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Abstract

We consider second order weakly hyperbolic equations with time dependent coefficients
in the ultradifferentiable classes. Our main purpose of the present paper is an investigation
the relation between the classes of the functions to be well-posed and the following properties
of the coefficients: the order of degeneration, stabilization to a monotonic function and their
smoothness in the ultradifferentiable classes.

Dedicated to the memory of Professor Rentaro Agemi

1 Introduction

We study the Cauchy problem for second order weakly hyperbolic equations with time dependent
coefficients {(

∂2t − a(t)2∆
)
u = 0, (t, x) ∈ (0, T ]×Rn,

(u(0, x), ut(0, x)) = (u0(x), u1(x)), x ∈ Rn,
(1.1)

where ∆ =
∑n

k=1 ∂
2
xk
, T > 0, supt∈(0,T ){a(t)} < ∞ and mint∈[0,T ]{a(t)} =: a0 ≥ 0. It is well-

known that the energy of the wave equation with constant coefficients is conserved, but it is not
so for general equations with variable coefficients. Actually, the energy may be unbounded due
to the loss of regularity of the solution which is brought by some influence of variable coefficients.
Our main purpose of the present paper is to describe the order of regularity loss by using several
properties of variable coefficients.

Let us define the energy of the solution to (1.1) in the phase space [0, T ]× Rn
ξ by

E(t, ξ) =

{
|ξ|2 |û(t, ξ)|2 + |ût(t, ξ)|2 (a0 > 0),

|û(t, ξ)|2 + |ût(t, ξ)|2 (a0 = 0),

where f̂(t, ξ) denotes the partial Fourier transform of f(t, x) with respect to the space variables
x. Then the order of regularity loss is represented by the following estimate

E(t, ξ) ≤ exp (Cµ(⟨ξ⟩)) E(0, ξ), (1.2)

where µ(r) is a positive and monotonically increasing function on [1,∞), ⟨ξ⟩ =
√

1 + |ξ|2 and
C is some positive constant. In the other words, the estimate (1.2) can conclude that (1.1) is
well-posed in the space of µ-ultradifferentiable functions of Beurling-Roumieu type (see [1, 3]).
If a0 > 0, then we assume that

1

µ(r)
= O(1) (r → ∞). (1.3)
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In particular, if the estimate (1.2) is valid for µ(r) = 1, then (1.1) is well-posed in L2, which
means no loss of regularity occurs. On the other hand, if a0 = 0, then we cannot expect the
estimate (1.2) with µ(r) = 1 in general, so that it is reasonable to restrict ourselves to

log r

µ(r)
= O(1) (r → ∞) (1.4)

instead of (1.3). Here the estimate (1.2) with µ(r) = O(log r) (r → ∞) implies that (1.1) is
well-posed in C∞ class. If the estimate (1.2) holds for µ(r) = r1/s with s > 1, then (1.1) is well-
posed in the Gevrey class of order s > 1, and the limiting case s = 1 leads to the well-posedness
in real analytic class. Thus it is also reasonable to restrict ourselves to

µ(r)

r
= O(1) (r → ∞). (1.5)

If a(t) is Lipschitz continuous on [0, T ] and a0 > 0, then (1.1) is well-posed in L2, that is,
(1.2) holds for µ(r) = 1. On the other hand, if a(t) is not Lipschitz continuous or a0 = 0, we
shall call such a coefficient singular, then the estimate (1.2) holds only if limr→∞ µ(r) = ∞ in
general; refer to [4] in case of a0 > 0, and [5, 8, 9, 10, 11] in case of a0 = 0 for instance. In
particular, it is examined in [2, 5, 6, 7, 13, 19] that a(t) is singular only at t = T , and our main
theorem is based on their researches. Here we note that the linear wave equations with singular
coefficients are studied by motivated to apply the time global solvability of Kirchhoff equation,
which is a sort of non-linear wave equations with non-local nonlinearity; for the details refer to
[12, 15, 17, 18].

Let us review some previous works lead to the main theorem in the present paper. If a0 > 0,
a(t) ∈ C1([0, T )) and if

|a′(t)| ≤M1(T − t)−β,

where M1 is a positive constant and β ∈ [0, 1) ∪ (1,∞), then (1.2) is valid with µ(r) = 1 for
β < 1, and µ(r) = r1−1/β =: µβ(r) for β > 1 respectively. Moreover, if a(t) ∈ Cm([0, T )) with
m ≥ 2 satisfies that ∣∣∣a(k)(t)∣∣∣ ≤Mk(T − t)−kβ (k = 1, . . . ,m), (1.6)

where M1, . . . ,Mm are positive constants, β ∈ [0, 1], and there exist constants aT and α ≥ 1
such that ∫ T

t
|a(s)− aT | ds = O((T − α)α) (t→ T ), (1.7)

then (1.2) is valid with

µ(r) = rκ(α,β,m), κ(α, β,m) = 1− α

β + α−1
m

(1.8)

since κ(α, β,m) ≥ 0. Here the condition (1.7) was introduced in [2] as the stabilization property,
and the constant aT is uniquely determined if a constant α ∈ (1, β) exists. We observe that
κ(1, β,m) = 1− 1/β, and κ(α, β,m) is strictly decreasing with respect to m only if α > 1. This
means that the order of regularity loss is smaller as a(t) is more regular and stabilized in the
senses of (1.6) and (1.7). The optimality of the estimate (1.2) with (1.8) is an open problem,
but it is proved that there exists a(t) ∈ C∞([0, T )) satisfying (1.6) for any m and (1.7) such
that the estimate (1.2) with µ(r) = rκ does not holds in general for any κ < 1− α/β.

The results for strictly hyperbolic problems as above can be generalized to ones for weakly
hyperbolic problems if the coefficients are singular only at t = T . For a function λ(t) ∈ C1([0, T ])
satisfying

λ′(t) ≤ 0, λ(t) > 0 on [0, T ) and λ(T ) ≥ 0 (1.9)
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we define positive monotone decreasing functions Λ(t) and Θ(t) as follows:

Λ(t) =

∫ T

t
λ(s) ds (1.10)

and

Θ(t) =

∫ T

t
|a(s)− λ(s)| ds. (1.11)

Then we have the following result:

Theorem 1.1 ([13]). Let m ≥ 2 and a(t) ∈ Cm([0, T )). Assume that there exists a function
λ(t) ∈ C1([0, T ]) satisfying (1.9) such that the following conditions (H1)-(H3) are established:

(H1) There exist positive constants M0 and C0 satisfying 1 ≤M0 ≤ C0 such that

C−1
0 λ(t) ≤ a(t) ≤M0λ(t). (1.12)

(H2)
Θ(t) = o(Λ(t)) (t→ T ). (1.13)

(H3) There exist positive constants M1, . . . ,Mm and γ ∈ [0, 1) ∪ (1,∞) such that∣∣a(k)(t)∣∣
λ(t)

≤Mk

(
λ(t)

(
Λ(t)

Θ(t)

)− 1
m
(

1

Θ(t)

)γ
)k

(1.14)

for k = 1, . . . ,m.

Then the estimate (1.2) with µ(r) = r1−1/γ is established. In particular, if a0 > 0, then γ = 1
is admissible.

Remark 1.1. Theorem 1.1 is a natural generalization of the previous works for strictly hyper-
bolic problems. If a0 > 0, then (1.13) with λ(t) ≡ aT is a generalization of (1.7). Indeed, if we
restrict ourselves to Θ(t) ≃ O((T − t)α) = O(Λ(t)α), then we see

λ(t)

(
Λ(t)

Θ(t)

)− 1
m
(

1

Θ(t)

)γ

≃ (T − t)−β, β = αγ − α− 1

m
.

It follows that κ(α, β,m) = κ(α, αγ − (α− 1)/m,m) = 1− 1/γ.

Remark 1.2. It is obvious that Θ(t) = O(Λ(t)) since (H1) is valid, but (H2) is not so; we shall
call the non-trivial condition (1.11) with (H2) the stabilization property. If (H2) holds, then the
smoothness of a(t), that is, the size of m has some influence of the orders of the derivatives of
a(t) in (H3), and also in (H4) to be introduced below.

Let us generalize the condition (1.14) for a(t) ∈ C∞([0, T )) on the ultradifferentiable class
to the following: ∣∣a(k)(t)∣∣

λ(t)
≤Mkρ(t)

k (k = 0, 1, . . .), (1.15)

where {Mk} is a sequence of positive real numbers, while ρ(t) ∈ C0([0, T )) is a positive and
strictly increasing function. The function a(t) satisfying (1.15) on [0, T ) is called a function in
the ultradifferentiable class; we shall denote the class of these functions by C∗({Mk}). For the
sequence {Mk} we introduce the following condition, which is called the logarithmical convexity:

Mk

kMk−1
≤ Mk+1

(k + 1)Mk
(k = 1, 2, . . .). (1.16)
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Remark 1.3. If {Mk} is a logarithmical convex sequence, then {Mk−1
k /Mk

k−1} is strictly in-
creasing and

lim
k→∞

Mk−1
k

Mk
k−1

= ∞ (1.17)

if {Mk} satisfies (1.16). The logarithmical convexity in usual meaning is not (1.16) butMk/Mk−1 ≤
Mk+1/Mk (see [16]). In fact, due to the condition (1.16) the sequence {Mk} is increasing at
least factorial order.

C∗({k!ν}) with ν > 1 is the Gevrey class of order ν, and C∗({k!}) coincides with a real
analytic class. If {Mk} satisfies (1.16) and if limk→∞ k!ν/Mk = ∞ for any ν, then C∗({Mk}) is
wider class than any order of the Gevrey classes. For the finite sequence {Mk}mk=0 we identify
C∗({Mk}) with Cm class. Here we introduce the associated function of the sequence {Mk} as
follows:

Definition 1.1 (Associated function of {Mk}). For a sequence of positive real numbers {Mk}∞k=0

satisfying (1.16) we define the associated function M(τ) for τ > 0 by

M(τ) = M(τ ; {Mk}) := sup
k≥1

{
τk

Mk

}
.

For the finite sequence {Mk}mk=0 satisfying (1.16) for k ≤ m− 1 we define

M(τ) = M(τ ; {Mk}) := max
1≤k≤m

{
τk

Mk

}
.

Then we have the following lemma for the associated function M(τ ; {Mk}):

Lemma 1.1. M(τ) = M(τ ; {Mk}) is continuous and strictly increasing on (0,∞). Moreover,
M(τ) and its inverse function M−1(τ) are represented as follows:

M(τ) =
τk

Mk
on

[
Mk

Mk−1
,
Mk+1

Mk

)
(1.18)

and

M−1(τ) =M
1
k
k τ

1
k on

[
Mk−1

k

Mk
k−1

,
Mk

k+1

Mk+1
k

)
(1.19)

for k = 1, 2, . . .. For the finite sequence {Mk}mk=0 we have M(τ) = τm/Mm for τ ≥Mm/Mm−1

and M−1(τ) =M
1/m
m τ1/m for τ ≥Mm−1

m /Mm
m−1.

Proof. By limk→∞Mk/Mk−1 = ∞, for any given τ ∈ (M1/M0,∞) there exists k ∈ N such that
τ ∈ [Mk/Mk−1,Mk+1/Mk), and then

τk

Mk
=


τk−1

Mk−1

Mk−1

Mk
τ ≥ τk−1

Mk−1
,

τk+1

Mk+1

Mk+1

Mk
τ−1 >

τk+1

Mk+1
,

that is, (1.18). Moreover, we have

Mk−1
k

Mk
k−1

= M
(

Mk

Mk−1

)
≤ M

(
Mk+1

Mk

)
=
Mk

k+1

Mk+1
k

.

The continuity of M(τ) and the representation (1.19) are evident from (1.18).
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Example 1.1. The following sequences satisfy (1.16):

(i) {k!ν}∞k=0 with ν ≥ 1 satisfies (1.16). Then there exist positive constants δ0 and δ1 such
that the associated function satisfies

exp
(
δ0τ

1
ν

)
≤ M(τ) ≤ exp

(
δ1τ

1
ν

)
by Stirling’s formula.

(ii) {
∏k

j=1 exp(j
s)}∞k=0 with s > 0 satisfies (1.16). Then there exist positive constants δ0 and

δ1 such that the associated function fulfills

exp
(
δ0(log(1 + τ))1+

1
s

)
≤ M(τ) ≤ exp

(
δ1(log(1 + τ))1+

1
s

)
. (1.20)

Indeed, for τ ∈ [Mk/Mk−1,Mk+1/Mk) = [exp(ks), exp((k + 1)s)) and large k there exist
positive constants ρ0 and ρ1 independent of k such that

M(τ) =
τk

Mk


≥ 1

Mk

(
Mk

Mk−1

)k
= exp

(
ks+1

(
1−

∑k
j=1 j

s

ks+1

))
≥ exp

(
ρ0k

s+1
)
,

≤ 1
Mk

(
Mk+1

Mk

)k
= exp

(
ks+1

((
k+1
k

)s − ∑k
j=1 j

s

ks+1

))
≤ exp

(
ρ1k

s+1
)
.

Therefore, noting k ≤ (log τ)1/s ≤ k + 1, we have (1.20).

(iii) For the finite sequence {Mk}mk=0 there exist positive constants δ0 and δ1 such that the
associated function satisfies

δ0τ
m ≤ M(τ) ≤ δ1τ

m.

Our main purpose of the present paper is to generalize Theorem 1.1 for a(t) ∈ Cm to the
similar result in the ultradifferentiable class C∗({Mk}). If we restrict ourselves to the finite
sequence {Mk}mk=0, the assumption (1.14) of (H3), then the order of µ(r) in the estimate (1.2)
are represented by (1.15) for k = 0, 1, . . . ,m with

ρ(t) =
λ(t)

M−1
(

Λ(t)
Θ(t)

)η( 1

Θ(t)

)
, (1.21)

where M−1(τ) ≃ τ1/m, η(τ) = τγ , and

µ(r) =
r

η−1(r)
(1.22)

respectively. Actually, our main theorem in the next section tells us that such a generalization
is realized for ultradifferentiable classes.

Remark 1.4. We can restrict ourselves that ρ(t) is strictly increasing and limt→T ρ(t) = ∞.
Indeed, if ρ(t) is bounded, then the estimate (1.2) with µ(r) = 1 is obvious for m = 1 by the
usual energy method.

2 Main results

Let us introduce the following condition corresponding to (H3) for Theorem 1.1:
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(H4) There exists a sequence of positive real numbers {Mk}∞k=0 satisfying (1.16) such that the
estimate ∣∣a(k)(t)∣∣

λ(t)
≤Mk

 λ(t)

M−1
(

Λ(t)
Θ(t)

)η( 1

Θ(t)

)k

is valid for any k ∈ N with a positive, continuous and strictly increasing function η(τ) on
[0,∞) satisfying that η(τ)/τ , and η(τ)/(τ log τ) are monotonically increasing for a0 > 0,
and for a0 = 0 respectively as τ → ∞.

Remark 2.1. The assumption to η(τ) in (H4) implies that µ(r) defined by (1.22) satisfies (1.3)
for a0 > 0, and (1.4) for a0 = 0 respectively.

Then our main theorem is given as follows:

Theorem 2.1. Let a(t) ∈ C∞([0, T )). If there is λ(t) ∈ C1([0, T ]) satisfying (1.9) such that
(H1), (H2) and (H4) are valid, then there exists a positive constant C such that (1.2) with (1.22)
is established.

Remark 2.2. The energy estimate of solution to (1.1) for a0 > 0 and T = ∞ with the coefficient
in the Gevrey classes is studied in [14]. This result is corresponding to the case that λ(t) = 1,
{Mk} = {k!ν} with ν > 1 and η(r) = r.

Example 2.1. Let us examine the orders of {Mk} and ρ(t) corresponding to the example
Example 1.1.

(i) Let ν ≥ 1 and Mk = k!ν . Then by Example 1.1 (i) there exist positive constants δ0 and
δ1 such that

δ−ν
1 (log τ)ν ≤ M−1(τ) ≤ δ−ν

0 (log τ)ν . (2.1)

It follows that

ρ(t) ≤ δν1λ(t)

(
log

Λ(t)

Θ(t)

)−ν

η

(
1

Θ(t)

)
=: ρ1(t; ν).

(ii) Let s ≥ 1 andMk =
∏k

j=1 exp(j
s). Then by Example 1.1 (ii) there exist positive constants

δ0 and δ1 such that

exp
(
δ
− s

s+1

1 (log τ)
s

s+1

)
≤ M−1(τ) ≤ exp

(
δ
− s

s+1

0 (log τ)
s

s+1

)
. (2.2)

It follows that

ρ(t) ≤ λ(t) exp

(
−δ

− s
s+1

1

(
log

Λ(t)

Θ(t)

) s
s+1

)
η

(
1

Θ(t)

)
=: ρ2(t; s).

(iii) For the finite sequence {Mk}mk=1 Then we get M(r) ≃ rm, which follows M−1(τ) ≃ τ1/m.
Then we have

ρ(t) ≃ λ(t)

(
log

Λ(t)

Θ(t)

)− 1
m

η

(
1

Θ(t)

)
=: ρ3(t;m).

Now we see that

ρ1(t; ν) = o (ρ1(t; ν0)) , ρ2(t; s) = o (ρ2(t; s0)) , ρ3(t;m) = o (ρ3(t;m0))
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for m < m0, s > s0, ν > ν0, and that

ρ2(t; s) = o(ρ1(t; ν)), ρ3(t;m) = o(ρ2(t; s))

for any m ≥ 2, s ≥ 1 and ν ≥ 1 as t → T . Here we note that the order of oscillating speed of
a(t) satisfying (1.15) as t → T is given by M1λ(t)ρ(t). Thus we observe that faster oscillation
is admissible for the estimate (1.2) as the order of {Mk} is smaller, that is, the coefficient is
smoother.

Let us introduce concrete examples of a(t), which can be applied for Theorem 2.1.

Example 2.2. Let 2 ≤ m ≤ ∞ and ω(r) ∈ Cm(R) be a 1-periodic function satisfying 0 ≤
ω(r) ≤ 1, ω(r) ≡ 0 near r = 0 and

sup
r∈R

{∣∣∣ω(k)(r)
∣∣∣} ≤Mk (k = 0, . . . ,m)

for a sequence of positive real numbers {Mk}mk=0 satisfying (1.16). For 0 < δ < 1, p ∈ N and
q > p we define {τj}∞j=0 and a(t) by τj = T − δj and

a(t) =

{
(T − t)p

(
1 + ω

(
δ−jq(t− τj)

))
, t ∈ [τj , τj + δjq] =: Ij ,

(T − t)p, t ∈ (τj + δjq, τj+1] =: Ĩj
(2.3)

for j = 0, 1, . . .. For t ∈ Ij and k = 1, . . . ,m we have

∣∣∣a(k)(t)∣∣∣ ≤ k∑
l=0

(
k

l

)
p!

(p− l)!
(T − t)p−lδ−jq(k−l)Mk−l

≤pkδj(p−kq)Mk

k∑
l=0

(
k

l

)
pl−kδjl(q−1)Mk−l

Mk

≤(2p)kMkδ
j(p−kq).

If we define λ(t) = (T − t)p, then for t ∈ Ij ∪ Ĩj we have

λ(t) ≃ δjp, Λ(t) ≃ (T − t)p+1 ≃ δj(p+1),

and

Θ(t) ≃
∞∑
l=j

δl(p+q) ≃ δj(p+q),

which follows that δ−jq ≃ λ(t)/Θ(t) and Λ(t)/Θ(t) ≃ δ−j(q−1) ≃ Θ(t)−(q−1)/(p+q). Therefore we
have ∣∣a(k)(t)∣∣

λ(t)
≤Mk

C λ(t)

M−1
(

Λ(t)
Θ(t)

) 1

Θ(t)
M−1

(
C1

(
1

Θ(t)

) q−1
p+q

)k

,

where C and C1 are positive constants. From now on, we shall denote universal positive constants
by C and Ck (k = 1, 2, . . .). Let us examine the condition of η and the order of µ such that the
estimate (1.15) for (1.21) is valid.
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(i) Let ν ≥ 1 and Mk = k!ν . Noting the estimates (2.1), we have

M−1
(
C1τ

q−1
p+q

)
≤ δ−ν

0

(
log
(
C1τ

q−1
p+q

))ν
≤ C2 (log τ)

ν .

Therefore, setting η(τ) = C2τ(log τ)
ν , that is,

µ(r) =
r

η−1(r)
≃ (log r)ν ,

we have the estimate (1.2).

(ii) Let s > 0 and Mk =
∏k

j=1 exp(j
s). Noting the estimates (2.2), we have

M−1
(
C1τ

q−1
p+q

)
≤ exp

(
δ
− s

s+1

0

(
log
(
C1τ

q−1
p+q

)) s
s+1

)
≤ exp

(
C2 (log τ)

s
s+1

)
.

Therefore, setting η(τ) = C0τ exp(C2(log τ)
s

s+1 ), that is,

µ(r) =
r

η−1(r)
≃ exp

(
C (log r)

s
s+1

)
,

we have the estimate (1.2).

(iii) Let m <∞. Noting M−1(τ) ≃ r
1
m , we have

∣∣a(k)(t)∣∣
λ(t)

≤

C λ(t)

M−1
(

Λ(t)
Θ(t)

) ( 1

Θ(t)

)γm

k

for k = 1, . . . ,m, where γm = 1 + (q − 1)/(m(p + q)). Therefore, setting η(τ) = Cτγm ,
that is,

µ(r) = C
1

γm r
1− 1

γm ,

we have the estimate (1.2). Here we note that γm is strictly increasing since q > 1 and
limm→∞ γm = 1.

Remark 2.3. In [3, 10] the authors consider the relation between the smoothness of the coeffi-
cient and the order of µ for the estimate (1.2). Their classes of the coefficient lie between C∞

and real analytic class, and one can identify them with the ultradifferentiable classes. Actually,
the coefficients in [3, 10] can have many zeros and the smoothness is uniform on [0, T ]. On the
other hand, the coefficient a(t) in our theorem may has a zero only at t = T , however it can be
singular at t = T .

Remark 2.4. The similar problem for a generalization of the equation in (1.1) to the following
second order weakly hyperbolic equation with first order terms:(

∂2t − α(t, ∂x) + β(t, ∂x)
)
u = 0, (2.4)

where

α(t, ξ) =
∑

1≤j,k≤n

αjk(t)ξjξk, β(t, ξ) =

n∑
j=1

βj(t)ξ,

is open. It essentially needs to introduce some suitable Levi condition and stabilization property
for α(t, ξ)/|ξ|2 corresponding to (1.11); however, the both of them are non-trivial. We will try
to find them in forthcoming papers.
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3 Proof of the theorem

3.1 Strategy of the proof

By partial Fourier transformation with respect to x the Cauchy problem (1.1) is reduced to the
following problem: {(

∂2t + a(t)2|ξ|2
)
v = 0, (t, ξ) ∈ (0, T ]×Rn,

(v(0, ξ), vt(0, ξ)) = (v0(ξ), v1(ξ)), ξ ∈ Rn.
(3.1)

A basic idea of the proof is appropriate division of the phase space into several zones and deriving
estimates of the solution in different ways in the each zone. We represent the properties of the
solution by three characters; smoothness, degeneration, and stabilization, which are described
by the orders of {Mk}, λ(t), and Θ(t) respectively. These properties are possible to make some
influence to the loss of regularity of the solution, however they are not uniform in the phase
space. For instance, the smoothness of the coefficient is not important for the estimate in the
low frequency zone, but the order of the stabilization is crucial for the estimate in there. On
the other hand, in the high frequency zone, the smoothness essentially contributes to precise
estimate of the solution, but the degeneration and stabilization do not give so big influence. We
essentially divide the phase space into three zones: ZΨ,0, ZΨ,2 and ZH , which will be introduced
below, and the intermediate zones of them. Let us make preparations for the definitions of the
zones.

Let N be a large constant; more precisely, it is chosen like

N ≥ max

{
1

η (Tλ(0))
,
2M0λ(0)√
3M1ρ(0)

, 64ν2κ2
(
4π2M0

3

)3
}
,

where κ and ν are constants, which will be defined by (3.13).

Definition 3.1. For r ∈ [1,∞) we define τ0 = τ0(r), τ1 = τ1(r) and τ2 = τ2(r) as follows:

τ0(r) =

0, r ∈
[
1, Nη

(
1

Tλ(0)

))
,

max
{
t ∈ [0, T ] ; Nη

(
1

(T−t)λ(t)

)
= r
}
, r ∈

[
Nη

(
1

Tλ(0)

)
,∞
)
,

τ1(r) =

0, r ∈
[
1, Nη

(
1

Λ(0)

))
,

max
{
t ∈ [0, T ] ; Nη

(
1

Λ(t)

)
= r
}
, r ∈

[
Nη

(
1

Λ(0)

)
,∞
)
,

τ2(r) =

0, r ∈
[
1, Nη

(
1

Θ(0)

))
,

max
{
t ∈ [0, T ] ; Nη

(
1

Θ(t)

)
= r
}
, r ∈

[
Nη

(
1

Θ(0)

)
,∞
)
.

(3.2)

It is easy to verify that

(T − τ0)λ(τ0) = Λ(τ1) = Θ(τ2) =
1

η−1
(
r
N

) (3.3)

since τ0, τ1 and τ2 are positive.

Definition 3.2. For r ∈ [1,∞) we define tl = tl(r) (l = 0, 1, . . .) as follows:

tl(r) =

0, r ∈
[
1, N

Ml+1

Ml

ρ(0)
λ(0)

)
,

max
{
t ∈ [0, T ] ; N

Ml+1

Ml

ρ(t)
λ(t) = r

}
, r ∈

[
N

Ml+1

Ml

ρ(0)
λ(0) ,∞

)
.

(3.4)
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Definition 3.3. We define l0 ∈ N by

l0 = max

{
2,min

{
l ∈ N ; η

(
1

Θ(0)

)
≤ Ml+1

Ml

ρ(0)

λ(0)

}}
. (3.5)

Moreover, for l ≥ l0 we define sl ∈ [0, T ) and Rl ∈ [1,∞) by

sl = max

{
t ∈ (0, T ) ;

Λ(t)

Θ(t)
=
M l

l+1

M l+1
l

}
(3.6)

and

Rl = Nη

(
1

Θ(sl)

)
. (3.7)

�
��(�)

��(�)

��(�)

�

	


� �
�(�)


� �

(�)


� �
��(�)

�

��(�)

�

�

��	(�)

��	
�(�)

��	


�	

�� �
�(�)

�
��	��

��	

�(�)
�(�)

�
��	
��	��

�(�)
�(�)

From the above definitions the following properties are immediately valid:

Lemma 3.1. (i) τj(r) (j = 0, 1, 2) and tl(r) (r = 0, 1, . . .) are monotonically increasing and
tend to T as r → ∞.
(ii) τ0(r) ≥ τ1(r) ≥ τ2(r) for any r ∈ [1,∞).
(iii) If tl+1(r) > 0, then tl(r) > tl+1(r).
(iv) sl = τ2(Rl) = tl(Rl), Rl ≥ 2/

√
3 and τ2(r) < tl(r) for r > Rl.

Proof. (i), (ii) and (iii) are trivial. By (1.19), (1.21), (3.2), (3.4), the definitions of sl and Rl we
have η(1/Θ(sl)) = Rl/N = η(1/Θ(τ2(Rl))) and

ρ(sl)

λ(sl)
=

η
(

1
Θ(sl)

)
M−1

(
Λ(sl)
Θ(sl)

) =
Rl

NM−1

(
M l

l+1

M l+1
l

) =
Rl

N

Ml

Ml+1
=
ρ(tl(Rl))

λ(tl(Rl))
.

Hence, noting Remark 1.4, we have sl = τ2(Rl) = tl(Rl) and

Rl = N
Ml+1

Ml

ρ(tl(Rl))

λ(tl(Rl))
≥ N

M1

M0

ρ(0)

λ(0)
≥ 2√

3
.

Moreover, for r > Rl we have

η

(
1

Θ(τ2(r))

)
=
r

N
=
Ml+1

Ml

η
(

1
Θ(tl(r))

)
M−1

(
Λ(tl(r))
Θ(tl(r))

) < Ml+1

Ml

η
(

1
Θ(tl(r))

)
M−1

(
Λ(tl(Rl))
Θ(tl(Rl))

)
=
Ml+1

Ml

η
(

1
Θ(tl(r))

)
M−1

(
Λ(sl)
Θ(sl)

) = η

(
1

Θ(tl(r))

)
,
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it follows that τ2(r) < tl(r).

Let us define the zones of the phase space as follows:

ZΨ,0 = {τ0(⟨ξ⟩) ≤ t ≤ T},
ZΨ,1 = {τ1(⟨ξ⟩) ≤ t < τ0(⟨ξ⟩)},
ZΨ,2 = {τ2(⟨ξ⟩) ≤ t < τ1(⟨ξ⟩)},
ZR = {0 ≤ t < τ2(⟨ξ⟩)} ∩ {⟨ξ⟩ ≤ Rl0},
ZH = {0 ≤ t < τ2(⟨ξ⟩)} \ ZR.

(3.8)

Moreover, for k ≥ l0 we define the subzones ZH,k of ZH by

� = 〈�〉��(�)�
(�)��(�)

�




��,�

��,

��,�

��

���

��

� = 〈�〉

�

��

	
�

�
��


�
���

���
(�)
��(�)

��

�
���(�)�
��
(�)

���


���
(�)

��(�)�
�(�)

ZH,k = {(t, ξ) ∈ ZH ; tk(⟨ξ⟩) ≤ t < tk−1(⟨ξ⟩)}.
Thanks to (1.17) we see that ZH =

∪∞
k=l0

ZH,k.

3.2 Estimate in ZΨ,0

Let (t, ξ) ∈ ZΨ,0. We define E0(t, ξ) by

E0(t, ξ) =
1

2

(
(T − τ0)

−2Λ(τ0)
2|ξ|2|v(t, ξ)|2 + |vt(t, ξ)|2

)
.

In view of (1.12) we have

∂tE0(t, ξ) =
(
(T − τ0)

−2Λ(τ0)
2 − a(t)2

)
|ξ|2ℜ{vvt}

≤(T − τ0)
−2Λ (τ0)

2 +M2
0λ(t)

2

(T − τ0)−1Λ (τ0)
|ξ|E0(t, ξ)

≤
(
(T − τ0)

−1Λ(τ1) +
M2

0 (T − τ0)λ(τ0)

Λ(τ0)
λ(t)

)
⟨ξ⟩E0(t, ξ).

Therefore, by Gronwall’s inequality and (3.3) we have

E0(t, ξ) ≤E0(τ0, ξ) exp
(∫ t

τ0

(
(T − τ0)

−1Λ(τ1) +
M2

0 (T − τ0)λ(τ0)

Λ(τ0)
λ(s)

)
ds⟨ξ⟩

)
≤E0(τ0, ξ) exp

(
Λ(τ1)⟨ξ⟩+M2

0 (T − τ0)λ(τ0)⟨ξ⟩
)

=E0(τ0, ξ) exp

(1 +M2
0

)
⟨ξ⟩

η−1
(
⟨ξ⟩
N

)


=E0(τ0, ξ) exp
(
N
(
1 +M2

0

)
µ

(
⟨ξ⟩
N

))
uniformly in ZΨ,0.
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3.3 Estimate in ZΨ,1

Let (t, ξ) ∈ ZΨ,1. We define E1(t, ξ) by

E1(t, ξ) =
1

2

(
λ(t)2Λ(t)

Λ(τ1)
|ξ|2|v(t, ξ)|2 + |vt(t, ξ)|2

)
.

Since λ(t)2Λ(t) is monotonically decreasing, we have

∂tE1(t, ξ) =
1

2
∂t

(
λ(t)2Λ(t)

Λ(τ1)

)
|ξ|2|v(t, ξ)|2 +

(
λ(t)2Λ(t)

Λ(τ1)
− a(t)2

)
|ξ|2ℜ{vvt}

≤

 λ(t)2Λ(t)
Λ(τ1)

+M2
0λ(t)

2

λ(t)Λ(t)
1
2

Λ(τ1)
1
2

⟨ξ⟩

 E1(t, ξ)

=− ∂t

(
2Λ(t)

3
2

3Λ(τ1)
1
2

+ 2M2
0Λ(τ1)

1
2Λ(t)

1
2 ⟨ξ⟩

)
E1(t, ξ).

Therefore, by Gronwall’s inequality we have

E1(t, ξ) ≤ exp

((
2

3
+ 2M2

0

)
Λ(τ1)⟨ξ⟩

)
E1(τ1, ξ).

=exp

(
N

(
2

3
+ 2M2

0

)
µ

(
⟨ξ⟩
N

))
E1(τ1, ξ)

uniformly in ZΨ,1.

3.4 Estimate in ZΨ,2

Let (t, ξ) ∈ ZΨ,2. We define E2(t, ξ) by

E2(t, ξ) =
1

2

(
λ(t)2|ξ|2|v(t, ξ)|2 + |vt(t, ξ)|2

)
.

On account of (1.12) we have

∂tE2(t, ξ) ≤
(λ(t) + a(t)) |λ(t)− a(t)|

λ(t)
|ξ|E2(t, ξ)

≤ (1 +M0) |λ(t)− a(t)|⟨ξ⟩E2(t, ξ).

Therefore, by Gronwall’s inequality we have

E2(t, ξ) ≤ exp

(
(1 +M0)

∫ t

τ2

|λ(s)− a(s)| ds⟨ξ⟩
)
E2(τ2, ξ)

≤ exp ((1 +M0)Θ(τ2)⟨ξ⟩) E2(τ2, ξ)

= exp

(
N (1 +M0)µ

(
⟨ξ⟩
N

))
E2(τ2, ξ)

uniformly in ZΨ,2.
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3.5 Estimate in ZR

Let (t, ξ) ∈ ZR. In the same way as the estimate in ZΨ,2 we have

E2(t, ξ) ≤ exp
(
(1 +M0)

2 Λ(0)Rl0

)
E2(0, ξ)

uniformly in ZR.

3.6 Estimate in ZH,m

3.6.1 Refined diagonalization procedure

Let us reduce the equation in (3.1) to the following first order system:

∂tV1 = A1V1, (3.9)

where

V1 =

(
vt + ia(t)|ξ|v
vt − ia(t)|ξ|v

)
, A1 =

(
ϕ1 b1
b1 ϕ1

)
,

b1 = b1 = − a′(t)

2a(t)
and ϕ1 =

a′(t)

2a(t)
+ ia(t)|ξ|. (3.10)

Let us denote

ϕ1ℜ = ℜ{ϕ1} =
d

dt
log
√
a(t), ϕ1ℑ = ℑ{ϕ1} = a(t)|ξ|,

λ1 = ϕ1ℜ + i
√
ϕ21ℑ − |b1|2

and

θ1 =
λ1 − ϕ1

b1
= −i

ϕ1ℑ

b1

(
1−

√
1− |b1|2

ϕ21ℑ

)
.

The eigenvalues {λ1+, λ1−} of A1 and their corresponding eigenvectors are given by λ1+ = λ1,
λ1− = λ1, and {t(1, θ1), t(θ1, 1)} respectively. Therefore, if |θ1| < 1, then A1 is diagonalized by
the diagonalizer Ξ1 as follows:

Ξ−1
1 A1Ξ1 =

(
λ1 0

0 λ1

)
, Ξ1 =

(
1 θ1
θ1 1

)
.

Let us define V2 = Ξ−1
1 V1. Then V2 solves the following system:

∂tV2 = A2V2, (3.11)

A2 =

(
λ1 0

0 λ1

)
− Ξ−1

1 (∂tΞ1) =

(
ϕ2 b2
b2 ϕ2

)
,

where

b2 = − (θ1)t
1− |θ1|2

and ϕ2 = ϕ2ℜ + iϕ2ℑ,

ϕ2ℜ =ϕ1ℜ − ∂t log
√

1− |θ1|2

and

ϕ2ℑ =
√
ϕ21ℑ − |b1|2 −ℑ

{
θ1b2

}
.

Generally, we have the following lemma:
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Lemma 3.2. Let Vk be a solution to the following system:

∂tVk = AkVk, Ak =

(
ϕk bk
bk ϕk

)
,

and the matrix Ξk be defined by

Ξk =

(
1 θk
θk 1

)
, θk = −i

ϕkℑ

bk

(
1−

√
1− |bk|2

ϕ2kℑ

)
,

where ϕkℜ = ℜ{ϕk} and ϕkℑ = ℑ{ϕk}. If |θk| < 1, then Vk+1 = Ξ−1
k Vk solves the following

system:

∂tVk+1 = Ak+1Vk+1,

where

Ak+1 =

(
ϕk+1 bk+1

bk+1 ϕk+1

)
, bk+1 = − (θk)t

1− |θk|2

and

ϕk+1 = ϕk − ∂t log
√

1− |θk|2 + i

(
−ϕkℑ +

√
ϕ2kℑ − |bk|2 −ℑ{θkbk+1}

)
.

Proof. The proof is straightforward.

Let (t, ξ) ∈ ZH,k, and denote Vk = t(Vk,1, Vk,2). Then we obtain

∂t|Vk|2 =2ℜ (AkVk, Vk)C2 = 2ϕkℜ|Vk|2 + 4ℜ{bkVk,1Vk,2}
≤2 (ϕkℜ + |bk|) |Vk|2,

which follows that

|Vk(t, ξ)|2 ≤ exp

(
2

∫ t

τ
(ϕkℜ(s, ξ) + |bk(s, ξ)|) ds

)
|Vk(τ, ξ)|2 (3.12)

for tk ≤ τ < t ≤ tk−1. Thus we must consider the invertibility of Ξk, the estimates for∫ t
τ ϕkℜ(s, ξ) ds and

∫ t
τ |bk(t, ξ)| ds if we derive suitable estimates in ZH,k corresponding to the

estimates in the zones ZΨ,0, ZΨ,1, ZΨ,2 and ZR.

3.6.2 Symbol class in ZH,m

We define the constants κ1, κ and ν by

κ1 =
4π2M0

3
, κ = 16κ41 and ν = e2C0κ1. (3.13)

Let us fix a positive integer m. For integers p, q and r with 0 ≤ p ≤ m, and positive real
numbers K and N , the symbol class S(p){q, r;K,N} is the set of functions satisfying∣∣∣∂kt f(t, ξ)∣∣∣ ≤ K

Mr+k

(r + k + 1)2
(λ(t)⟨ξ⟩)q (νρ(t))r+k

for k = 0, . . . , p in ZH,m. Here we introduce the notation

S(p){q, r;K,N} = S(p){q, r;K} and S(p){q, r; 1} = S(p){q, r}

without any confusion. From the definition we immediately know that S(p1){q, r;K} ⊂ S(p2){q, r;K}
for any p1 > p2. Moreover, we have the following lemma:
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Lemma 3.3. The following properties are established in ZH,m:
(i) If f ∈ S(p){q, r;K} and p ≥ 1, then ∂tf ∈ S(p−1){q, r + 1;K}.
(ii) If f1 ∈ S(p){q, r;K1} and f2 ∈ S(p){q, r;K2}, then f1 + f2 ∈ S(p){q, r;K1 +K2}.
(iii) If f ∈ S(p){q, r;K1} and K2 > 0, then K2f ∈ S(p){q, r;K1K2}.
(iv) If f1 ∈ S(p){q1, r1;K1} and f2 ∈ S(p){q2, r2;K2}, then f1f2 ∈ S(p){q1+q2, r1+r2;κ1K1K2}.
(v) If f ∈ S(p){q, r;K,N}, then f ∈ S(min{p,m−r}){q+ l, r− l;K(νN−1)l, N} for any l ≤ r ≤ m.
(vi) If f ∈ S(p){q, r;K1, N} and g ∈ S(p){−r, r;K2, N}, then fg ∈ S(p){q, r;κ1K1K2(2νN

−1)r, N}
for any p ≤ m and r ≤ m.

Proof. (i), (ii) and (iii) are evident from the definition of the symbol classes.
(iv): Let k ∈ N and assume that r1 ≤ r2 without loss of generality. Because of Leibniz rule,
Lemma 4.1 and Lemma 4.2 we have∣∣∣∂kt (f1f2)∣∣∣ ≤K1K2

Mr1+r2

(r1 + r2 + k + 1)2
(λ(t)⟨ξ⟩)q1+q2 (νρ(t))r1+r2+k

×
k∑

j=0

(
k

j

)
Mr1+jMr2+k−j

Mr1+r2+k

(
r1 + r2 + k + j

(r1 + j + 1)(r2 + k − j + 1)

)2

.

≤4π2M0

3
K1K2

Mr1+r2

(r1 + r2 + k + 1)2
(λ(t)⟨ξ⟩)q1+q2 (νρ(t))r1+r2+k .

(v): Let 0 ≤ k ≤ min{p,m − r}. Noting (1.16) and that ρ(t)/λ(t) is strictly increasing, we
obtain ∣∣∣∂kt f ∣∣∣ ≤K Mr+k

(r + k + 1)2
(λ(t)⟨ξ⟩)−r(νρ(t))r+k

=K

(
νρ(t)

λ(t)⟨ξ⟩

)r Mr+k

Mk

(k + 1)2

(r + k + 1)2
Mk

(k + 1)2
(νρ(t))k

≤K
(
νρ(tm−1)

λ(tm−1)⟨ξ⟩

)r Mr+k

Mk

Mk

(k + 1)2
(νρ(t))k

=K
( ν
N

)r (k + r) · · · (k + 1)

mr

Mk+r

(k+r)Mk+r−1
· · · Mk+1

(k+1)Mk(
Mm

mMm−1

)r Mk

(k + 1)2
(νρ(t))k

≤K
( ν
N

)r Mk

(k + 1)2
(νρ(t))k.

(vi): Let 0 ≤ k ≤ p. By Lemma 4.1 and Lemma 4.2∣∣∣∂kt (fg)∣∣∣ ≤K1K2

(
νρ(t)

λ(t)⟨ξ⟩

)r Mr+k

(r + k + 1)2
(λ(t)⟨ξ⟩)q (νρ(t))r+k

×
k∑

j=0

(
k

j

)
(r + k + 1)2

(r + j + 1)2(r + k − j + 1)2
Mr+jMr+k−j

Mr+k

≤κ1K1K2
Mr+k

(r + k + 1)2
(λ(t)⟨ξ⟩)q (νρ(t))r+k

×
(
νρ(tm−1)

λ(tm−1)⟨ξ⟩

)r (r + k − 1)!

(k − 1)!r!

Mr

M0
.
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Noting the estimates(
νρ(tm−1)

λ(tm−1)⟨ξ⟩

)r (r + k − 1)!

(k − 1)!r!

Mr

M0
≤
( ν
N

)r (2m)r

r!

Mr
Mr−1

· · · M1
M0(

Mm
Mm−1

)r
=

(
2ν

N

)r Mr
rMr−1

· · · M1
1M0(

Mm
mMm−1

)r ≤
(
2ν

N

)r

for k ≤ 2m− r + 1 and r ≤ m, we complete the proof.

Moreover, we show the following lemma:

Lemma 3.4. Letm, p and r be positive integers satisfying max{p, r} ≤ m, f ∈ S(p){−r, r;K,N}
and N ≥ 4Kκ1ν. Then there exist g1, g2 ∈ S(min{p,m−r}){−r, r; 2K,N} such that

1

1− f
= 1 + g1 (3.14)

and

1−
√

1− f =
1

2
f(1 + g2). (3.15)

Proof. Let us denote p0 = min{p,m−r}. By Lemma 3.3 (v) we have f ∈ S(p0){0, 0;K(νN−1)r, N},
it follows that |f | ≤ K(νN−1)r < 1. Moreover, by Lemma 3.3 (vi) we see

f l ∈ S(p0)
{
−r, r;K

(
Kκ1

(
2νN−1

)r)l−1
, N
}

(3.16)

for l = 2, 3, . . .. Therefore, by Lemma 3.3 (ii) and noting
∑∞

l=1(Kκ1(2νN
−1)r)l−1 ≤ 2 for

N ≥ 4Kκ1ν we have

g1 =
∞∑
l=1

f l ∈ S(p0) {−r, r; 2K,N} ;

thus (3.14) is proved. Moreover, thanks to the representation

g2 = 2

∞∑
l=1

(
1/2

l + 1

)
(−f)l

and the inequality |
(1/2
l+1

)
| ≤ 1/2 for any l ≥ 0 we have (3.15).

For f ∈ S(p){q, r;K} we introduce the following notation for convenience:

f ≲ Kσ(p){q, r} = Kσ(p){q, r}(t, ξ).

In particular, we denote 1σ(p){q, r} = σ(p){q, r}, that is, σ(p){q, r} stands for any function in
the symbol class S(p){q, r; 1}. Moreover, we introduce the following notation:

• (Scalar product) For K1 > 0 we define

K1(Kσ
(p){q, r}) = (K1K)σ(p){q, r}.
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• (Summation) For K1,K2 > 0 we define

K1σ
(p){q, r}+K2σ

(p){q, r} = (K1 +K2)σ
(p){q, r};

this notation is meaningful by Lemma 3.3 (ii).

• (Inclusion)

K1σ
(p1){q1, r1} ≲ K2σ

(p2){q2, r2} ⇔ S(p1){q1, r1;K1} ⊆ S(p2){q2, r2;K2}.

• (Multiplication) For K1,K2 > 0 we define(
K1σ

(p){q1, r1}
)(

K2σ
(p){q2, r2}

)
≲ κ1K1K2σ

(p){q1 + q2, r1 + r2};

this notation is meaningful by Lemma 3.3 (iv).

By use of the above notation the properties of Lemma 3.3 and Lemma 3.4 are expressed as
follows:

Lemma 3.5. Let 0 ≤ r ≤ m. Then the following properties are established in ZH,m:
(i) If p1 > p2, then σ

(p1){q, r} ≲ σ(p2){q, r}.
(ii) If p ≥ 1 and f ≲ σ(p){q, r}, then ∂tf ≲ σ(p−1){q, r + 1}.
(iii) σ(p){q, r} ≲ (νN−1)lσ(min{p,m−r}){q + l, r − l} for l ≤ r ≤ m.
(iv) σ(p){q1, r1}σ(p){q2, r2} ≲ κ1σ

(p){q1+q2, r1+r2}, and σ(p){q, r}σ(p){−r, r} ≲ κ1(2νN
−1)rσ(p){q, r}

for any p ≤ m and r ≤ m.
(v) If f ≲ Kσ(p){−r, r}, N ≥ 4Kκ1ν and p, r ≤ m, then 2(1−

√
1− f)/f ≲ 1+2Kσ(min{p,m−r}){−r, r}

for f ̸= 0 and 1/(1− f) ≲ 1 + 2Kσ(min{p,m−r}){−r, r} due to |f | < 1.

3.6.3 Symbol calculus of the coefficients

Let (t, ξ) ∈ ZH,m. Then we have the following lemmata:

Lemma 3.6. For any k = 0, 1, . . . the following estimates are established:∣∣∣a(k)(t)∣∣∣ ≤ λ(t)
Mk

(k + 1)2
(
e2ρ(t)

)k
. (3.17)

Proof. The proof is straightforward as below:∣∣∣a(k)(t)∣∣∣ ≤λ(t)Mkρ(t)
k = λ(t)

Mk

(k + 1)2

(
(k + 1)

2
k ρ(t)

)k
≤λ(t) Mk

(k + 1)2
(
e2ρ(t)

)k
.

Lemma 3.7. Let b1 be given by (3.10). Then the following estimates are established:

b1 ≲
C0

2M0
σ(m−1){0, 1} (3.18)

and
b1
ϕ1ℑ

≲ κ1C
2
0

M2
0

σ(m−1){−1, 1}. (3.19)
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Proof. We note that the following estimates are valid for any j ∈ N:∣∣∣∣∣
(
1

a

)(j)
∣∣∣∣∣ ≤ C0

M0
λ(t)−1 Mj

(j + 1)2
(νρ(t))j . (3.20)

Indeed, if (3.20) is valid for any 0 ≤ j ≤ l, then by virtue of Leibniz rule we see

0 =
∣∣∣(1)(l+1)

∣∣∣ = l+1∑
j=0

(
l + 1

j

)
a(j)

(
1

a

)(l−j+1)

,

which follows that (
1

a

)(l+1)

= −1

a

l+1∑
j=1

(
l + 1

j

)
a(j)

(
1

a

)(l−j+1)

.

By Lemma 3.6, Lemma 4.1 and Lemma 4.2 we have∣∣∣∣∣
(
1

a

)(l+1)
∣∣∣∣∣ ≤ C2

0

M0λ(t)

l+1∑
j=1

(
l + 1

j

)
Mj

(j + 1)2
(
e2ρ(t)

)j Ml−j+1

(l − j + 2)2
(νρ(t))l−j+1

≤ C2
0

M0λ(t)

Ml+1

(l + 2)2
(νρ(t))l+1

l+1∑
j=1

(
l + 1

j

)
MjMl−j+1

Ml+1

(
e2

ν

)j
(l + 2)2

(j + 1)2(l − j + 2)2

≤4π2e2C2
0

3νλ(t)

Ml+1

(l + 2)2
(νρ(t))l+1

=
C0

M0
λ(t)−1 Ml+1

(l + 2)2
(νρ(t))l+1

for ν = e2C0κ1. Thus the estimate (3.20) is valid for j = l + 1. Consequently, by the estimates
(3.17) and (3.20) we obtain

∣∣∣b(k−1)
1 (t)

∣∣∣ ≤ C2
0

2M0

Mk

(k + 1)2
(νρ(t))k

k−1∑
j=0

(
k − 1

j

)
(k + 1)2

(j + 2)2(k − j)2

(
e2

ν

)j+1
Mk−j−1Mj+1

Mk

≤ C0

2M0

Mk

(k + 1)2
(νρ(t))k ,

that is, (3.18) is valid. By noting ⟨ξ⟩ ≥ 2/
√
3 in ZH , it follows that |ξ| ≥ ⟨ξ⟩/2, and so that

1

ϕ1ℑ
=

1

a(t)|ξ|
≲ 2C0

M0
σ(m){−1, 0}.

Therefore, by Lemma 3.5 (iv) we know (3.19).

Lemma 3.8. Let κ2 = κ1C
2
0/M

2
0 (> κ1). Then the following estimates are established in ZH,m:

θ1 ≲ κ2σ
(m−1){−1, 1} and detΞ1 ≥ 1− 1/κ22 > 0. (3.21)

Proof. By Lemma 3.5 (iv) and (3.19) we have

|b1|2

ϕ21ℑ
≲ 2κ1κ

2
2νN

−1σ(m−1){−1, 1}.
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Therefore, applying Lemma 3.5 (iv), (v) for K = 2κ1κ
2
2νN

−1 and r = 1, we observe

θ1 =

− ib1
ϕ1ℑ

(
1−

√
1− |b1|2

ϕ2
1ℑ

)
|b1|2
ϕ2
1ℑ

≲ κ2σ
(m−1){−1, 1}

(
1

2
+ 2κ1κ

2
2νN

−1σ(m){−1, 1}
)

≲
(
κ2
2

+
22κ21κ

3
2ν

2

N2

)
σ(m−1){−1, 1} ≲ κ2σ

(m−1){−1, 1}

(3.22)

for N ≥ N1 = 2
√
2κ1κ2ν. Moreover, by Lemma 3.5 (iii), (iv) we get

|θ1|2 ≲
2κ1κ

2
2ν

N
σ(m−1){−1, 1}

≲2κ1κ
2
2ν

2

N2
σ(m−1){0, 0} ≲ (4κ1)

−1σ(m−1){0, 0}

for N ≥ N1. It follows that det Ξ1 = 1− |θ1|2 ≥ 1− (4κ1)
−2 > 0.

By Lemma 3.8 we can reduce the equation (3.9) to (3.11) by Ξ1 in ZH,m. Up to now, we
can carry out the diagonalization procedures of Lemma 3.2 for k ≤ m − 1 in ZH,m; indeed the
following proposition ensures that.

Proposition 3.1. Let V1 be a solution to (3.9). Then the diagonalization procedures of Lemma
3.2 can be carried out for k = 1, . . . ,m− 1 in ZH,m. Moreover, we have

bk ≲ κkσ(m−k){−k + 1, k} (3.23)

for k = 1, . . . ,m.

For a preparation to prove Proposition 3.1 we introduce the following lemma:

Lemma 3.9. Let (t, ξ) ∈ ZH,m and 1 ≤ k ≤ m − 1. If bk ≲ κkσ(m−k){−k + 1, k} and θk ≲
κkσ(m−k){−k, k}, then detΞk > 0, bk+1 ≲ 2κ1κ

kσ(m−k−1){−k, k + 1} and ϕ1ℑ/ϕ(k+1)ℑ − 1 ≲
σ(m−k−1){0, 0} for N ≥ N2 = 32ν2κ31κ

2(≥ N1).

Proof. Suppose that θk ≲ κkσ(m−k){−k, k}. Then by Lemma 3.5 (iii) and (iv) we have

|θk|2 ≲κ1
(
2νκ2

N

)k

σ(m−k){−k, k} ≲ κ1

(
2ν2κ2

N2

)k

σ(m−k){0, 0}

≲κ1
(

1

4κ21

)k

σ(m−k){0, 0} ≲ 1

4κ1
σ(m−k){0, 0}

≲1

4
σ(m−k){0, 0}

for N ≥ N2. It follows that det Ξk > 0. Moreover, applying Lemma 3.5 (v) with K = 1/4 and
r = 0, we have

1

1± |θk|2
≲ 1 +

1

2
σ(m−k){0, 0} ≲ 2σ(m−k){0, 0}.

Therefore, due to Lemma 3.5 (ii) and the representation of Lemma 3.2 we obtain

bk+1 ≲
(
κkσ(m−k−1){−k, k + 1}

)(
2σ(m−k){0, 0}

)
≲ 2κ1κ

kσ(m−k−1){−k, k + 1}
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and

|bk|2

ϕ2kℑ
=

(
2|θk|

1 + |θk|2

)2

≲
((

2κkσ(m−k){−k, k}
)(

2σ(m−k){0, 0}
))2

≲
(
4κ1κ

kσ(m−k){−k, k}
)2

≲ 16κ31

(
2νκ2

N

)k

σ(m−k){−k, k}

≲16κ31

(
2ν2κ2

N2

)k

σ(m−k){0, 0}.

We denote

αk = −1 +

√
1− |bk|2

ϕ2kℑ
and βk = −ℑ{θkbk+1}

ϕ1ℑ
.

Applying Lemma 3.5 (v) for K = 16κ31(2ν
2κ2N−2)k and r = 0, we have

αk ≲ 16κ31

(
2ν2κ2

N2

)k

σ(m−k){0, 0}

(
1

2
+ 16κ31

(
2ν2κ2

N2

)k

σ(m−k){0, 0}

)

≲ 16κ31

(
2ν2κ2

N2

)k

σ(m−k){0, 0}
(
1

2
+

1

2κ1
σ(m−k){0, 0}

)
≲ 16κ31

(
2ν2κ2

N2

)k

σ(m−k){0, 0} ≲ N−kσ(m−k){0, 0}

and

βk ≲
(
κkσ(m−k){−k, k}

)(
2κ1κ

kσ(m−k−1){−k, k + 1}
)(2C0

M0
σ(m){−1, 0}

)
≲4κ31C0

M0

(
2νκ2

N

)k (
σ(m−k−1){−k − 1, k + 1}

)
≲4νκ31C0

M0N

(
2ν2κ2

N2

)k

σ(m−k−1){0, 0} ≲ N−kσ(m−k){0, 0}

for N ≥ N2. We stand for σ0 = σ(m−k−1){0, 0} and

ψk =

k∏
l=1

(1 + αl) +

k−1∑
j=1

βj

k∏
l=j+1

(1 + αl) + βk.

Owing to the representation in Lemma 3.2, we have

ϕ(k+1)ℑ = ϕ1ℑψk,

and that

ψk ≲

1 +

k∑
j=1

N−jσ0

 k∏
j=1

(
1 +N−jσ0

)
≲

1 +

k∑
j=1

N−jσ0

1 +

∞∑
j=1

(
N−1σ0

)j2

≲

1 +

k∑
j=1

N−jσ0

1 +

∞∑
j=1

(
κ1N

−1
)j
σ0

2

≲
(
1 +

κ1N
−1

1− κ1N−1
σ0

)3

≲
(
1 + 2κ1N

−1σ0
)3

= 1 + 6κ1N
−1σ0 + 12κ21N

−2σ20 + 8κ31N
−3σ30

≲ 1 + 2N−1
(
3κ1 + 6κ31 + 4κ51

)
σ0.
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In the sequel, for N ≥ (N2 ≥)4κ1(3κ1 + 3κ21 + κ31) we have

ϕ1ℑ
ϕ(k+1)ℑ

− 1 =
1− ψk

ψk
=

∞∑
j=1

(1− ψk)
j ≲

∞∑
j=1

(
1

2κ1
σ0

)j

≲
∞∑
j=1

(
1

2

)j

σ0 = σ0.

Thus we complete the proof.

Proof of Proposition 3.1. By noting κ ≥ κ2, the assumptions of Lemma 3.9 are satisfied for k = 1
because of (3.18) and (3.22). Assume that bk+1 ≲ 2κ1κ

kσ(m−k−1){−k, k+1} and ϕ1ℑ/ϕ(k+1)ℑ−
1 ≲ σ(m−k−1){0, 0}. Then we have

bk+1

ϕ(k+1)ℑ
=
bk+1

ϕ1ℑ

(
1 +

ϕ1ℑ
ϕ(k+1)ℑ

− 1

)
≲
(
4C0κ

2
1

M0
κkσ(m−k−1){−k − 1, k + 1}

)(
1 + σ(m−k−1){0, 0}

)
≲8C0κ

3
1

M0
κkσ(m−k−1){−k − 1, k + 1},

and hence

|bk+1|2

ϕ2(k+1)ℑ
≲64C2

0κ
7
1

M2
0κ

2

(
2νκ2

N

)k+1

σ(m−k−1){−k − 1, k + 1}

≲64C2
0κ

7
1

M2
0κ

2

(
2ν2κ2

N2

)k+1

σ(m−k−1){0, 0}.

Therefore, in view of Lemma 3.5 (v) we obtain

θk+1 =− i
bk+1

ϕ(k+1)ℑ

1−
√

1− |bk+1|2
ϕ2
(k+1)ℑ

|bk+1|2
ϕ2
(k+1)ℑ

≲8C0κ
3
1

M0
κkσ(m−k−1){−k − 1, k + 1}

(
1

2
+

64C2
0κ

7
1

M2
0κ

2

(
2ν2κ2

N2

)k+1

σ(m−k−1){0, 0}

)

≲8C0κ
4
1

M0
κkσ(m−k−1){−k − 1, k + 1}

for N ≥ (N2 ≥)(512C2
0ν

4κ71κ
2/M2

0 )
1/4. It follows that θk+1 ≲ κk+1σ(m−k−1){−k − 1, k + 1}

and bk+1 ≲ κk+1σ(m−k−1){−k, k + 1} for κ = 16κ41(= max{16κ41, κ2}) and N ≥ N2. Thus the
proposition is proved by applying Lemma 3.9.

By Proposition 3.1 we have the following lemma:

Lemma 3.10. Let m0,m ∈ N satisfy m ≥ l0(≥ 2), tm0 ≤ τ2 ≤ tm0−1 and tm−1 ≤ τ2, that is,
m− 1 ≤ m0. Then the following estimates are established:∫ tm−1

tm

|bm(τ, ξ)| dτ ≤ N
( κ
N

)m
µ (⟨ξ⟩) (3.24)

and ∫ τ2

tm0

|bm0(τ, ξ)| dτ ≤ N
( κ
N

)m0

µ (⟨ξ⟩) . (3.25)
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Proof. Let m ≥ 2. We note that η(r)/r and r/M−1(r) are monotonically increasing, and so
that ρ(t)Λ(t)/λ(t) is monotonically increasing. Therefore we have(

ρ(τ)

λ(τ)

)m

≤
(
ρ(tm−1)Λ(tm−1)

λ(tm−1)

)m

Λ(τ)−m (tm ≤ t ≤ tm−1)

and (
ρ(τ)

λ(τ)

)m0

≤
(
Λ(τ2)ρ(τ2)

λ(τ2)

)m0

Λ(τ)−m0 (tm0 ≤ t ≤ τ2).

Moreover, by noting

Mm0+1ρ(tm0)

Mm0λ(tm0)
=

Mm0ρ(tm0−1)

Mm0−1λ(tm0−1)
≥ Mm0ρ(τ2)

Mm0−1λ(τ2)
,

it follows that

ρ(tm0 )

λ(tm0 )

ρ(τ2)
λ(τ2)

Mm0+1

Mm0

∈
[
Mm0

Mm0−1
,
Mm0+1

Mm0

]
,

and the equalities

1 =
NMm0+1

⟨ξ⟩Mm0

ρ(tm0 )

λ(tm0 )

ρ(τ2)
λ(τ2)

η
(

1
Θ(τ2)

)
M−1

(
Λ(τ2)
Θ(τ2)

) =
Mm0+1

Mm0

ρ(tm0 )

λ(tm0 )

ρ(τ2)
λ(τ2)

1

M−1
(

Λ(τ2)
Θ(τ2)

) .
Hence we have

Λ(τ2)

Θ(τ2)
= M

Mm0+1

Mm0

ρ(tm0 )

λ(tm0 )

ρ(τ2)
λ(τ2)

 =
Mm0

m0+1

Mm0+1
m0

 ρ(tm0 )

λ(tm0 )

ρ(τ2)
λ(τ2)

m0

. (3.26)

Consequently, we see

Mm

⟨ξ⟩m−1

(
ρ(tm−1)

λ(tm−1)

)m

Λ(tm−1) =N
−m+1Mm

(
Nρ(tm−1)

⟨ξ⟩λ(tm−1)

)m−1 ρ(tm−1)Λ(tm−1)

λ(tm−1)

≤N−m+1Mm

(
Nρ(tm−1)

⟨ξ⟩λ(tm−1)

)m−1 ρ(τ2)Λ(τ2)

λ(τ2)

=
N−m+1

η−1
(
⟨ξ⟩
N

)Mm−1
m−1

Mm−2
m

ρ(τ2)

λ(τ2)

Λ(τ2)

Θ(τ2)

≤ N−m+1

η−1
(
⟨ξ⟩
N

)Mm−1
m−1

Mm−2
m

ρ(tm0)

λ(tm0)

Mm0
m0+1

Mm0+1
m0

 ρ(tm0 )

λ(tm0 )

ρ(τ2)
λ(τ2)

m0−1

≤ N−m⟨ξ⟩

η−1
(
⟨ξ⟩
N

)Mm−1
m−1

Mm−2
m

Mm0−1
m0+1

Mm0
m0

≤N−m+1µ

(
⟨ξ⟩
N

)
≤ N−m+1µ (⟨ξ⟩)
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due to m− 1 ≤ m0, and

Mm0

⟨ξ⟩m0−1

(
ρ(τ2)

λ(τ2)

)m0

Λ(τ2) =N
−m0Mm0

(
Nρ(tm0)

⟨ξ⟩λ(tm0)

)m0

 ρ(τ2)
λ(τ2)

ρ(tm0 )

λ(tm0 )

m0

Λ(τ2)⟨ξ⟩

=N−m0+1M
m0+1
m0

Mm0
m0+1

 ρ(τ2)
λ(τ2)

ρ(tm0 )

λ(tm0 )

m0

Λ(τ2)

Θ(τ2)

⟨ξ⟩
N

η−1
(
⟨ξ⟩
N

)
≤N−m0+1µ

(
⟨ξ⟩
N

)
≤ N−m0+1µ (⟨ξ⟩) .

Therefore, by Proposition 3.1 we have∫ tm−1

tm

|bm(τ, ξ)| dτ ≤ κmMm

(m+ 1)2⟨ξ⟩m−1

∫ tm−1

tm

(
ρ(τ)

λ(τ)

)m

λ(τ) dτ

≤κ
mMm

⟨ξ⟩m−1

(
Λ(tm−1)ρ(tm−1)

λ(tm−1)

)m ∫ tm−1

tm

λ(τ)Λ(τ)−m dτ

≤κ
mMm

⟨ξ⟩m−1

(
ρ(tm−1)

λ(tm−1)

)m

Λ(tm−1)

≤N
( κ
N

)m
µ (⟨ξ⟩)

and ∫ τ2

tm0

|bm0(τ, ξ)| dτ ≤ κm0Mm0

(m0 + 1)2⟨ξ⟩m0−1

∫ τ2

tm0

(
ρ(τ)

λ(τ)

)m0

λ(τ) dτ

≤κ
m0Mm0

⟨ξ⟩m0−1

(
ρ(τ2)

λ(τ2)

)m0

Λ(τ2)

≤N
( κ
N

)m0

µ (⟨ξ⟩) .

Thus the proof of the lemma is completed.

3.6.4 Uniform estimate in ZH,m

Let (t, ξ) ∈ ZH,m, m0 ∈ N be defined in Lemma 3.10, and m1 ∈ N satisfy

NMm1ρ(0)

Mm1−1λ(0)
≤ ⟨ξ⟩ ≤ NMm1+1ρ(0)

Mm1λ(0)
.

Here we note that (0, ξ) ∈ ZH,m1 . Let m1 ≤ k ≤ m0 and (t, ξ) ∈ ZH,k. Then by the representa-
tion

ϕkℜ = ∂t

log
√
a(t)−

k−1∑
j=1

log
√

1− |θj |2

 ,

Lemma 3.10 and (3.12), we get

|Vk(t)|2 ≤ exp

(
2N
( κ
N

)k
µ (⟨ξ⟩)

)
a(t)

a(τ)

k−1∏
j=1

1− |θj(τ)|2

1− |θj(t)|2

 |Vk(τ)|2
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for tk ≤ τ < t ≤ tk−1. Moreover, noting

|Vk+1|2 =
∣∣Ξ−1

k Vk
∣∣2 = 1

(1− |θk|2)2
((
1 + |θk|2

)
|Vk|2 − 4ℜ (θkVk,1, Vk,2)C2

)
⋚ 1

(1∓ |θk|)2
|Vk|2,

and denoting

µk = 2N
( κ
N

)k
µ (⟨ξ⟩) ,

we have

|Vk(tk−1)|2 ≤ eµk
a(tk−1)

a(tk)

∏k−1
j=1

(
1− |θj(tk)|2

)∏k−1
j=1 (1− |θj(tk−1)|2)

(1 + |θk(tk)|)2 |Vk+1(tk)|2. (3.27)

Applying the estimate (3.27) from k = m+ 1 to k = m1, we obtain

|Vm+1(tm)|2 ≤eµm+1
a(tm)

a(tm+1)

∏m
j=1

(
1− |θj(tm+1)|2

)∏m
j=1 (1− |θj(tm)|2)

(1 + |θm+1(tm+1)|)2 |Vm+2(tm+1)|2

≤eµm+1+µm+2
a(tm)

a(tm+2)

(1 + |θm+1(tm+1)|)
(1− |θm+1(tm+1)|)

(1 + |θm+2(tm+2)|)
(1− |θm+2(tm+2)|)

×
∏m+2

j=1

(
1− |θj(tm+2)|2

)∏m
j=1 (1− |θj(tm)|2)

|Vm+3(tm+2)|2

...

≤ exp

(
m1−1∑
k=m+1

µk

)
a(tm)

a(tm1−1)

m1−1∏
k=m+1

(1 + |θk(tk)|)
(1− |θk(tk)|)

×
∏m1−1

j=1

(
1− |θj(tm1−1)|2

)∏m
j=1 (1− |θj(tm)|2)

|Vm1(tm1−1)|2.

Moreover, we have

|Vm1(tm1−1)|2 ≤eµm1
a(tm1−1)

a(0)

∏m1−1
j=1

(
1− |θj(0)|2

)∏m1−1
j=1 (1− |θj(tm1−1)|2)

|Vm1(0)|2

≤eµm1
a(tm1−1)

a(0)

∏m1−1
j=1

(
1− |θj(0)|2

)∏m1−1
j=1 (1− |θj(tm1−1)|2)

1

(1− |θm1−1(0)|)2
|Vm1−1(0)|2

...

≤eµm1
a(tm1−1)

a(0)

∏m1−1
j=1

(
1− |θj(0)|2

)∏m1−1
j=1 (1− |θj(tm1−1)|2)

1∏m1−1
j=1 (1− |θj(0)|)2

|V1(0)|2

=eµm1
a(tm1−1)

a(0)

1∏m1−1
j=1 (1− |θj(tm1−1)|2)

∏m1−1
j=1 (1 + |θj(0)|)∏m1−1
j=1 (1− |θj(0)|)

|V1(0)|2,

|Vm(t)|2 ≤eµm
a(t)

a(tm)

∏m−1
j=1

(
1− |θj(tm)|2

)∏m−1
j=1 (1− |θj(t)|2)

(1 + |θm(tm)|)2 |Vm+1(tm)|2,
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and

|Vm(t)|2 ≥ 1

(1 + |θm−1(t)|)2
|Vm−1(t)|2 ≥ · · · ≥ 1∏m−1

j=1 (1 + |θj(t)|)2
|V1(t)|2.

Summing up the above estimates, we obtain

|V1(t)|2 ≤
m−1∏
j=1

(1 + |θj(t)|)2 |Vm(t)|2

≤eµm
a(t)

a(tm)

∏m−1
j=1 (1 + |θj(t)|)∏m−1
j=1 (1− |θj(t)|)

m−1∏
j=1

(
1− |θj(tm)|2

) (1 + |θm(tm)|)2 |Vm+1(tm)|2

≤ exp

(
m1−1∑
k=m

µk

)
a(t)

a(tm1−1)

∏m−1
j=1 (1 + |θj(t)|)∏m−1
j=1 (1− |θj(t)|)

∏m1−1
k=m (1 + |θk(tk)|)∏m1−1
k=m (1− |θk(tk)|)

×

m1−1∏
j=1

(
1− |θj(tm1−1)|2

) |Vm1(tm1−1)|2.

≤ exp

(
m1∑
k=m

µk

)
a(t)

a(0)

m−1∏
j=1

1 + |θj(t)|
1− |θj(t)|

(m1−1∏
k=m

1 + |θk(tk)|
1− |θk(tk)|

)

×

m1−1∏
j=1

1 + |θj(0)|
1− |θj(0)|

 |V1(0)|2.

By Lemma 3.9 we have the following estimates:

m1∑
k=m

µk ≤ µ (⟨ξ⟩) and |θj(τ)| ≤
(νκ
N

)j
≤ 2−j

for τ ∈ [tj , tj−1]. It follows thatm−1∏
j=1

1 + |θj(t)|
1− |θj(t)|

(m1−1∏
k=m

1 + |θk(tk)|
1− |θk(tk)|

)m1−1∏
j=1

1 + |θj(0)|
1− |θj(0)|

 ≤

 ∞∏
j=1

1 + 2−j

1− 2−j

2

≤ e4.

Consequently, we obtain

|V1(t, ξ)|2 ≤ e4C2
0 exp (µ (⟨ξ⟩)) |V1(0, ξ)|2. (3.28)

If tm0 < t ≤ τ2, then we also know the estimate (3.28) in the same way for the estimate in
ZH,m by employing Lemma 3.10. In the sequel, there exists a positive constant C such that the
following estimate is established:

|V1(t, ξ)|2 ≤ exp (Cµ (⟨ξ⟩)) |V1(0, ξ)|2 (3.29)

uniformly in ZH .
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3.7 Concluding of the proof

We recall that there exists a positive constant C such that the following estimate is established:

Ej(t, ξ) ≤ Ej(τj , ξ) exp (Cµ(⟨ξ⟩))

in ZΨ,k for k = 0, 1, . . .. From the definitions of Ej(t, ξ) (j = 0, 1, 2) and V1(t, ξ) we have

E0(τ0, ξ) =
1

2

(
Λ(τ0)

Λ(τ1)

λ(τ0)
2Λ(τ0)

Λ(τ1)
|ξ|2|v(τ0, ξ)|2 + |vt(τ0, ξ)|2

)
≤ E1(τ0, ξ),

E1(τ1, ξ) = E2(τ1, ξ)

and

|V1(t, ξ)|2 =a(t)2|ξ|2|v(t, ξ)|2 + |vt(t, ξ)|2 ≥ 2C−2
0 E2(t, ξ).

If a0 > 0, then |V1(t, ξ)|2 ≃ Ej(t, ξ) ≃ E(t, ξ) for j = 0, 1, 2. Therefore, there exists a positive
constant C such that the estimate (1.2) is established for any (t, ξ) ∈ [0, T ]× Rn.

If a0 = 0, then by (1.4) there exists a positive constant C such that |ξ| ≤ exp(Cµ(|ξ|)). It
follows that

|V1(0, ξ)| ≤
(
C2
0λ(0)

2|ξ|2|v0(ξ)|2 + |v1(ξ)|2
)

≤max
{
1, C2

0λ(0)
2
}
exp(2Cµ(|ξ|))E(0, ξ).

If (t, ξ) ∈ ZΨ,0 ∩ {(t, ξ) ∈ [0, T ] ; ⟨ξ⟩ ≥ Rl0}, then noting the following estimates:

|vt(t, ξ)|2 ≤2E0(t, ξ) ≤ 2E2(τ2, ξ) exp (3Cµ(⟨ξ⟩)) ≤ C2
0 |V1(τ2, ξ)|2 exp (3Cµ(⟨ξ⟩))

≤C2
0 |V1(0, ξ)|2 exp (5Cµ(⟨ξ⟩))

and

T |vt(t, ξ)| ≥
∣∣∣∣∫ t

0
vt(s, ξ)ds

∣∣∣∣ ≥ |v(ξ, t)| − |v1(ξ)|,

we have

|v(ξ, t)|2 ≤ 2
(
T 2C2

0 exp (5Cµ(⟨ξ⟩)) + 1
)
|V1(0, ξ)|2,

which follows that the estimate (1.2) is established. We have the estimate (1.2) in the other
zones in the similar way. Thus we have completed the proof of Theorem 2.1.

4 Appendix

Lemma 4.1. For any non-negative integers k, r1 and r2 the following estimate holds:

k∑
j=0

(
r1 + r2 + k + j

(r1 + j + 1)(r2 + k − j + 1)

)2

≤ 4π2

3
. (4.1)
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Proof. We may suppose that r1 ≤ r2 without loss of generality. The proof is straightforward as
follows:

k∑
j=0

(
r1 + r2 + k + j

(r1 + j + 1)(r2 + k − j + 1)

)2

≤2

(
2r2 + k + 1

r2 +
[
k+1
2

]
+ 1

)2 ∞∑
j=0

1

(j + 1)2
≤ 4π2

3
,

where [·] denotes the Gauss symbol.

Lemma 4.2. Let {Mk} satisfy (1.16). For any non-negative integers j, k, q and r satisfying
0 ≤ j ≤ k the following estimates are established:(

k

j

)
Mr+jMq+k−j

Mq+r+k
≤M0, (4.2)

and (
k

j

)
Mr+jMr+k−j

Mr+k
≤ (r + k − 1)!

(k − 1)!r!
Mr (4.3)

for k ≥ 1.

Proof. By (1.16) we have(
k

j

)
Mr+jMq+k−j

Mq+r+k
=M0

(
k

j

) q+k−j−1∏
l=0

1

r + j + l + 1

(r + j + l + 1)Mr+j+l

Mr+j+l+1

Ml+1

Ml

≤M0

(
k

j

) q+k−j−1∏
l=0

1

r + j + l + 1

(l + 1)Ml

Ml+1

Ml+1

Ml

≤M0

(
k

j

) k−j−1∏
l=0

l + 1

j + l + 1
=M0.

Let us consider the case r ≥ 1; otherwise the estimate (4.3) coincides with (4.2) as q = r = 0.
By (1.16) we know(

k

j

)
Mr+jMr+k−j

Mr+k
=Mr

(
k

j

) j∏
l=1

r + l

r + k − j + l

Mr+l

(r+l)Mr+l−1

Mr+k−j+l

(r+k−j+l)Mr+k−j+l−1

≤Mr

(
k

j

) j∏
l=1

r + l

r + k − j + l
.

Let us denote

Lj(k, r) =
(k − j + r)!(j + r)!

(k − j)!j!

and

Nj(k, r) =

(k+r−1)!
(k−1)!r!(

k
j

)∏j
l=1

r+l
r+k−j+l

=
(r + k − 1)!

(k − 1)!

(k + r)!

k!

1

Lj(k, r)
.

Noting that Lj−1(k, r) ≤ Lj(k, r) if and only if 2j − 1 ≤ k, we have

max
0≤j≤k

{Lj(k, r)} = L[ k+1
2 ](k, r).
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Consequently, if k is odd, then we obtain

min
0≤j≤k

{Nj(k, r)} =
(k + r − 1) · · · k

(k−1
2 + r) · · · (k−1

2 + 1)

(k + r) · · · (k + 1)

(k+1
2 + r) · · · (k+1

2 + 1)
≥ 1.

On the other hand, if k is even, then we see

min
0≤j≤k

{Nj(k, r)} =
(k + r − 1) · · · k
(k2 + r) · · · (k2 + 1)

(k + r) · · · (k + 1)

(k2 + r) · · · (k2 + 1)
≥ 1.

Therefore, we have Nj(k, r) ≥ 1 for any j ≤ k, which completes the proof of (4.3).
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