(t)>k

My,
(k+1)2

<At)

Lemma 3.7. Let by be given by (3.10). Then the following estimates are established:

CD _
< 20 sm=1)rg 1 1
b1 S Oa {0,1} (3.18)

and
2
S0 m=Dr_q,1}. (3.19)

17



Proof. We note that the following estimates are valid for any j € N:

‘ N
ONE
a

Indeed, if (3.20) is valid for any 0 < j <, then by virtue of Leibniz rule we see

141 (1—j+1)
0= ‘(1)(l+1)‘ - Z (l + 1>a(j) <1> ’ 7
a

=0~ 7

S
My

M;

A~ (j+ 1)

(vp(t))’ (3.20)

which follows that

(I+1) +1 (I—j+1)
@) =G0 @)
a

By Lemma 3.6, Lemma 4.1 and Lemma 4.2 we have

1\ cz Hi+1y M i Mi—jn -
(&) SMOAOu);( j ><j+1>2 (o) =5 g o)

< Ci My z+1§ <l+ >MMZ jt1 <62>j (142)?

T MoA(t) (1+2)? My v) (G+1)201-j+2)?
47'('26208 Ml+1 I+1

< t

<3 Utop W)

C 1 M,
=2 N0 gy )

for v = €?Cyry. Thus the estimate (3.20) is valid for j = I + 1. Consequently, by the estimates
(3.17) and (3.20) we obtain

’b(k—n(t)’ < g My D - 1 (k+1)? A\ My M
L ~2My (k +1)2 (G+2)2(k—j5)2 \v M;,

Jj=0
Co My k

that is, (3.18) is valid. By noting (&) > 2/4/3 in Zp, it follows that |¢| > (¢)/2, and so that

1 1 200 )
— (m)f_1,0Y.
b e~ w7 Y
Therefore, by Lemma 3.5 (iv) we know (3.19). O

Lemma 3.8. Let kg = k1C3/MG(> k1). Then the following estimates are established in ZHm:
01 < koo™ V{-1,1} and detZ; >1—1/k3 > 0. (3.21)
Proof. By Lemma 3.5 (iv) and (3.19) we have

b
|1’ < 2k1ksvN oM {—1,1}.

1\s
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Therefore, applying Lemma 3.5 (iv), (v) for K = 2k153vN~! and 7 = 1, we observe

_ iby <1 _ 1 - b%|2>
_ o Y9 ) 0 (me) 1 (m) g
01 = K2 {-1,1} + 2k1KAVN ™ {-1,1}

e ~ (3.22)
Ko | 2°KERSV? (m—1) (m—1)
S 5 TN ) {=1,1} S koo {-1,1}
for N > Ny = 2v/2r1k2v. Moreover, by Lemma 3.5 (iii), (iv) we get
2
2 S22 D (1, 1)
9 2.2
S0 00,0} £ (4kr)To ™ (0,0}

for N > Ny. It follows that detZ; =1 — |01|> > 1 — (4k1) "2 > 0. O

By Lemma 3.8 we can reduce the equation (3.9) to (3.11) by Zy in Zp,,. Up to now, we
can carry out the diagonalization procedures of Lemma 3.2 for £ < m — 1 in Zg ;,; indeed the
following proposition ensures that.

Proposition 3.1. Let Vi be a solution to (3.9). Then the diagonalization procedures of Lemma
3.2 can be carried out for k=1,...,m —1 in Zg . Moreover, we have

be < kP MRk 4+ 1, k) (3.23)
fork=1,....m
For a preparation to prove Proposition 3.1 we introduce the following lemma;:

Lemma 3.9. Let (t,€) € Zym and 1 < k < m — 1. If b, < kFo™ Rk + 1,k} and 6y,
kFoM=F)_k kY, then detZ, > 0, bk+1 < 2kikFe MRk k4 1} and ¢/ (kD)3 — 1
om=k=110,0} for N > Ny = 3202635%(> Ny).

Proof. Suppose that 8, < x*o(m=¥){—k k}. Then by Lemma 3.5 (iii) and (iv) we have

2\ k 2 9\ k
10k <r1 (23\'; > oMk kY < kg <2?\7: > cm=R){0,0}

1\* 1
< - (m—k) < = (m—k)

<ia<m*’“>{o, 0}

~

for N > Ny. It follows that det = > 0. Moreover, applying Lemma 3.5 (v) with K = 1/4 and
r =0, we have

TEgE St Lom 0 {0,0} < 20070 {0, 0},
k

Therefore, due to Lemma 3.5 (ii) and the representation of Lemma 3.2 we obtain

b1 S (ﬁka(m_k_l){fk‘, k + 1}) (20(m_k){0, O}) < 201 kF MRk k4 1)
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and

’ng - <1 iyigl|2>2 S <<2mka(m—k){—k,k}) (QU(m_k){O’O}>)2

2 22\ *
§<4m1mka(m_k){—k,k}> 516/@‘;’< ?\’;) oMk [k k)

202K2\ " —
516@'( 2 ) om=R{0,0}.

We denote

-
_lbef? k and By = _ SOkbrr1}

ap=—-144/1
k“ P13

Applying Lemma 3.5 (v) for K = 16x3(202k2N=2)¥ and r = 0, we have
912 91,212\
ar < 16x3 < > (m=k) £, 0}( +16r 3< ?v/; ) oM=K 10,0}
202 K2 11
<1 g(m=F) 24 y(m=k)
6r3 < 5 > {0,0} 5t S {0,0}

2
16/<L (21‘;\["; ) (mfk){ojo} < N*kg(mfk){ojo}

2

<

2

AN

and
5 (0 (ol k1) (!

o\ k
4H100 (2?\:‘; > (g(m_k_l){—k‘ —1,k+ 1})

mi{-1,0})

2,2\ k
<4]V\;1]€0 <21;V§ > U(m_k_l){(),()} g N—kg(m—k){(),()}
0

for N > Ny. We stand for g = o™ *=1{0,0} and

k K1k
r =] +a)+> 8 [ 0+ a)+ 6.
1=1 =1 1=+

Owing to the representation in Lemma 3.2, we have

Ph+1)s = P18Vk;
and that

Yk S (1+§:Nj00) ﬁ 1+ N 7o) S (1+ZN 300) (1+§:(N100)j)

j=1

k 00 2 1 3
5 1+ZN_jUO 1+Z(/€1N_1)j0'0 5 <1—|—1f1/i\r1]\7_10'0>

S (14 20N "a0)’ = 14 6m N og + 126N 202 + 8xFN %03
S 142N (3k1 + 687 + 4k7) 0o.
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In the sequel, for N > (Ny >)4r1(3k1 + 3k2 + K3) we have

= —1= =Y 1—-9¢p) < <00) < <) oo = 0y.
Pk41)s (2 = = \2m \2
Thus we complete the proof. O

Proof of Proposition 3.1. By noting k > kg, the assumptions of Lemma 3.9 are satisfied for k£ = 1
because of (3.18) and (3.22). Assume that by, < 2k1kFe™*=D{—k k+1} and P15/ Pr41)s —
1 < om=*=1{0,0}. Then we have

bet1 brpa

D13 >
= 1+ -1
Per)s D13 ( Plht1)s

400,%% b (el ke
< (m—k-1) (m—k—1)
N( - K o {-k—-1,k+1} (l—f—a {070})

3

(m=b=D{_k -1,k +1},

and hence

|bge1 ]2 < 64C3 kT <21//<52

2 ~ M02/<c2 N

k+1
) oM 1 k1)
(k+1)S

k+1
<64Cg/<az 2022 (m—k-1)10 o

Therefore, in view of Lemma 3.5 (v) we obtain

1— /11— |gk+1\2
0 i br41 Plers
k1l = —
* Oh+1)3 IUSEl
(k+1)S
8CHK3 L 1 6402%k7 [ 202K2 i e
Sop A k- Lk 1) (2+ e vz ) o0

4
<M/{ko(m_k_l){—k - 1,k+ 1}
for N > (Ny >)(512C3v*k k2 /MZ)Y/4. Tt follows that 6y, < kFHlo(m=k=D{_k — 1k + 1}

~

and bypy1 < KFHoM=F=DI_k k4 1} for k = 16k} (= max{16x}, ko}) and N > Ny. Thus the

proposition is proved by applying Lemma 3.9. O
By Proposition 3.1 we have the following lemma:

Lemma 3.10. Let mg,m € N satisfy m > lo(> 2), tmy < 72 < tmg—1 and ty,m—1 < T2, that is,
m — 1 < mg. Then the following estimates are established:

and . N
/tm |bmo (7,€)| dT < N (%) ") (3.25)
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Proof. Let m > 2. We note that n(r)/r and r/M~1(r) are monotonically increasing, and so
that p(¢)A(t)/\(t) is monotonically increasing. Therefore we have

() (52t

>mA(7')_m (tm <t< tm—l)
and

<)‘(7)> = ( A(72) ) A(r) (tmy <t < T2).
Moreover, by noting

Mm0+1p(tmo)_ MMOp(tmO*l) > Mmop(7—2)
Mg Mtme) — Mymg—1A(tmg—1) — Mmg—1M(72)’

it follows that

ptmg)
Mimg) Mmg+1 [ M, MmoH]
% Mmo Mmofl’ Mmo ’
and the equalities
p(tmg) 1 Ptmg)
1 = NMpr1 Aimg) (9(T2)>  Mumgi1 Amg) 1
T OM,,, e 1 (M) My, 2 1 (A))
Mm% M 1(&3) m ) M 1(@ET§§>
Hence we have () (b )\ M0
Plm mo P\lm,
A(TQ) - M Mm0+1 /\(tm?)) _ Mm0+1 )‘(tm?)) (3 26)
- T mo+1 T ’ ’
O(72) M, 72} M o)

Consequently, we see

M, p(tmfl) n . m1 N,O tim—1 m-l tm 1 (tm 1)
s (§e) Aty =v e, (Rt At
1

<N-™FAL, (Nptm >m1 )\zA )

_ N M P(7'2) A(r2)
-1 <<LN>> M2 M12) O(72)

N_m+1 M™ ( )MmQ )p\(tmo) mo—1
< m— 1 P mo+1 (tmo)
_7;_1 (%) M;r? 2 )\( mo) M$g+1 p(72)

A(T2)
i) Mt e

)
()

v () < v

22



due to m — 1 < myg, and

My, <p(rz)>m0 A1) =N My, (Np(tmo)>m0 ( iy )mo/\(72)(€>

(€)mo=t \A(r2)

Therefore, by Proposition 3.1 we have
(7)

[ et < g [ (55) 2o
< (Al D)™ ) e

)

>

(™t Altm-1)
KMy ( p(tm—1)\"
NG (A(tmo) Altm—1)
<N (5) n©)
and
T2 ﬂmOMmO T2 p(T) mo
[ mtrar s [ (55) Ao
K™ Mg (p(72) \™
<t (5) A
<N () ).
Thus the proof of the lemma is completed. O

3.6.4 Uniform estimate in Zy ,

Let (t,£) € Zum, mo € N be defined in Lemma 3.10, and m; € N satisfy

N M, p(0)

N My, 11(0)
M, —12(0)

== 00

Here we note that (0,&) € Zp m,. Let mi <k < mg and (¢,£) € Zp . Then by the representa-

tion
k—1
Prp = O (log Va(t) =) logy/1 - 9j2) ;
j=1

Lemma 3.10 and (3.12), we get

K a L 16.(0))2
v e (23 (5) nie) 28 (H 7 ((t))2> V()
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for tp, <7 <t <tp_1. Moreover, noting

2 1 2 2
=—— ((1+|0 Vil? — 4R (0, Vi1, Vi
| (1— |9k|2)2 (( |0 )| k| (0k Vi1 k72)(C2)

1

< 2
S———|Vil%,
Z(1F16])°

Vel =5, Vi

and denoting

= 2N () ).

we have

a(tkfl) Hf;ll (1 - lej(tkNQ)
a(tk) Hf;ll (1 —10;(te—1)I%)

Applying the estimate (3.27) from &k = m + 1 to k = m;, we obtain

a(tm) TTjty (1= 16;(tms1)l?)

Vie(to—1)? < et (L + (05(tk) ) [ Vit (t) |-

[Vint1 (tm)|2 <efmtt

<eMm+1FHm-2 a(tm) (1 + |0m+1(tm+1)’) (1 + |0m+2(tm+2)‘)
- a(tm+2) (1= [Omi1(Emi1)]) (1 = [Omy2(tmi2)])
T2 (1 = 10;(tmya)]?

Jj=1

m1—1 mi—l
Laltw) T O ()
gexp< > Mk> albm 1) 11 (1= 10x(ts)])

tml 1

k=m+1 k=m+1
H;m1 1( - |9( mi— 1)’2) 2
I A By )

Moreover, we have

a(tm,—1) H;nll_l( ’2)
a(0) 12 (- 16, <tml DP)
)
)

Vi (tmy —1)[? <e#m [Viny (0)

atm, 1) LI (1= 16;(0)) |

<eHmi

- a(0)  TT7 (1= 105(tmy—1)[?) (1 = [Om,—1(0)])
i @t 1) T (1= 16;(0)) 1

B a(0)  TT (1= 105 (tm, — )12 TTT2 (1 = 16;(0)])
_ gty Ot 1) 1 [T (1+18;00))

a(0) T2 (1 — 16 (tmy—1) ) T2 (1 — 165(0)])

a(t) H;n:_fl (1—10;(tm)P?)
altn) TS5 (1 60P)

Vin(t)]? <etm (L + 16 (tm))? Vi1 (E) 2,

24

3 [V —1(0)?

3 [V1(0)?

Vi),

(3.27)

ms) T @10y (ot (s )7 Vool



and
1 1

2 2> ... 2
B (TR | (AT

Summing up the above estimates, we obtain

Vi (t) H (1+16; (1)) [Vin ()2
a(t) TS (1+19 ml
SeMma(it)) gf”_‘ll E1+:9JZ;:; (19a(tm)2)) L+ 10m () )™ [Vingr ()|
mo =1 Y i=1

(RSN et TS 160D T (108
§p<2“0a [T (L= 0,0 T (1~ [0t

j=1
<exp (gﬂw) a(0) (jl 1- 0;-(;5)) (kgn 1— \9k(tk)!>

for 7 € [t;,t;—1]. It follows that

2
L N O AN s R A AW = R O] © |\ g
(]Hllé(t) kgwm jHll—Hj(O)l <\ i) =<

7j=1
Consequently, we obtain
VA (t,€)|* < e Ciexp (1 ((€))) V(0,6 (3.28)

If ty, <t < 79, then we also know the estimate (3.28) in the same way for the estimate in
Zm,m by employing Lemma 3.10. In the sequel, there exists a positive constant C' such that the
following estimate is established:

VA (t,€)” < exp (Cu ((6)) VA (0,6)? (3.29)

uniformly in Zg.
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3.7 Concluding of the proof
We recall that there exists a positive constant C such that the following estimate is established:
Ej(t,€) < (75, €) exp (Cu((€)))

in Zy j, for k=0,1,.... From the definitions of &;(¢,&) (j =0,1,2) and Vi(¢,£) we have

1 (A(To) A(70)*A(70)
2 A(Tl) A(Tl)

Eo(r0,€) = P om0, )2 + |vt<m,f>|2) < &1(m.€),

E1(71,8) = E2(71, )
and
Vi(t, ©)1* =a(t)*[€]*o(t, )” + |ve(t, €)[* > 205 ?Ea (L, ).

If ap > 0, then |Vi(¢,€)|? ~ &;(t, &) ~ E(t,€) for j = 0,1,2. Therefore, there exists a positive
constant C' such that the estimate (1.2) is established for any (¢,&) € [0,T] x R™.

If ag = 0, then by (1.4) there exists a positive constant C' such that || < exp(Cu(|¢])). It
follows that

V1(0,6)] < (CEMO)%IE* o (€)1 + o1 (€)[?)
<max {1,C5A(0)%} exp(2Cwu(|€]))E(0,£).

If (t,§) € ZwoN{(t,&) €[0,T]; (§) > Ry}, then noting the following estimates:

|oe(t, > <280(t, €) < 2Ea(72, &) exp (BCu((€))) < CF|Vi(m2, ) exp (BCu((€)))
<CFIVi(0,8)? exp (5Cu((E)))

t
/ Ut(87 f)dS
0

[o(&,1)]? < 2 (T?CF exp (5Cu((€))) + 1) Vi(0, €)%,

which follows that the estimate (1.2) is established. We have the estimate (1.2) in the other
zones in the similar way. Thus we have completed the proof of Theorem 2.1.

and

Tloy(t, 6)| = > [o(&, )] = o1 ()],

we have

4 Appendix

Lemma 4.1. For any non-negative integers k, r1 and ro the following estimate holds:

Z’“:( rit etk >2 4n? ()
S\ i+ D2+ k=) +1) 3 '

IN
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Proof. We may suppose that r; < ry without loss of generality. The proof is straightforward as
follows:

k . 2 2 [ele} 2
Z( 7"1+T'2+k7+] ) <9 2T2+k+1 Z 1 <4i
— \(r+j+Dr2+k—j+1)) = \ro+ [EL]+1) &G+~ 37
j=0 2 7=0
where [-] denotes the Gauss symbol. O

Lemma 4.2. Let {My} satisfy (1.16). For any non-negative integers j, k, q and r satisfying
0 < j <k the following estimates are established:

My iMyig_
<k> s s A VS (4.2)
J Mq+r+k
and
l’f Mr+er+k7j < (7“ +k— 1)! g (4'3)
J M,y (k—1)lr!
fork > 1.
Proof. By (1.16) we have
+k 1 .
<k> M,y jMyik—j — M, <k> ! 1_[] (r+j+1+ )My My
J) Mgyrik J r+j+ l +1 M4 jvin M,
1=
+h—j—1
<M, <k) ’ H (I +1)M; My
- J g 7“+J+l+1 M M
k—j—1
k [+1
<M — = M.
= (y) H [ ENES

=0

Let us consider the case r > 1; otherwise the estimate (4.3) coincides with (4.2) as ¢ = r = 0.
By (1.16) we know

. M,
(k) MMy (k) ﬁ rt1 [y
; M I — My j—j41
J Ttk e e 1 Ty
K\ o r+l
<M,
(J) lHl r+k—j+1
Let us denote
(k—j+nm)G+nr)
Li(k,r)= ~
i) =T
and
k+r—1)!
Nolhy) - - Tk Dl 1
. ,T‘ — . = .
T Ol e G0 LD

Noting that L;_1(k,r) < L;(k,r) if and only if 2j — 1 < k, we have

max {L (k,r)} = L ](k T).

0<;<k [
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Consequently, if k is odd, then we obtain

) (k+r—1)---k (k+r)---(k+1)
min {Nj(k, )} == k1 k1 k1 >1
0<5<k (T+T)(T+1)(T+T)(T+l)
On the other hand, if k is even, then we see
k -1k (k (k41
min {N;(k,r)} = ,E T )k (k”) (k+ )5,
Osj<k (5+r)- G+ (GE+r)(5+1)
Therefore, we have N;(k,r) > 1 for any j < k, which completes the proof of (4.3). O
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