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We propose a novel multi-component system of nonlinear equations that general-
izes the short pulse (SP) equation describing the propagation of ultra-short pulses
in optical fibers. By means of the bilinear formalism combined with a hodograph
transformation, we obtain its multisoliton solutions in the form of a parametric
representation. Notably, unlike the determinantal solutions of the SP equation, the
proposed system is found to exhibit solutions expressed in terms of pfaffians. The
proof of the solutions is performed within the framework of an elementary theory
of determinants. The reduced 2-component system deserves a special consideration.
In particular, we show by establishing a Lax pair that the system is completely inte-
grable. The properties of solutions such as loop solitons and breathers are investigated
in detail, confirming their solitonic behavior. A variant of the 2-component system is
also discussed with its multisoliton solutions. C© 2011 American Institute of Physics.
[doi:10.1063/1.3664904]

I. INTRODUCTION

The short pulse (SP) equation was derived as a model nonlinear equation describing the propa-
gation of ultra-short pulses in isotropic optical fibers.1 We write it in an appropriate dimensionless
form as

uxt = u + 1

6
(u3)xx , (1.1)

where u = u(x, t) represents the magnitude of the electric field and subscripts x and t appended to
u denote partial differentiations. The SP equation has appeared for the first time in an attempt to
construct integrable differential equations associated with pseudospherical surfaces.2 The integra-
bility, soliton solutions, and other features of the SP equation common to the completely integrable
partial differential equations (PDEs) have been studied from various points of view.2–10 See also
Ref. 11 for a recent review article on the SP equation which is mainly concerned with soliton and
periodic solutions and their properties. It also provides a novel method for constructing multiperiodic
solutions by means of the bilinear transformation method.

There exist a few generalizations of the SP equation to the 2-component systems that take into
account the effects of polarization and nonisotropy. One is due to Pietrzyk et al. They proposed the
following three integrable vector (or 2-component) SP equations:12

uxt = u + 1

6
(u3 + 3uv2)xx , vxt = v + 1

6
(v3 + 3u2v)xx , (1.2)

uxt = u + 1

6
(u3 − 3uv2)xx , vxt = v − 1

6
(v3 − 3u2v)xx , (1.3)

uxt = u + 1

6
(u3)xx , vxt = v + 1

2
(u2v)xx . (1.4)

a)Electronic mail: matsuno@yamaguchi-u.ac.jp.

0022-2488/2011/52(12)/123702/22/$30.00 C©2011 American Institute of Physics52, 123702-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.62.137.100 On: Thu, 13 Feb 2014 02:56:16

http://dx.doi.org/10.1063/1.3664904
http://dx.doi.org/10.1063/1.3664904
http://dx.doi.org/10.1063/1.3664904
mailto: matsuno@yamaguchi-u.ac.jp


123702-2 Yoshimasa Matsuno J. Math. Phys. 52, 123702 (2011)

Another one is given by Sakovich:13

uxt = u + 1

6
(u3 + uv2)xx , vxt = v + 1

6
(v3 + u2v)xx , (1.5)

uxt = u + 1

6
(u3)xx , vxt = v + 1

6
(u2v)xx . (1.6)

As pointed out by Sakovich,13 the two systems (1.2) and (1.3) can be reduced to the SP equation
(1.1) by appropriate dependent variable transformations. Indeed, introducing the new variables p
and q by p = u + v, q = u − v, the system of equations (1.2) can be decoupled and both p and q
satisfy the SP equation (1.1), while for (1.3), the transformation p = u + iv and q = u − iv leads
to the two decoupled SP equations as well. On the other hand, the integrability of the systems (1.5)
and (1.6) was investigated by means of the Painlevé analysis. Sakovich showed that the above two
systems pass the Painlevé test, providing a strong indication of their integrability. Nevertheless, their
Lax representations, conservations laws, and soliton solutions have not been obtained as yet for the
systems.

The purpose of this paper is to propose a novel multi-component analog of the SP equation
and construct its multisoliton solutions. The system of equations presented here is composed of the
following coupled nonlinear PDEs for the n variables ui(i = 1, 2, . . . , n):

ui,xt = ui + 1

2
(Fui,x )x , (i = 1, 2, . . . , n) (1.7a)

with

F =
∑

1≤ j<k≤n

c jku j uk . (1.7b)

Here, cjk are arbitrary constants with the symmetry cjk = ckj(j, k = 1, 2, . . . , n). For the special case
of n = 2 with c12 = 1, this system becomes

uxt = u + 1

2
(uvux )x , vxt = v + 1

2
(uvvx )x , (1.8)

where u = u1 and v = u2. Obviously, if we put u = v, then (1.8) reduces to the SP equation (1.1). A
simple transformation recasts (1.8) to the system of equations

uxt = u + 1

2
[(u2 + v2)ux ]x , vxt = v + 1

2
[(u2 + v2)vx ]x . (1.9)

If v = 0, then this system reduces to the SP equation (1.1). The present paper is organized as
follows. In Sec. II, we summarize an exact method of solution for the SP equation which will
be suitable for application to the multi-component system. In Sec. III, we show by applying the
standard procedure of the bilinear method that the system of equations (1.7) can be transformed
to a coupled system of bilinear equations and obtain the multisoliton solution in the parametric
form. Notably, the tau-functions constituting the solution are expressed in terms of pfaffians unlike
the determinantal solutions of the SP equation.9 The proof of the multisoliton solution is, however,
performed with use of an elementary theory of determinants without recourse to the pfaffian theory.
In Sec. IV, we consider system (1.8). In particular, we demonstrate that it is a completely integrable
system by establishing a Lax pair. The multisoliton solution to the system is reduced from that of
the n-component system. The properties of the 1- and 2-soliton solutions will be investigated in
detail. Subsequently, we briefly discuss system (1.9). In Sec V, we conclude this study with a short
summary and discuss some open problems associated with the multi-component SP equations.

II. SUMMARY OF THE EXACT METHOD OF SOLUTION

Here, we give a short summary of the exact method of solution for the SP equation. Although
we have employed some nonlinear transformations to reduce the SP to the integrable sine-Gordon
(sG) equations,4, 9, 10 we provide a different approach which is more suitable for solving the system
of equations (1.7).
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A. Hodograph transformation

We first introduce the hodograph transformation (x, t) → (y, τ ) by

dy = rdx + 1

2
u2rdt, dτ = dt, (2.1a)

where r(>0) is a function of u to be determined later. Using (2.1a), the x and t derivatives are
rewritten as

∂

∂x
= r

∂

∂y
,

∂

∂t
= ∂

∂τ
+ 1

2
u2r

∂

∂y
. (2.1b)

It follows from (2.1b) that x = x(y, τ ) satisfies the system of linear PDEs

xy = 1

r
, xτ = −u2

2
. (2.2)

Equation (1.1) is then transformed into the form

uyτ = xyu. (2.3)

The form of r can be determined by the solvability condition of system (2.2), i.e., xyτ = xτy. Indeed,
this immediately gives rτ = uuyr2. On the other hand, it follows from (2.2) and (2.3) that u = ruyτ .
Eliminating the variable u from both relations, one has rτ = uyuyτ r3. If we impose the boundary
conditions u( ± ∞, τ ) = 0, r( ± ∞, τ ) = 1, then we obtain r2 = (1 − u2

y)−1 after integrating this
relation with respect to τ . Since uy = ux/r by (2.1b), we can rewrite this expression into the form

r2 = 1 + u2
x . (2.4)

The above relation has been used to transform the SP equation into the form of conservation law
rt = (u2r/2)x. If one introduces a new variable φ by uy = sin φ, then φ satisfies the sG equation
φyτ = sin φ. This equation was the starting point in constructing multisoliton solutions of the SP
equation.9 Below, we develop an alternative method using (2.3) which will be relevant to application
to the multi-component system.

B. Parametric representation of soliton solutions

The soliton solutions of Eq. (2.3) are constructed by a direct method using the bilinear formalism.
To this end, we first introduce the following dependent variable transformations for u and x:

u = g

f
, (2.5)

x = y + h

f
, (2.6)

where f, g, and h are tau-functions. Note that we may add an arbitrary constant on the right-hand
side of (2.6), if necessary. The second equation of (2.2) is then transformed to the bilinear equation

2Dτ h · f + g2 = 0, (2.7)

where the bilinear operators Dτ and Dy are defined by

Dm
τ Dn

y f · g =
(

∂

∂τ
− ∂

∂τ ′

)m (
∂

∂y
− ∂

∂y′

)n

f (τ, y)g(τ ′, y′)
∣∣∣
τ ′=τ, y′=y

, (m, n = 0, 1, 2, . . .).

(2.8)
On the other hand, Eq. (2.3) becomes

g fy

f 3
(2 fτ + h) − 1

f 2
( fτ gy + fy gτ + fyτ g + ghy) + 1

f
(gyτ − g) = 0. (2.9)
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We can decouple Eq. (2.9) to a set of equations

2 fτ + h = 0, (2.10)

fτ gy + fy gτ + fyτ g + ghy − f (gyτ − g) = 0. (2.11)

Substituting h from (2.10) into Eqs. (2.11) and (2.7), we obtain the following system of bilinear
equations for f and g:

Dy Dτ f · g = f g, (2.12)

D2
τ f · f = 1

2
g2. (2.13)

It then follows from (2.6) and (2.10) that

x = y − 2
fτ
f

. (2.14)

Thus, the soliton solutions of the SP equation are given by the parametric representations (2.5) and
(2.14) in terms of the tau-functions f and g. In the simplest case of the 1-soliton solution, the solutions
to Eqs. (2.12) and (2.13) are easily found to be as

f = 1 + e2ξ , g = 4

p
eξ , ξ = py + 1

p
τ + ξ0, (2.15)

where p and ξ 0 are constants related to the amplitude and phase of the soliton, respectively. The
corresponding parametric representation of the 1-soliton solution is derived from (2.5), (2.14), and
(2.15). It reads

u = 2

p
sech ξ, x = y − 2

p
tanh ξ + x0, (2.16)

where x0 = − p/2. For real p and ξ 0, the solution takes the form of a loop soliton.

C. Remark

We have already shown that the SP equation can be transformed into the sG equation and
obtained the parametric representation of the N-soliton solution. Actually, it reads9

u = 2i

(
ln

f̃ ′

f̃

)
τ

, x = y − 2 (ln f̃ ′ f̃ )τ , (2.17)

where f̃ and f̃ ′ are tau-functions for the sG equation φyτ = sin φ, φ = 2i ln( f̃ ′/ f̃ ) and they satisfy
the bilinear equations

Dy Dτ f̃ · f̃ = 1

2
( f̃ 2 − f̃ ′2), Dy Dτ f̃ ′ · f̃ ′ = 1

2
( f̃ ′2 − f̃ 2). (2.18)

The explicit forms of the tau-functions are given by

f̃ =
∑

μ=0,1

exp

⎡
⎣ N∑

j=1

μ j

(
ξ j + π

2
i
)

+
∑

1≤ j<k≤N

μ jμkγ jk

⎤
⎦ , (2.19a)

f̃ ′ =
∑

μ=0,1

exp

⎡
⎣ N∑

j=1

μ j

(
ξ j − π

2
i
)

+
∑

1≤ j<k≤N

μ jμkγ jk

⎤
⎦ , (2.19b)

where

ξ j = p j y + 1

p j
τ + ξ j0, ( j = 1, 2, . . . , N ), (2.20a)

eγ jk =
(

p j − pk

p j + pk

)2

, ( j, k = 1, 2, . . . , N ; j �= k). (2.20b)
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Here, pj and ξ j0 are arbitrary complex-valued parameters satisfying the conditions p j �= ±pk for
j �= k and N is an arbitrary positive integer. The notation

∑
μ = 0, 1 implies the summation over

all possible combinations of μ1 = 0, 1, μ2 = 0, 1, . . . , μN = 0, 1. Thus, we have two different
expressions for the parametric soliton solutions of the SP equation, i.e., one is (2.5) with (2.14) and
the other is (2.17). We can show that the tau-functions f and g are related to the tau-functions f̃ and
f̃ ′ by the relations

f = f̃ ′ f̃ , g = 2i Dτ f̃ ′ · f̃ , (2.21)

which will be inferred by comparing (2.5) and (2.14) with (2.17).

III. MULTI-COMPONENT SYSTEM

Let us now consider the multi-component system (1.7). The procedure for obtaining the para-
metric representation of soliton solutions parallels that developed in Sec. II for the SP equation.
Hence, we omit the detail of the derivation and write down the final results. Specifically, we give
the parametric representation of soliton solutions and associated system of bilinear equations corre-
sponding to Eqs. (2.12) and (2.13). Then, we present the explicit form of the multisoliton solution
of the bilinear equations. Last, the proof of the multisoliton solution is performed by using an
elementary theory of determinants.

A. Parametric representation of soliton solutions

If we use the hodograph transformation (2.1a) with F given by (1.7b) in place of u2

dy = rdx + 1

2
Frdt, dτ = dt, (3.1)

we then obtain the equations corresponding to Eqs. (2.2) and (2.3) which are given, respectively, by

xy = 1

r
, xτ = − F

2
. (3.2)

ui,yτ = xyui (i = 1, 2, . . . , n). (3.3)

The solvability condition for Eq. (3.2) gives the explicit form of r2 in terms of ui, y (i = 1, 2, . . . , n)
as

r2 = 1

1 −∑
1≤ j<k≤n c jku j,yuk,y

. (3.4a)

If we use the relation uj, y = uj, x/r, then we can rewrite (3.4a) in terms of the original variable ui, x (i
= 1, 2, . . . , n)

r2 = 1 +
∑

1≤ j<k≤n

c jku j,x uk,x . (3.4b)

The parametric representation of the soliton solutions takes the form

ui = gi

f
, (i = 1, 2, . . . , n), x = y − 2

fτ
f

, (3.5)

where the tau-functions f and gi(i = 1, 2, . . . , n) satisfy the system of bilinear equations

Dy Dτ f · gi = f gi , (i = 1, 2, . . . , n), (3.6)

D2
τ f · f = 1

2

∑
1≤ j<k≤n

c jk g j gk . (3.7)

It follows from (3.2)–(3.4a) that ui = ui(y, τ ) obey a closed system of PDEs
ui,yτ√

1 −∑
1≤ j<k≤n c jku j,yuk,y

= ui , (i = 1, 2, . . . , n). (3.8)
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Furthermore, if we introduce the new variables vi by vi = ui, y (i = 1, 2, . . . , n), then the above
system can be recast to

∂

∂y

⎡
⎣ vi,τ√

1 −∑
1≤ j<k≤n c jkv jvk

⎤
⎦ = vi , (i = 1, 2, . . . , n). (3.9)

B. Multisoliton solution of bilinear equations

We first introduce vectors and matrices. Subsequently, we present the explicit multisoliton
solution of the bilinear equations (3.6) and (3.7).

1. Definition

Let a, b, c, and 0 be row vectors having M components

a = (a1, a2, . . . , aM ), b = (b1, b2, . . . , bM ), c = (c1, c2, . . . , cM ),

d = (d1, d2, . . . , dM ), 0 = (0, 0, . . . , 0), (3.10a)

and ei (i = 1, 2, . . . , n) be M-component row vectors defined below:

e1 = (1, 1, . . . , 1︸ ︷︷ ︸
M1

, 0, 0, . . . , 0︸ ︷︷ ︸
M−M1

), . . . , ei = (0, 0, . . . , 0︸ ︷︷ ︸
M1+···+Mi−1

, 1, 1, . . . , 1︸ ︷︷ ︸
Mi

, 0, 0, . . . , 0︸ ︷︷ ︸
M−(M1+···+Mi )

),

. . . , en = (0, 0, . . . , 0︸ ︷︷ ︸
M1+···+Mn−1

, 1, 1, . . . , 1︸ ︷︷ ︸
Mn

), (3.10b)

where M and Mi(i = 1, 2, . . . , n) are positive integers satisfying the condition
∑n

i=1 Mi = M .
The following types of matrices appear in the process of proving the multisoliton solution:

D = (di j )1≤i, j≤2M =
(

AM IM

−IM BM

)
, D(a; b) =

⎛
⎜⎝

AM IM bT

−IM BM 0T

a 0 0

⎞
⎟⎠, (3.11a)

D(a, b; c, d) =

⎛
⎜⎜⎜⎜⎝

AM IM cT dT

−IM BM 0T 0T

a 0 0 0

b 0 0 0

⎞
⎟⎟⎟⎟⎠, D(a, ei ; b, e j ) =

⎛
⎜⎜⎜⎜⎝

AM IM bT 0T

−IM BM 0T eT
j

a 0 0 0

0 ei 0 0

⎞
⎟⎟⎟⎟⎠,

(3.11b)

D(a, b, ei ; c, d, e j ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

AM IM cT dT 0T

−IM BM 0T 0T eT
j

a 0 0 0 0

b 0 0 0 0

0 ei 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠, (3.11c)

where AM = (aij)1 ≤ i, j ≤ M and BM = (bij)1 ≤ i, j ≤ M are M × M skew-symmetric matrices, IM is the
M × M unit matrix, and the symbol T denotes the transpose.

The element aij of the matrix AM is given by

ai j = − pi − p j

pi + p j
eξi +ξ j = − pi − p j

pi + p j
zi z j , (i, j = 1, 2, . . . , M), (3.12)
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where ξ i is defined by (2.20a) and zi = eξi . To specify the matrix BM, let Si (i = 1, 2, . . . , n) be n
disjoint sets consisting of positive integers

S1 = {1, . . . , M1}, . . . , Si = {M1 + M2 + · · · + Mi−1 + 1, . . . , M1 + · · · + Mi },

. . . , Sn = {M1 + M2 + · · · + Mn−1 + 1, . . . , M1 + · · · + Mn}. (3.13)

Then

bμν = 1

4
ci j

(pμ pν)2

p2
μ − p2

ν

, μ ∈ Si , ν ∈ Sj (μ, ν = 1, 2, . . . , M (μ �= ν); i, j = 1, 2, . . . , n (i �= j)),

(3.14)
bμν = 0 if μ and ν belong to the same set and bμμ = 0 for all μ. Thus, BM has the structure

BM =

⎛
⎜⎜⎜⎜⎜⎝

OM1×M1 BM1×M2 ... BM1×Mn

−BT
M1×M2

OM2×M2 ... BM2×Mn

...
...

. . .
...

−BT
M1×Mn

−BT
M2×Mn

... OMn×Mn

⎞
⎟⎟⎟⎟⎟⎠, (3.15a)

BMi ×M j = (bμν)μ∈Si ,ν∈Sj (1 ≤ i < j ≤ n),

OMi ×Mi : Mi × Mi null matrix (i = 1, 2, . . . , n). (3.15b)

2. Multisoliton solution

Now, we state our main result.

Theorem 3.1: The multisoliton solution of the system of bilinear equations (3.6) and (3.7) is
given by the following form:

f =
√

F, F = |D|, (3.16a)

gi =
√

Gi , Gi = |D(−z,−ei ; z, ei )|, (i = 1, 2, . . . , n), (3.16b)

where z is the M-component vector z = (eξ1 , eξ2 , . . . , eξM ). The parametric solution ui (3.5) con-
structed from these tau-functions contains Mi solitons for each i.

Note that f and gi are pfaffians since each one of them is represented by the square root of the
skew-symmetric determinant of even order. This fact is in striking contrast to the tau-functions of
the N-soliton solution for the SP equation which can be represented by determinants.

C. PROOF OF MULTISOLITON SOLUTION

1. Basic formulas for determinants

Let A = (aij)1 ≤ i, j ≤ M be an M × M matrix and Aij be the cofactor of the element aij. Then, the
following three formulas for determinants are employed frequently in our analysis:14

∂

∂x
|A| =

M∑
i, j=1

∂ai j

∂x
Ai j , (3.17)

∣∣∣∣∣ A aT

b z

∣∣∣∣∣ = |A|z −
M∑

i, j=1

Ai j ai b j , (3.18)

|A(a, b; c, d)||A| = |A(a; c)||A(b; d)| − |A(a; d)||A(b; c)|. (3.19)
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123702-8 Yoshimasa Matsuno J. Math. Phys. 52, 123702 (2011)

Formula (3.17) is the differential rule of the determinant and (3.18) is the expansion formula for a
bordered determinant with respect to the last row and column. Formula (3.19) is Jacobi’s identity
and it will play a central role in the proof of the multisoliton solution.

2. Differential formulas

We give various differential formulas for the determinants F and Gi introduced in (3.16) which
are necessary for the proof of the solution. The following formulas are derived easily with use
of (3.17) and (3.18) as well as the relation |D( − z; z)| = 0 which follows from the fact that the
skew-symmetric determinant of odd order is identically zero. Hence, we quote only the results:

Fy = −2|D(−z; zy)|, (3.20a)

Fτ = −2|D(−zτ ; z)|, (3.20b)

Fyτ = −2|D(−zτ ; zy)| − 2|D(−z,−zτ ; z, zy)|, (3.20c)

Fττ = −2|D(−zττ ; z)| − 2|D(−z,−zτ ; z, zτ )|, (3.20d)

Gi,y = 2|D(−z,−ei ; zy, ei )|, (3.21a)

Gi,τ = 2|D(−zτ ,−ei ; z, ei )|, (3.21b)

Gi,yτ = 2|D(−z,−ei ; z, ei )| + 2|D(−zτ ,−ei ; zy, ei )| + 2|D(−z,−zτ ,−ei ; z, zy, ei )|, (3.21c)

where the M-component vectors zy, zτ , and zττ are given, respectively, by

zy = (p1eξ1 , p2eξ2 , . . . , pM eξM ), zτ =
(

eξ1

p1
,

eξ2

p2
, . . . ,

eξM

pM

)
, zττ =

(
eξ1

p2
1

,
eξ2

p2
2

, . . . ,
eξM

p2
M

)
.

(3.22)

3. Proof of Eq. (3.6)

First, we show that the tau-functions (3.16) for the multisoliton solution satisfy the bilinear
equation (3.6). To this end, we substitute f and gi from (3.16) into Eq. (3.6) to obtain

Gi

2F

(
F Fyτ − 1

2
Fy Fτ

)
+ F

2Gi

(
Gi Gi,yτ − 1

2
Gi,yGi,τ

)
− 1

4
(FyGi,τ + Fτ Gi,y) = FGi .

(3.23)
We compute three terms on the left-hand side of (3.23) separately. Using (3.20a)-(3.20c) and the
relation

|D(−z,−zτ ; z, zy)||D| = −|D(−z; zy)||D(−zτ ; z)|, (3.24)

which follows from Jacobi’s identity and the identity |D( − z; z)| = 0, the first term on the left-hand
side of (3.23) reduces to

Gi

2F

(
F Fyτ − 1

2
Fy Fτ

)
= −|D(−zτ ; zy)|Gi . (3.25)

Next, it follows from (3.21a)–(3.21c) that

Gi Gi,yτ − 1

2
Gi,yGi,τ = 2|D(−z,−ei ; z, ei )|

{
|D(−z,−ei ; z, ei )| + |D(−zτ ,−ei ; zy, ei )|

+ |D(−z,−zτ ,−ei ; z, zy, ei )|
}

− 2|D(−z,−ei ; zy, ei )||D(−zτ ,−ei ; z, ei )|. (3.26)
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Referring again to Jacobi’s identity and the identity |D( − ei; ei)| = 0, one has

|D(−z,−zτ ,−ei ; z, zy, ei )||D(−ei ; ei )|
= |D(−z,−ei ; z, ei )||D(−zτ ,−ei ; zy, ei )| − |D(−zτ ,−ei ; z, ei )||D(−z,−ei ; zy, ei )| = 0, (3.27)

which, introduced into (3.26), simplifies the second term on the left-hand side of (3.23)

F

2Gi

(
Gi Gi,yτ − 1

2
Gi,yGi,τ

)
= F

{
|D(−z,−zτ ,−ei ; z, zy, ei )| + Gi

}
. (3.28)

Last, formulas (3.20a), (3.20b), (3.21a), and (3.21b) give simply the third term on the left-hand
side of (3.23):

− 1

4
(FyGi,τ + Fτ Gi,y) = |D(−z; zy)||D(−zτ ,−ei ; z, ei )| + |D(−zτ ; z)||D(−z,−ei ; zy, ei )|.

(3.29)
Substituting (3.25), (3.28), and (3.29) into (3.23), the equation to be proved becomes

|D||D(−z,−zτ ,−ei ; z, zy, ei )| − |D(−zτ ; zy)||D(−z,−ei ; z, ei )|
+|D(−z; zy)||D(−zτ ,−ei ; z, ei )| + |D(−zτ ; z)||D(−z,−ei ; zy, ei )| = 0. (3.30)

The following formula can be verified by applying Jacobi’s identity twice to the right-hand side
of (3.31): ∣∣∣∣∣∣∣

|D(a; a′)| |D(a; b′)| |D(a; c′)|
|D(b; a′)| |D(b; b′)| |D(b; c′)|
|D(c; a′)| |D(c; b′)| |D(c; c′)|

∣∣∣∣∣∣∣ = |D|2|D(a, b, c; a′, b′, c′)|. (3.31)

Assume that |D| �= 0. Then, multiplying (3.30) by |D| and using Jacobi’s identity as well as the iden-
tities |D( − ei; ei)| = |D( − z; z)| = 0, the resulting relation reduces to (3.31) with the identification
a = − z, b = − zτ , c = − ei, a′ = z, b′ = zy, c′ = ei. This completes the proof of Eq. (3.6).

4. Proof of Eq. (3.7)

We proceed to the proof of Eq. (3.7). By using f and gi from (3.16) and noting the symmetry cij

= cji, we transform it to the form

F Fττ − F2
τ = 1

4

n∑
j,k=1
( j �=k)

c jk G j Gk . (3.32)

If we substitute (3.16b), (3.20b), and (3.20d) into (3.32) and use the following relation with j = k

|D(−e j ; z)||D(−ek ; z)| = |D||D(−z,−e j ; z, ek)|, ( j, k = 1, 2, . . . , n), (3.33)

which comes from Jacobi’s identity, we recast (3.32) in the form

2|D|
{
|D(−z; zττ )| − |D(−z,−zτ ; z, zτ )|

}
= 1

4

n∑
j,k=1
( j �=k)

c jk |D(−e j ; z)||D(−ek ; z)|. (3.34)

Last, replacing the right-hand side of (3.34) by the right-hand side of (3.33) and dividing the
resultant equation by 2|D|, the equation to be proved reduces to the following linear relation among
determinants:

|D(−z; zττ )| − |D(−z,−zτ ; z, zτ )| = 1

8

n∑
j,k=1
( j �=k)

c jk |D(−z,−e j ; z, ek)|. (3.35)
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We now start the proof of (3.35). Define the (2M + 1) × (2M + 1) skew-symmetric matrix
D′ = (d ′

i j )1≤i, j≤2M+1 by

D′ = D(−z; z) =

⎛
⎜⎝

AM IM zT

−IM BM 0T

−z 0 0

⎞
⎟⎠. (3.36)

Let Dij and D′
i j be the cofactors of the elements dij and d ′

i j , respectively, and Dij, kl and D′
i j,kl be

second cofactors. Expanding the cofactor D′
M+ j,M+i with respect to the ith row, we obtain

D′
M+ j,M+i =

M∑
k=1

D′
i M+ j,k M+i aik +

M∑
k=1

Di M+ j,k M+i zi zk, (i, j = 1, 2, . . . , M). (3.37)

Similarly, referring to the structure of the matrix BM defined by (3.15), the expansions of Dij and D′
i j

with respect to the (M + i)th column read

Di j =
M∑

k=1

Di M+k, j M+i bki , (i, j = 1, 2, . . . , M), (3.38)

D′
i j =

M∑
k=1

D′
i M+k, j M+i bki , (i, j = 1, 2, . . . , M). (3.39)

The proof of (3.35) can be performed on the basis of formulas (3.37)–(3.39). First, we multiply
(3.37) by b ji/p2

i and sum up with respect to i and j to obtain

M∑
i, j=1

D′
M+ j,M+i

b ji

p2
i

=
M∑

i, j=1

M∑
k=1

D′
i M+ j,k M+i aik

b ji

p2
i

+
M∑

i, j=1

M∑
k=1

Di M+ j,k M+i
b ji

p2
i

zi zk, (i, j = 1, 2, . . . , M). (3.40)

Note that for any function fij

M∑
i, j=1

fi j =
n∑

i, j=1

∑
μ∈Si

∑
ν∈Sj

fμν, (3.41)

where the notation
∑

μ∈Si
implies that the dummy index μ runs over the set Si. Applying this rule to

the left-hand side of (3.40),

L ≡
M∑

i, j=1

D′
M+ j,M+i

b ji

p2
i

=
n∑

i, j=1

∑
μ∈Si

∑
ν∈Sj

D′
M+ν,M+μ

bνμ

p2
μ

. (3.42)

We modify L by taking into account the relations bνμ = − bμν and D′
M+ν,M+μ = D′

M+μ,M+ν which
follow from the skew-symmetry of the matrices D and D′. This leads to

L = 1

2

n∑
i, j=1

∑
μ∈Si

∑
ν∈Sj

D′
M+ν,M+μ

(
− 1

p2
μ

+ 1

p2
ν

)
bμν

= 1

8

n∑
i, j=1
(i �= j)

ci j

∑
μ∈Si

∑
ν∈Sj

D′
M+ν,M+μ, (3.43)
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where in passing to the second line of (3.43), we used (3.14). It follows from (3.10b) and the formula
(3.18) that ∑

μ∈Si

∑
ν∈Sj

D′
M+ν,M+μ = |D′(−ei ; e j )| = |D(−z,−ei ; z, e j )|, (3.44)

which, substituted in (3.43), gives

L = 1

8

n∑
i, j=1
(i �= j)

ci j |D(−z,−ei ; z, e j )|. (3.45)

On the other hand, using (3.38) and (3.39), the right-hand side of (3.40) reduces to

R ≡
M∑

i,k=1

D′
ik

aik

p2
i

+
M∑

i,k=1

Dik
zi zk

p2
i

. (3.46)

We substitute the explicit form of aik from (3.12) and take into account the symmetry D′
ik = D′

ki ,
the first term of R is modified as

M∑
i,k=1

D′
ik

aik

p2
i

= −1

2

M∑
i,k=1

D′
ik

(
1

p2
i

− 1

p2
k

)
pi − pk

pi + pk
zi zk

= 1

2

M∑
i,k=1

D′
ik

(
1

p2
i

− 2

pi pk
+ 1

p2
k

)
zi zk . (3.47)

It turns out by applying the formula (3.18) to (3.47) that

M∑
i,k=1

D′
ik

aik

p2
i

= 1

2
|D′(−z; zττ )| − |D′(−zτ ; zτ )| + 1

2
|D′(−zττ ; z)|

= 1

2
|D(−z,−z; z, zττ )| − |D(−z,−zτ ; z, zτ )| + 1

2
|D(−z,−zττ ; z, z)

= −|D(−z,−zτ ; z, zτ )|, (3.48)

where in passing to the last line, we used the fact that any determinant which contains two identical
rows (or columns) is zero. The similar procedure applied to the second term of R yields

M∑
i,k=1

Dik
zi zk

p2
i

= |D(−z; zττ )|. (3.49)

Adding (3.48) and (3.49), we finally obtain

R = |D(−z; zττ )| − |D(−z,−zτ ; z, zτ )|. (3.50)

The desired relation (3.35) follows immediately from (3.40), (3.45), and (3.50), completing the proof
of Eq. (3.7).

D. Remarks

1. Let C = (cij)1 ≤ i, j ≤ n be a real symmetric matrix whose diagonal elements are zero, i.e., cii

= 0(i = 1, 2, . . . , n), and P = (pij)1 ≤ i, j ≤ n is a regular matrix. Then, under appropriate orthogonal
transformation ui = ∑n

j=1 pi j u′
j , the quadratic form (1.7b) can be recast to a canonical form

F =
p∑

i=1

u′2
i −

q∑
i=1

u′2
p+i , (p + q ≤ n), (3.51)
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where p(q) is the number of positive (negative) eigenvalues of C, and p and q are determined uniquely
by C.15 Note that since Tr C = 0, p �= 0 and q �= 0. Under the same transformation, the system of
bilinear equations (3.6) and (3.7) can be converted into the system

Dy Dτ f · g′
i = f g′

i , (i = 1, 2, . . . , p + q), (3.52)

D2
τ f · f = 1

2

(
p∑

i=1

g′2
i −

q∑
i=1

g′2
p+i

)
, (3.53)

where u′
i = g′

i/ f (i = 1, 2, . . . , p + q). For example, if ci j = 1 (i �= j), cii = 0, then p = 1 and
q = n − 1 since the eigenvalues of C are n − 1 (simple root) and − 1 ((n − 1)-ple root).

2. When F is a positive definite quadratic form of ui (i = 1, 2, . . . , n), we can put p = n and
q = 0 in (3.52) and (3.53) provided that C has n distinct positive eigenvalues. The system corre-
sponding to (1.7) becomes

ui,xt = ui + 1

2

⎡
⎣
⎛
⎝ n∑

j=1

u2
j

⎞
⎠ ui,x

⎤
⎦

x

, (i = 1, 2, . . . , n). (3.54)

If we consider the continuum limit n → ∞ for (3.54), then we have a (2 + 1)-dimensional nonlocal
PDE of the form

uxt = u + 1

2

(
ux

∫ ∞

−∞
u2dz

)
x

, u = u(x, z, t). (3.55)

This equation is an analog of the (2 + 1)-dimensional nonlocal nonlinear Schrödinger equation

iut = uxx + 2u
∫ ∞

−∞
|u|2dz, u = u(x, z, t), (3.56)

arising from a continuum limit of the multi-component nonlinear Schrödinger equation.16, 17 By
means of the hodograph transformation

dy = rdx +
(∫ ∞

−∞
u2dz

)
rdτ, dt = dτ, (3.57)

we obtain the parametric representation of the solution for Eq. (3.55)

u = g

f
, x = y − 2

fτ
f

, (3.58)

where f = f(y, τ ) and g = g(y, z, τ ) satisfy the system of bilinear equations

Dy Dτ f · g = f g, D2
τ f · f = 1

2

∫ ∞

−∞
g2dz. (3.59)

We will discuss the integrability of Eq. (3.55) in a separate paper.
3. The bilinear equation (3.7) takes the same form as that of a coupled modified Koreweg-de

Vries equations proposed in Ref. 18 where the proof of the multisoliton solution has been performed
by lengthy calculations using various formulas of pfaffians. Here, we have provided a novel proof
relying only on an elementary theory of determinants.

4. The coupled PDEs proposed recently in Ref. 19

ui,xt = ui −
∑

1≤ j<k≤n

c jk(u j,x uk − u j uk,x )ui , (i = 1, 2, . . . , n), (3.60)

where the coupling constants cjk are skew-symmetric, are transformed to the following system of
bilinear equations through the dependent variable transformations ui = gi/f (i = 1, 2, . . . , n):

Dx Dt f · gi = f gi , (i = 1, 2, . . . , n), (3.61)

Dx Dt f · f =
∑

1≤ j<k≤n

c jk Dx g j · gk . (3.62)
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Recall that the bilinear equation (3.61) coincides with (3.6) if we replace the variables x and t by
y and τ , respectively. We conjecture that the multisoliton solution of Eqs. (3.61) and (3.62) will be
given by (3.16) where the matrix BM has the form

bμν = −ci j
pμ pν

pμ + pν

, μ ∈ Si , ν ∈ Sj (μ, ν = 1, 2, . . . , M (μ �= ν); i, j = 1, 2, . . . , n (i �= j)),

(3.63)
in place of (3.14). Obviously, the corresponding tau-functions f and gi satisfy Eq. (3.61) since its
proof does not depend on the explicit form of BM except that it is a skew-symmetric matrix with
the constant elements. For the 2-component system, we have checked that Eqs. (3.61) and (3.62)
exhibit the 2- and 3-soliton solutions, i.e., M1 = M2 = 2, M1 = M2 = 3. The proof of the general
multisoliton solution will be reported elsewhere.

IV. TWO-COMPONENT SYSTEM

Here, we consider the 2-component system (1.8) in detail. We first show the integrability of the
system by constructing a Lax pair and then present the multisoliton solution. We also discuss an
integrable system (1.9) which is closely related to system (1.8).

A. Integrability

For system (1.8), Eqs. (3.2) and (3.3) corresponding to Eqs. (1.8) read

xyτ = −1

2
(uv)y, uyτ = xyu, vyτ = xyv, (4.1)

where the first of these equations comes from the y-derivative of the second equation of (3.2) with F
= uv. The system of equations (4.1) can be derived from the compatibility condition of the system
of linear PDEs

	y = U	, 	τ = V 	 (4.2a)

with

U = λ

(
xy uy

vy −xy

)
, V = 1

2

(
0 −u

v 0

)
+ 1

4λ

(
1 0

0 −1

)
, (4.2b)

where λ is a spectral parameter. Note in this expression that xy = √
1 − uyvy . Indeed, it follows

from the condition 	yτ = 	τy that

Uτ − Vy + U V − V U = O, (4.3)

which yields Eqs. (4.1). Using (2.1b), we can rewrite (4.2) in terms of the original variables x and t

	x = Ũ	, 	t = Ṽ 	 (4.4a)

with

Ũ = λ

(
1 ux

vx −1

)
, Ṽ = 1

2

(
0 −u

v 0

)
+ 1

4λ

(
1 0

0 −1

)
+ λ

2

(
uv uvux

uvvx −uv

)
. (4.4b)

This is a Lax pair for the system of equations (1.8). Note that when u = v, (4.4) reduces to the Lax
pair for the SP equation.4 One can apply the inverse scattering transform (IST) method to establish
the complete integrability of the system (1.8).
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B. Multisoliton solution

1. N-soliton solution

The parametric representation of the multisoliton solution of Eq. (1.8) is given by (3.5) with
n = 2

u = g1

f
, v = g2

f
, x = y − 2

fτ
f

. (4.5)

Here, we consider the case where both u and v contain N solitons. Correspondingly, we set M1

= M2 = N and M = 2N in (4.5). The tau-functions f and gi(i = 1, 2) from (3.16) are represented by
the following formulas:

f =
√

F, gi =
√

Gi (i = 1, 2) (4.6a)

with

F = |D| =
∣∣∣∣∣ A2N I2N

−I2N B2N

∣∣∣∣∣, (4.6b)

Gi = |D(−z,−ei ; z, ei )| =

∣∣∣∣∣∣∣∣∣∣

A2N I2N zT 0T

−I2N B2N 0T eT
i

−z 0 0 0

0 −ei 0 0

∣∣∣∣∣∣∣∣∣∣
, (i = 1, 2). (4.6c)

Here, the 2N × 2N skew-symmetric matrices A2N and B2N have the elements

A2N = (ai j )1≤i, j≤2N , ai j = − pi − p j

pi + p j
eξi +ξ j ≡ − pi − p j

pi + p j
zi z j ,

ξi = pi y + 1

pi
τ + ξi0, (i = 1, 2, . . . , 2N ), (4.6d)

B2N =
(

ON×N BN×N

−BT
N×N ON×N

)
,

BN×N = (bi N+ j )1≤i, j≤N , bi N+ j = 1
4

(pi pN+ j )2

p2
i −p2

N+ j
, (i, j = 1, 2, . . . , N ), (4.6e)

and the 2N-component vectors z and ei (i = 1, 2) are given, respectively, by

z = (eξ1 , eξ2 , . . . , eξ2N ), e1 = (1, 1, . . . , 1︸ ︷︷ ︸
N

, 0, 0, . . . , 0︸ ︷︷ ︸
N

), e2 = (0, 0, . . . , 0︸ ︷︷ ︸
N

, 1, 1, . . . , 1︸ ︷︷ ︸
N

).

(4.6f)
Note that the N-soliton solution contains 4N complex-valued parameters pi, ξ i0 (i = 1, 2, . . . , 2N).
An alternative parametrization with the same number of the parameters is possible if one puts pN + i

= pi (i = 1, 2, . . . , N) and replaces ξ i0 and ξN + i 0 by ξ i0 + ln ai and ξ i 0 + ln bi (i = 1, 2, . . . , N),
respectively, where ai and bi are new parameters. In the following, we present a few examples of
solutions and investigate their properties.

2. One-loop soliton solution

We give two types of tau-functions described above:

f = 1 + 1

4

(p1 p2)2

(p1 + p2)2
z1z2, g1 = z1, g2 = z2, (4.7a)

f = 1 + a1b1 p2
1

16
z2

1, g1 = a1z1, g2 = b1z1, (a1, a2, p1 > 0), (4.7b)
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FIG. 1. The profile of the 1-loop soliton solution u with the parameters p1 = 1.0, a1 = 0.5, and b1 = 1.0.

The solution corresponding to (4.7b) is calculated from (3.5) to give

u = 2

p1

√
a1

b1
sech(ξ1 + δ1), v = 2

p1

√
b1

a1
sech(ξ1 + δ1), (4.8a)

x = y − 2

p1
tanh(ξ1 + δ1), δ1 = ln

(√
a1b1 p1

4

)
, (a1, b1, p1 > 0). (4.8b)

A profile of u is depicted in Fig. 1. It represents a loop soliton with the amplitude 2
p1

√
a1
b1

and the

velocity c1 = 1/p2
1. Note that the amplitude of the loop soliton is defined by the maximum value of

u which is attained at ξ 1 = − δ1 in the present example. The property of v is the same as that of u

except the amplitude given by 2
p1

√
b1
a1

. By comparing (2.16) and (4.8), we see that the loop soliton

has the same structure as that of the loop soliton of the SP equation.

3. Two-loop soliton solution

As in the case of the 1-soliton solution, we write down two types of tau-functions for the
2-soliton solution:

f = 1 + 1

4

(p1 p3)2

(p1 + p3)2
z1z3 + 1

4

(p1 p4)2

(p1 + p4)2
z1z4 + 1

4

(p2 p3)2

(p2 + p3)2
z2z3 + 1

4

(p2 p4)2

(p2 + p4)2
z2z4

+ 1

16

(p1 p2 p3 p4)2(p1 − p2)2(p3 − p4)2

(p1 + p3)2(p2 + p3)2(p1 + p4)2(p2 + p4)2
z1z2z3z4, (4.9a)

g1 = z1 + z2 + 1

4

p2
3(p1 − p2)2

(p1 + p3)2(p2 + p3)2
z1z2z3 + 1

4

p4
4(p1 − p2)2

(p1 + p4)2(p2 + p4)2
z1z2z4, (4.9b)

g2 = z3 + z4 + 1

4

p4
1(p3 − p4)2

(p1 + p3)2(p1 + p4)2
z1z3z4 + 1

4

p4
2(p3 − p4)2

(p2 + p3)2(p2 + p4)2
z2z3z4, (4.9c)

f = 1 + 1

16
a1b1 p2

1z2
1 + 1

4
(a1b2 + a2b1)

(p1 p2)2

(p1 + p2)2
z1z2 + 1

16
a2b2 p2

2z2
2

+ 1

256
a1a2b1b2

(p1 p2)2(p1 − p2)4

(p1 + p2)4
(z1z2)2, (4.10a)

g1 = a1z1 + a2z2 + 1

16
a1a2b1

p2
1(p1 − p2)2

(p1 + p2)2
z2

1z2 + 1

16
a1a2b2

p2
2(p1 − p2)2

(p1 + p2)2
z1z2

2, (4.10b)

g2 = b1z1 + b2z2 + 1

16
a1b1b2

p2
1(p1 − p2)2

(p1 + p2)2
z2

1z2 + 1

16
a2b1b2

p2
2(p1 − p2)2

(p1 + p2)2
z1z2

2. (4.10c)
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FIG. 2. The time evolution of the 2-loop soliton solution u with the parameters p1 = 0.5, p2 = 1.0, a1 = 1.0, a2 = 2.0,
b1 = 1.0, b2 = 2.0, and x10 = x20 = 0.

We consider the 2-soliton solution corresponding to the tau-functions (4.10). Figure 2 shows the
time evolution of the 2-soliton solution u. It represents the interaction of two loop solitons, each
takes the form of the 1-loop soliton given by (4.8), as we demonstrate now.

We investigate the asymptotic behavior of the solution u. To this end, we assume 0 < p1 < p2

and ai > 0, bi > 0 (i = 1, 2). Then, an asymptotic analysis similar to that developed for the 2-loop
soliton solution of the SP equation shows that as t → − ∞, u behaves like9

u = u1 + u2 ∼ 2

p1

√
a1

b1
sech(ξ1 + δ′

1) + 2

p2

√
a2

b2
sech(ξ2 + δ2), (4.11a)

x + c1t − x10 ∼ ξ1

p1
− 2

p1
tanh(ξ1 + δ′

1) − 2

p1
− 4

p2
, for u1, (4.11b)

x + c2t − x20 ∼ ξ1

p2
− 2

p2
tanh(ξ2 + δ2) − 2

p2
, for u2, (4.11c)

where

ci = 1

p2
i

, δi = ln

(√
ai bi

4
pi

)
, δ′

i = ln

[√
ai bi

4
pi

(
p1 − p2

p1 + p2

)2
]

, (i = 1, 2). (4.11d)

As t → + ∞, on the other hand

u = u1 + u2 ∼ 2

p1

√
a1

b1
sech(ξ1 + δ1) + 2

p2

√
a2

b2
sech(ξ2 + δ′

2), (4.12a)

x + c1t − x10 ∼ ξ1

p1
− 2

p1
tanh(ξ1 + δ1) − 2

p1
, for u1, (4.12b)

x + c2t − x20 ∼ ξ1

p2
− 2

p2
tanh(ξ2 + δ′

2) − 2

p2
− 4

p1
, for u2. (4.12c)

We observe that the solution u splits into two loop solitons as time evolves, each of which has the
form of a single loop soliton. The only effect due to the interaction of two loop solitons is the phase
shift. To see this, let xic be the center position of the ith soliton. Then, it follows from the asymptotic
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forms (4.11) and (4.12) that

x1c + c1t − x10 ∼ − δ′
1

p1
− 2

p1
− 4

p2
, x2c + c2t − x20 ∼ − δ2

p2
− 2

p2
, (t → −∞), (4.13a)

x1c + c1t − x10 ∼ − δ1

p1
− 2

p1
, x2c + c2t − x20 ∼ − δ′

2

p2
− 2

p2
− 4

p1
. (t → +∞). (4.13b)

Since two solitons propagate to the left, the phase shift of the ith soliton can be defined by the
relation

�i = xic(t → −∞) − xic(t → +∞), (i = 1, 2). (4.14)

Thus, from (4.13) and (4.14) one has

�1 = − 1

p1
ln

(
p1 − p2

p1 + p2

)2

− 4

p2
, (4.15a)

�2 = 1

p2
ln

(
p1 − p2

p1 + p2

)2

+ 4

p1
. (4.15b)

The same calculation can be applied to v as well. The corresponding asymptotic formulas are
obtained simply by interchanging ai and bi (i = 1, 2) in the above expressions. It should be remarked
that the above formulas for the phase shift do not depend on ai and bi (i = 1, 2) and are determined
only by the amplitude parameters p1 and p2. They coincide with those of the 2-loop soliton solution
of the SP equation.9 A novel feature of the solution in the present 2-component system is that the

large soliton propagates slower than the small soliton if the inequality 1
p1

√
a1
b1

< 1
p2

√
a2
b2

holds. This

fact is seen from the asymptotic forms (4.11a) and (4.12a) of the solution with the velocities of u1

and u2 being given, respectively, by c1 = 1/p2
1 and c2 = 1/p2

2 (c2 < c1).

4. Breather solutions

The breather solutions are constructed from the soliton solutions by following the same manip-
ulation as that used for the soliton solutions of the SP equation.9 Here, we present the 1-breather
solution. In this case, we put

p1 = a + ib = p∗
2, ξ10 = λ + iμ = ξ ∗

20, a1 = α1eiφ1 = a∗
2 , b1 = β1eiψ1 = b∗

2 (4.16)

in (4.10) to obtain the tau-functions f, g1, and g2. Here, a, b, α1, and β1 are positive constants, λ, μ,
φ1, and ψ1 are real constants, and the asterisk denotes complex conjugate. After a few calculations,
we find the following expressions:

f = 4

b2
e2(θ+θ0) f̂ , g1 =

16 a
b

√
α1
β1√

a2 + b2
e2(θ+θ0) ĝ1, g2 =

16 a
b

√
β1

α1√
a2 + b2

e2(θ+θ0) ĝ2 (4.17a)

with

f̂ = b2 cosh2(θ + θ0) + a2 cos2(χ + χ0 + δ′) − (a2 + b2) sin2 δ, (4.17b)

ĝ1 = sin(χ0 − δ) sin(χ + χ0 + δ′) cosh(θ + θ0) − cos(χ0 − δ) cos(χ + χ0 + δ′) sinh(θ + θ0),
(4.17c)

ĝ2 = sin(χ0 + δ) sin(χ + χ0 + δ′) cosh(θ + θ0) − cos(χ0 + δ) cos(χ + χ0 + δ′) sinh(θ + θ0),
(4.17d)
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FIG. 3. The time evolution of the 1-breather solution u with the parameters a = 0.1, b = 0.5, α1 = 1.0, β1 = 2.0, φ1 = 0,
ψ1 = π /2, and λ = μ = 0.

where

θ = a

(
y + 1

a2 + b2
τ

)
+ λ, χ = b

(
y − 1

a2 + b2
τ

)
+ μ, (4.18a)

eθ0 = b

4a

√
α1β1(a2 + b2), tan χ0 = b

a
, δ = 1

2
(φ1 − ψ1), δ′ = 1

2
(φ1 + ψ1). (4.18b)

Substituting (4.17) into (3.5), we obtain the parametric representation of the 1-breather solution:

u =
4ab

√
α1
β1√

a2 + b2

ĝ1

f̂
, v =

4ab
√

β1

α1√
a2 + b2

ĝ2

f̂
, (4.19a)

x = y − 2ab

a2 + b2

b sinh 2(θ + θ0) + a sin 2(χ + χ0 + δ′)
f̂

− 4a

a2 + b2
. (4.19b)

Both u and v include two different phases θ and χ . The former characterizes the envelope of the
breather, whereas the latter governs the internal oscillation. Figure 3 shows the time evolution of
the 1-breather solution u. It represents an oscillating localized pulse moving to the left. Contrary
to the single loop soliton, the profile of the pulse is nonstationary in the comoving coordinate
system. An inspection shows that solution (4.19) exhibits singularities as encountered in the case
of the breather solution of the SP equation. Therefore, certain condition must be imposed on
the parameters a, b, and δ to produce the regular breather. However, we do not pursue the detail here.

C. Related integrable system

1. The 2-component system

The 2-component system (1.8) can be transformed to another integrable system (1.9) by a simple
transformation. To show this, we put

u = ũ + iṽ, v = ũ − iṽ, (4.20)

and substitute this into Eqs. (1.8), we obtain a system of equations for ũ and ṽ :

ũxt = ũ + 1

2
[(ũ2 + ṽ2)ũx ]x , (4.21a)

ṽxt = ṽ + 1

2
[(ũ2 + ṽ2)ṽx ]x . (4.21b)

This system is a special case of the n-component system (3.54) with n = 2.
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2. N-soliton solution

The parametric representation of the N-soliton solution for Eqs. (4.21) can be expressed in the
form

ũ = g̃1

f̃
, ṽ = g̃2

f̃
, x = y − 2

f̃τ
f̃

, (4.22)

where the tau-functions g̃1, g̃2, and f̃ satisfy the system of bilinear equations:

Dy Dτ f̃ · g̃i = f̃ g̃i , (i = 1, 2), (4.23a)

D2
τ f̃ · f̃ = 1

2
(g̃2

1 + g̃2
2). (4.23b)

Here, we consider real-valued solutions ũ and ṽ for system (4.21). The tau-functions representing
the N-soliton solution are obtained from (4.6) by putting pi+N = p∗

i , ξi+N 0 = ξ ∗
i0 (i = 1, 2, . . . , N ).

Then, the expressions corresponding to (4.6d), (4.6e), and (4.6f) become

A2N =
(

A1 A2

A∗
2 A∗

1

)
, A1 =

(
− pi − p j

pi + p j
zi z j

)
1≤i, j≤N

, A2 =
(

− pi − p∗
j

pi + p∗
j

zi z
∗
j

)
1≤i, j≤N

,

(4.24a)

B2N =
(

ON×N B1

B∗
1 ON×N

)
, B1 =

(
1

4

(pi p∗
j )

2

p2
i − p∗2

j

)
1≤i, j≤N

, (4.24b)

z = (eξ1 , eξ2 , . . . , eξN , eξ∗
1 , eξ∗

2 , . . . , eξ∗
N ). (4.24c)

We can see that the tau-functions f, g1, and g2 (4.6) with (4.24) satisfy the conditions f = f* and
g2 = g∗

1 , which, combined with (4.5) and (4.20), give

f̃ = f, g̃1 = 1

2
(g1 + g∗

1 ), g̃2 = 1

2i
(g1 − g∗

1 ). (4.25)

As in the case of the N-soliton solution of the 2-component system (1.8) (see Sec. IV B),
we have an alternative parametrization of the N-soliton solution. Namely, we replace ξ j0 by ξ j0

+ ln(aj + ibj) (j = 1, 2, . . . , N) where aj and bj are real parameters, and then take pj and ξ j0 (j
= 1, 2, . . . , N) being real in the expressions of the tau-functions. This procedure yields the tau-
functions corresponding to (4.7b) and (4.10), for example. Actually, for the 1-soliton solution, the
corresponding tau-functions are given by

f̃ = 1 + 1

16
(a2

1 + b2
1)p2

1z2
1, g̃1 = a1z1, g̃2 = b1z1, (4.26)

and for the 2-soliton solution, they read

f̃ = 1 + 1

16
(a2

1 + b2
1)p2

1z2
1 + 1

2
(a1a2 + b1b2)

(p1 p2)2

(p1 + p2)2
z1z2 + 1

16
(a2

2 + b2
2)p2

2z2
2

+ 1

256
(a2

1 + b2
1)(a2

2 + b2
2)

(p1 p2)2(p1 − p2)4

(p1 + p2)4
(z1z2)2, (4.27a)

g̃1 = a1z1 + a2z2 + 1

16
a2(a2

1 + b2
1)

p2
1(p1 − p2)2

(p1 + p2)2
z2

1z2 + 1

16
a1(a2

2 + b2
2)

p2
2(p1 − p2)2

(p1 + p2)2
z1z2

2,

(4.27b)

g̃2 = b1z1 + b2z2 + 1

16
b2(a2

1 + b2
1)

p2
1(p1 − p2)2

(p1 + p2)2
z2

1z2 + 1

16
b1(a2

2 + b2
2)

p2
2(p1 − p2)2

(p1 + p2)2
z1z2

2.

(4.27c)
It can be seen that substitution of (4.26) and (4.27) into (4.22) produces the 1- and 2-loop soliton
solutions, respectively.
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3. Breather solutions

One can confirm by direct calculation that the tau-functions (4.27) satisfy the bilinear equations
(4.23). In the process, the reality of the parameters has not been used. This fact enables us to extend
the range of the parameters to complex values. Thus, the breather solutions are constructed from
the soliton solutions by applying the procedure developed in Sec. IV B. In practice, according to
parametrization (4.16), one has

f̃ = 4

b2
e2(θ+θ0) f̄ , g̃1 = 16α1a

γ b
√

a2 + b2
e2(θ+θ0) ḡ1, g̃2 = 16β1a

γ b
√

a2 + b2
e2(θ+θ0) ḡ2 (4.28a)

with

f̄ = b2 cosh2(θ + θ1) + a2 cos2(χ + χ0 + κ) + 1

2
(a2 + b2)

(
α2

1 + β2
1

γ 2
− 1

)
, (4.28b)

ḡ1 = sin(χ0 − φ1 + κ) sin(χ + χ0 + κ) cosh(θ + θ1)

− cos(χ0 − φ1 + κ) cos(χ + χ0 + κ) sinh(θ + θ1), (4.28c)

ḡ2 = sin(χ0 − ψ1 + κ) sin(χ + χ0 + κ) cosh(θ + θ1)

− cos(χ0 − ψ1 + κ) cos(χ + χ0 + κ) sinh(θ + θ1), (4.28d)

where the parameters θ1, γ , and κ are defined by

eθ1 = b

4a

√
a2 + b2 γ, γ = [α4

1 + 2α2
1β

2
1 cos 2(φ1 − ψ1) + β4

1 ]
1
4 , (4.28e)

tan 2κ = α2
1 sin 2φ1 + β2

1 sin 2ψ1

α2
1 cos 2φ1 + β2

1 cos 2φ1
, (4.28f)

and θ , χ , and θ0 are already given, respectively, by (4.18a) and (4.18b). Substituting (4.28) into
(4.22), we obtain the parametric representation of the 1-breather solution:

ũ = 4α1ab

γ
√

a2 + b2

ḡ1

f̄
, ṽ = 4β1ab

γ
√

a2 + b2

ḡ2

f̄
, (4.29a)

x = y − 2ab

a2 + b2

b sinh 2(θ + θ1) + a sin 2(χ + χ0 + κ)

f̄
− 4a

a2 + b2
. (4.29b)

Of particular interest is a circularly polarized wave for which the solution exhibits a sim-
ple structure, as we shall now demonstrate. In this case, we put α1 = β1, χ0 − φ1 + κ = π

2 and
φ1 − ψ1 = π

2 to obtain the tau-functions

f̃ = 1 + α2
1(a2 + b2)2

4a2
e2θ , g̃1 = 2α1 eθ cos(χ + φ1), g̃2 = 2α1 eθ sin(χ + φ1). (4.30)

Then, the solution takes the form

ũ = 2a

a2 + b2

cos(χ + φ1)

cosh(θ + θ ′
0)

, ṽ = 2a

a2 + b2

sin(χ + φ1)

cosh(θ + θ ′
0)

,

(
eθ ′

0 = α1(a2 + b2)

2a

)
, (4.31a)

x = y − 2a

a2 + b2
tanh(θ + θ ′

0) − 2a

a2 + b2
. (4.31b)

The parametric solution (4.31) represents a nonsingular breather if the inequality 0 < a/b < 1 holds.
Figure 4 shows the time evolution of u(≡ ũ) given by (4.31).

One can show by a direct calculation that the solution (4.31) satisfies the integral relations∫ ∞

−∞
ũ dx = 0,

∫ ∞

−∞
ṽ dx = 0, (4.32)
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FIG. 4. The time evolution of the 1-breather solution u(≡ ũ) with the parameters a = 0.1, b = 0.5, α1 = 1.0, φ1 = 0, and λ

= μ = 0.

implying that both ũ and ṽ are zero mean fields. This fact indicates clearly an oscillating character of
the solution. Note that the above relations represent the conservation laws derived from the system of
equations (4.21) for localized waves. It is interesting to observe that in the small amplitude limit a/b
→ 0, the profile of ũ bears resemblance to that of the soliton solution of the nonlinear Schrödinger
equation.

D. Remarks

1. The system of equations (4.1) is equivalent to a coupled dispersionless system for the
variables r = r(x, t), s = s(x, t), and q = q(x, t):

qxt + (rs)x = 0, rxt − 2qxr = 0, sxt − 2qx s = 0. (4.33)

The Lax pair associated with system (4.33) has been obtained and the IST has been applied to it to
construct soliton solutions.20 In particular, 1- and 2-soliton solutions have been presented for r, s,
and qx. Here, we present the formula for the general multisoliton solution for the first time.

2. The system of bilinear equations (4.23) can be derived from system (4.33) with a reduction
s = r* through appropriate dependent variable transformations.21 See also an analysis by means of
the IST.22

V. CONCLUSION

In this paper, we proposed a novel multi-component system associated with the SP equation
and constructed its multisoliton solutions in terms of pfaffians. We also considered the equations
reduced from our system. In particular, the 2-component system (1.8) was found to be completely
integrable for which the explicit Lax pair was presented. We also provided the loop soliton and
breather solutions for the system and investigated their properties. We also addressed system (1.9)
which stems from system (1.8) by a simple transformation. In conclusion, we shall discuss some
open problems associated with the multi-component system under consideration.

1. One interesting issue to be resolved in a future work is the proof of the complete integrability
of the n-component system (1.7) by using the IST. To construct the Lax pair for the system, one
way will be to start from the system of bilinear equations (3.6) and (3.7) to obtain the Bäcklund
transformation among the tau-functions and then derive the scheme of the IST following the standard
procedure in the bilinear formalism.

2. Other issues to be reserved for detailed study have already been described in Sec. III D. Of
particular importance is the construction of the multisoliton solution of the n-component system
(3.54) with n ≥ 3. Unlike the 2-component system, the linear transformation such as (4.20) does
not exist to convert system (1.7) to system (3.54). Hence, one must solve the system of equations
(3.52) and (3.53) with p = n and q = 0. It will be a relatively simple task to obtain the 1- and
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2-soliton solutions analogous to (4.26) and (4.27). Nevertheless, a systematic approach is necessary
to construct general multisoliton solutions.

3. The system of equations (1.5) has been derived as a unidirectional model describing the
propagation of circularly polarized ultra-short pulses in a Kerr medium.23 The solution of breather
type has been obtained by means of an analysis as well as numerical computations.24, 25 However,
in view of the extremely complicated structure of the breather solution,24 it seems to be unlikely
that the system admits multibreather solutions as well. Thus, we suspect the complete integrability
of the system even if it has passed the Painlevé test. On the other hand, although the difference
between (1.5) and (1.9) is the location of the x derivative on the right-hand side, the latter shares
many common features to the integrable systems such as the complete integrability and the existence
of multisoliton solutions. At present, however, the relevance of the system to the description of the
dynamics of ultra-short pulses in optical fibers is not clear. Nevertheless, it would be of interest to
examine the possibility of the system as a physical model for the 2-component generalization of the
SP equation.

Note added in proof: After the acceptance of the paper for publication, the author was informed
by Professor Müller-Hoissen that he and his coworker proposed the multi-component system (3.54)
and obtained the N-soliton solution of the 2-component system by means of their bidifferential
calculus approach.26 However, the construction of the N-soliton solution of the n-component system
with n ≥ 3 still remains open.
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