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While Q-balls have been investigated intensively for many years, another type of nontopological

solution, Q-tubes, have not been understood very well. In this paper we make a comparative study of

Q-balls and Q-tubes. First, we investigate their equilibrium solutions for four types of potentials. We find,

for example, that in some models the charge-energy relation is similar between Q-balls and Q-tubes while

in other models the relation is quite different between them. To understand what determines the charge-

energy relation, which is a key of stability of the equilibrium solutions, we establish an analytical method

to obtain the two limit values of the energy and the charge. Our prescription indicates how the existent

domain of solutions and their stability depend on their shape as well as potentials, which would also be

useful for a future study of Q-objects in higher-dimensional spacetime.
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I. INTRODUCTION

Among nontopological solitons, Q-balls have attracted
much attention because they can exist in all supersymmet-
ric extensions of the Standard Model [1]. Specifically, they
can be produced efficiently in the Affleck-Dine (AD)
mechanism [2] and could be responsible for baryon asym-
metry [3] and dark matter [4]. Q-balls can also influence
the fate of neutron stars [5]. Based on these motivations,
the stability of Q-balls has been intensively studied [6–9].

In spite of these concerns about Q-balls, other equilib-
rium solutions have not been studied so much, while
topological defects have several types according to the
symmetry. For example, observational consequences by
cosmic strings, such as gravitational lenses and the gravi-
tational wave, have been argued for years [10].

From this point of view, other types of nontopological
solutions may play an important role in the Universe.
Recently, two types of nontopological solutions were dis-
cussed: Q-tubes and Q-crust, which mean tube-shaped (or
stringlike) and crust-shaped solutions, respectively [11].
As for Q-tubes, some numerical studies manifested signs
of their appearance. First, it has been reported that a
filament structure appears just before Q-ball formation in
the numerical simulations and can be the source for gravi-
tational waves [12]. Second, according to the simulations
of the collision of two Q-balls, two apparent rings are
formed [13]. We conjecture that the filament structure
and the rings are Q-tubes.

In Ref. [11], numerical solutions were investigated for
the potential,

V3ð�Þ :¼ m2

2
�2 ���3 þ ��4 with m2; �; � > 0;

(1)

which we call the V3 model. In the case of Q-balls [6–8],
however, the charge-energy relation, which is a key of
stability of the equilibrium solutions, is quite dependent
on potentials Vð�Þ. Therefore, our first concern is how
Q-tube solutions depend on potentials.
Our second concern is how different Q-tubes and

Q-balls are in the charge-energy relation. This shape de-
pendence is closely related to the dimension dependence
because a cylindrical Q-tube in 3þ 1 spacetime is equiva-
lent to a ‘‘Q-ball’’ in 2þ 1 spacetime if we ignore gravity.
If this dimension dependence becomes manifest, it would
be useful for investigating other Q-objects or those in
higher-dimensional spacetime [14].
For these reasons, in this paper we make a comparative

study of Q-balls and Q-tubes. This paper is organized as
follows. In Sec. II, we explain briefly what Q-balls and
Q-tubes are. In Sec. III, we investigate their equilibrium
solutions numerically for four types of potentials. In
Sec. IV, we evaluate analytically the limit values of the
energy and the charge. In Sec. V, we make our concluding
remarks.

II. EQUILIBRIUM SOLUTIONS

Consider an SO(2)-symmetric scalar field � ¼
ð�1; �2Þ, whose action is given by

S ¼
Z

d4x

�
� 1

2
���@�� � @��� Vð�Þ

�
;

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
� ��p

:
(2)
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A. Q-balls

For a Q-ball, we assume spherical symmetry and homo-
geneous phase rotation,

� ¼ �ðrÞðcos!t; sin!tÞ: (3)

One has a field equation,

d2�

dr2
þ 2

r

d�

dr
þ!2� ¼ dV

d�
: (4)

This is equivalent to the field equation for a single static
scalar field with an effective potential

V! ¼ V � 1

2
!2�2: (5)

Equilibrium solutions �ðrÞ with a boundary condition

d�

dr
ðr ¼ 0Þ ¼ 0; �ðr ! 1Þ ¼ 0; (6)

exist ifminðV!Þ< V!ð0Þ and d2V!=d�
2ð0Þ> 0 [15]. This

condition is rewritten as

min

�
2V

�2

�
<!2 <m2 � d2V

d�2
ð0Þ; (7)

where we have put Vð0Þ ¼ 0 without loss of generality.
For a Q-ball solution, we can define the energy and the

charge, respectively, as

E ¼ 4�
Z 1

0
r2dr

�
1

2
!2�2 þ 1

2

�
d�

dr

�
2 þ V

�
;

Q ¼ 4�!
Z 1

0
r2�2dr:

(8)

The Q-E relation is a key to understand the stability of
equilibrium solutions in terms of catastrophe theory [8].

B. Q-tubes

For a Q-tube, we suppose a stringlike configuration,

� ¼ �ðRÞðcosðn’þ!tÞ; sinðn’þ!tÞÞ; (9)

where n is a non-negative integer and ðR;’; zÞ is the
cylindrical coordinate system. The field equation becomes

d2�

dR2
þ 1

R

d�

dR
� n2�

R2
þ!2� ¼ dV

d�
: (10)

In the case of n ¼ 0, the field equation is the same as (4)
except for a numerical coefficient. Therefore, Q-ball-like
solutions of �ðRÞ exist if the condition (7) is satisfied.

In the case of n � 1, there is no regular solution which
satisfies�ð0Þ � 0. However, if we adopt a different bound-
ary condition,

�ðR ¼ 0Þ ¼ �ðR ! 1Þ ¼ 0; (11)

there is a new type of regular solution. We introduce an
auxiliary variable c which is defined by �ðRÞ ¼ Rnc ðRÞ.
Then, Eq. (10) becomes

d2c

dR2
þ 2nþ 1

R

dc

dR
þ!2c ¼ R�n dV

d�

���������¼Rnc :
(12)

If we choose c ð0Þ appropriately, we obtain a solution c ðRÞ
which is expressed in the Maclaurin series without odd
powers in the neighborhood of R ¼ 0. In terms of the
original variable �ðRÞ, the nth differential coefficient

�ðnÞð0Þ ¼ c ð0Þ should be determined by the shooting
method, while any lower derivative vanishes at R ¼ 0.
In the same way as for Q-balls [15], the existence of

Q-tube solutions can be interpreted as follows. If one
regards the radius R as ‘‘time’’ and the scalar amplitude
�ðRÞ as ‘‘the position of a particle,’’ one can understand
n ¼ 0 solutions in the words of Newtonian mechanics, as
shown in Fig. 1(a). Equation (10) describes a one-
dimensional motion of a particle under the conserved force
due to the potential �V!ð�Þ and the ‘‘time’’-dependent
friction �ð1=RÞd�=dR. If one chooses the ‘‘initial posi-
tion’’ �ð0Þ appropriately, the static particle begins to roll

φ

-Vω(φ)

R=0

(a)

φ

-Vω(φ)

R=0

(b)

FIG. 1 (color online). Interpretation of (a) Q-balls and n ¼ 0
solutions in Q-tubes and (b) n � 1 solutions in Q-tubes by
analogy with a particle motion in Newtonian mechanics.
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down the potential slope, climbs up, and approaches the
origin over infinite time.

Similarly, we can also understand the n � 1 solutions as
shown in Fig. 1(b). In this case, there are two nonconserved
forces, the friction �ð1=RÞd�=dR and the repulsive force
n2�2=R2. If n ¼ 1, by choosing the ‘‘initial velocity’’
d�=dRð0Þ appropriately, the particle goes down and up
the slope, and at some point, � ¼ �max, it turns back and
approaches the origin over infinite time. If n � 2,

d�=dRð0Þ vanishes; instead, the nth derivative �ðnÞð0Þ
gently pushes the particle at � ¼ 0. Therefore, with the

appropriate choice of �ðnÞð0Þ, the particle moves along a
similar trajectory to that of n ¼ 1. This argument also
indicates that the existence condition of n � 1 solutions
is the same as that of n ¼ 0 solutions, (7). Solutions with
the same behavior as the n ¼ 1 solutions were obtained by
Kim et al. [16], who studied the SO(3)-symmetric scalar
field without Q-charge.

Because our Q-tube solutions are infinitely long, the
energy and the charge (8) diverge. We therefore define
the energy and the charge per unit length, pectively, as

e ¼ 2�
Z 1

0
RdR

�
1

2
!2�2 þ 1

2

�
d�

dR

�
2 þ n2�2

2R2
þ V

�
;

q ¼ 2�!
Z 1

0
R�2dR:

(13)

C. Two types and two limits

The existence condition (7) indicates that both Q-balls
and Q-tubes are classified into two types of solutions
according to the sign of min½Vð�Þ�.

Type I:min½Vð�Þ�¼Vð0Þ¼0. In this case, min½2V=�2�
is also positive and the lower limit of !. The two limits
!2 ! min½2V=�2� and !2 ! m2 correspond to the thin-
wall limit and the thick-wall limit, respectively.

Type II: min½Vð�Þ�<0. In this case, min½2V=�2� is
negative. Because!2>0, there is no thin-wall limit,!2 !
min½2V=�2�. The thick-wall limit, !2 ! m2, still exists.

The two limits of !2 for the two types of solutions are
summarized in Table I.

III. SOLUTIONS IN VARIOUS POTENTIALS

Here we investigate equilibrium solutions ofQ-balls and
Q-tubes for four types of potentials.

A. V3 model

First, we summarize the previous results in the V3 model
(1) [11]. We rescale the quantities as

~� � �

�
�; ~m �

ffiffiffiffi
�

p
�

m; ~! �
ffiffiffiffi
�

p
�

!;

~r � �ffiffiffiffi
�

p r; ~E � �3=2

�
E; ~Q � �Q;

~R � �ffiffiffiffi
�

p R; ~e � �2

�2
e; ~q � �3=2

�
q;

(14)

and define a parameter,

�2 � ~m2 � ~!2: (15)

Then, the existing condition (7) for the two types
becomes

0< �2 <
1

2
for ~m2 >

1

2
ðtype IÞ;

0< �2 < ~m2 for ~m2 <
1

2
ðtype IIÞ:

(16)

The limits �2 ! 1=2 and �2 ! 0 correspond to the thin-
wall limit and the thick-wall limit, respectively. As we
discussed in the last section, however, in type II solutions
there is no thin-wall limit, and the upper limit of �2 is ~m2

instead of 1=2.
Figure 2 shows examples of the field configurations of

Q-tubes. We fix ~m2 ¼ 0:6 (type I) and choose �2 ¼ 0:01
(thick-wall) in (a) and �2 ¼ 0:48 (thin-wall) in (b). In each
diagramwe show the three solutions n ¼ 0, 1, and 2, which
indicates that the maximum amplitude of the scalar field
~�max for n ¼ 0 is largest among them. We can understand
it by analogy with the Newtonian mechanics in Fig. 1. For
n � 1, the particle must make a round-trip while it goes

one way for n ¼ 0. Nevertheless, ~�max in all cases is
qualitatively unchanged, which means that the conserva-
tion law of energy approximately holds in words of the
Newtonian mechanics. Of course, the behavior of a Q-ball
is similar to that of a Q-tube for n ¼ 0. These properties
are independent of potentials, which is important in under-
standing Q-balls and Q-tubes in a unified way as we shall
see in Sec. IV.
We show the charge-energy-� relations for type I

( ~m2 ¼ 0:6): Q-balls in Fig. 3 and Q-tubes in Fig. 4. As
for Q-tubes, we show results for n ¼ 0, 1, and 2. The
similarity between Q-balls and Q-tubes is quite remark-

able. In the thin-wall limit (�2 ! 1=2), we confirm that ~Q,
~E, ~q, and ~e diverge. In the thick-wall limit (�2 ! 0), on the
other hand, these quantities approach zero.
We also show the same relations for type II ( ~m2 ¼ 0:3):

Q-balls in Fig. 5 and Q-tubes in Fig. 6. The crucial differ-

ence from type I is that ~Q and ~q approach zero in the upper
limit �2 ! ~m2 while ~E and ~e have nonzero finite values

corresponding to the points C. As a result, ~Q, ~E, ~q, and ~e

TABLE I. Two types of Q-balls=Q-tubes solutions and two
limits of !2.

Lower limit of !2 Upper limit of !2

Type I: min½V� ¼ 0 min½2V=�2� (thin) m2 (thick)

Type II: min½V�< 0 0 m2 (thick)
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have maximum values for the intermediate value of �2

corresponding to the points B where cusp structures appear
in Figs. 5 and 6(a). The stability ofQ-balls andQ-tubes can
be understood using catastrophe theory [8,17]. The cusp

structures in ~Q- ~E (~q-~e) diagrams mean the stability change
in catastrophe theory. The solutions from point A to B are
stable while B to C are unstable. The extreme values of the
energy and the charge of Q-balls and Q-tubes in the V3

model are summarized in Table II.

B. The V4 model

Second, we consider another simple potential,

V4ð�Þ :¼m2

2
�2���4þ�6

M2
with m2;�;M2>0; (17)

which we call the V4 model. We rescale the quantities as

~� � �ffiffiffiffi
�

p
M

; ~m � m

�M
; ~! � !

�M
;

~r � �Mr; ~E � E

M
; ~Q � �Q;

~R � �MR; ~e � e

�M2
; ~q � q

M
;

(18)

and again define a parameter � by (15).
Then the existing condition is identical to (16) in the V3

case. We show the charge-energy-� relations in Figs. 7–10:
type I Q-balls in Fig. 7, type I Q-tubes in Fig. 8, type II
Q-balls in Fig. 9, and type IIQ-tubes in Fig. 10. Contrary to
the case of the V3 model, a qualitative difference between
Q-tubes and Q-balls appears. The extreme values of the

(a)

(b)

FIG. 2. The field configurations of the scalar field for Q-tubes
in the V3 model with ~m2 ¼ 0:6 (type I): (a) �2 ¼ 0:01 (thick-
wall) and �2 ¼ 0:48 (thin-wall).

(a)

(b)

FIG. 3. (a) ~Q- ~E and (b) ~Q-�2 relations for type I Q-balls in the
V3 model: ~m2 ¼ 0:6.
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energy and the charge of Q-balls and Q-tubes in the V4

model are summarized in Table III.
The structures of the solution series of type II Q-balls

andQ-tubes are not simple. In the case ofQ-balls, there are
two cusps in theQ-E diagram, B and C. Only the solutions
between these two points represent stable solutions. In the
case of Q-tubes, a cusp appears for n ¼ 0, while no cusp
appears for n � 1.

C. AD gravity-mediation type

From the theoretical point of view, it is important to
investigate Q-tubes as well as Q-balls in the AD mecha-
nism. There are two types of potentials: gravity-mediation
type and gauge-mediation type. Here we consider the
former type,

Vgravð�Þ :¼ m2
grav

2
�2

�
1þ K ln

�
�

M

�
2
�

with m2
grav; M > 0: (19)

We rescale the quantities as

~���

M
; ~!� !

mgrav

; ~r�mgravr; ~E�mgravE

M2
;

~Q�m2
gravQ

M2
; ~R�mgravR; ~e� e

M2
; ~q�mgravq

M2
;

(20)

and define a parameter � as

�2 ¼ 1� ~!2: (21)

The existing condition (7) becomes

K < 0; �2 < 1: (22)

(a)

(b)

FIG. 4. (a) ~q-~e and (b) ~q-�2 relations for type I Q-tubes in the
V3 model: ~m2 ¼ 0:6.

(a)

(b)

FIG. 5. (a) ~Q- ~E and (b) ~Q-�2 relations for type I Q-balls in the
V3 model: ~m2 ¼ 0:3.
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Thus, �2 is not bounded below, which is in contrast to the
V3 and V4 models. Only type II solutions exist in this model
unless we introduce additional terms in the potential. We
show the charge-energy-� relations: Q-balls in Fig. 11 and
Q-tubes in Fig. 12. The extreme values of the energy and
the charge ofQ-balls and Q-tubes in the gravity-mediation
type are summarized in Table IV. There is no qualitative
difference in the charge-energy relation between Q-balls

and Q-tubes. These properties are common to type II
solutions in the V3 model.

D. AD gauge-mediation type

Finally, we consider the gauge-mediation type in the AD
mechanism,

Vgaugeð�Þ :¼m4
gauge ln

�
1þ �2

m2
gauge

�
with m2

gauge>0: (23)

We rescale the quantities as

~�� �

mgauge

; ~!� !

mgauge

; ~r�mgauger; ~E� E

mgauge

;

~Q�Q; ~R�mgaugeR; ~e� e

m2
gauge

; ~q� q

mgauge

; (24)

and define a parameter � as

(a)

(b)

FIG. 6. (a) ~q-~e and (b) ~q-�2 relations for type I Q-tubes in the
V3 model: ~m2 ¼ 0:3.

TABLE II. Extreme values of the energy and the charge of
Q-balls and Q-tubes in the V3 model.

�2 ! min½1=2; ~m2� �2 ! 0 (thick)

Type I: ~m2 > 1=2 ~E, ~Q, ~e, ~q ! 1 ~E, ~Q, ~e, ~q ! 0
Type II: ~m2 < 1=2 ~E, ~e ! nonzero finite ~E, ~Q, ~e, ~q ! 0

~Q, ~q ! 0

(a)

(b)

FIG. 7 (color online). (a) ~Q- ~E and (b) ~Q-�2 relations for type I
Q-balls in the V4 model: ~m2 ¼ 0:6.
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�2 ¼ 2� ~!2: (25)

Then the existing condition (7) becomes

0< �2 < 2: (26)

Only type I solutions exist in this model. We show the
charge-energy-� relation:Q-balls in Fig. 13 andQ-tubes in
Fig. 14. The extreme values of the energy and the charge of
Q-balls and Q-tubes in the gravity-mediation type are
summarized in Table V. These properties are common to
the type I solutions in the V4 model.

IV. UNIFIED PICTUREOFQ-BALLSANDQ-TUBES

Our numerical results in the last section indicate that the
charge-energy relation of equilibrium solutions depends a
great deal on functional forms of the potential Vð�Þ. In this

section we discuss what determines the extreme values of
the energy and the charge by analytical methods. As we
explained in Sec. II, we can understandQ-balls andQ-tubes
in words of a particle motion in Newtonian mechanics. In
Fig. 1, if we ignore ‘‘nonconserved force,’’ the maximum of

�, ~�max is determined by the nontrivial solution of V! ¼ 0.

Using this ~�max, we can evaluate the order of magnitude of
the energy and the charge, (8) and (13), as

~E� ~r3max

�
1

2
~!2 ~�2

max þ 1

2

�
d ~�

d~r

�
2 þ ~V

�
;

~Q� ~!~r3max
~�2
max;

~e� ~R2
max

�
1

2
~!2 ~�2

max þ 1

2

�
d ~�

d ~R

�
2 þ n2 ~�2

max

2 ~R2
max

þ ~V

�
;

~q� ~! ~R2
max

~�2
max;

(27)

(a)

(b)

FIG. 8. (a) ~q-~e and (b) ~q-�2 relations for type I Q-tubes in the
V4 model: ~m2 ¼ 0:6.

(a)

(b)

FIG. 9 (color online). (a) ~Q- ~E and (b) ~Q-�2 relations for type II
Q-balls in the V4 model: ~m2 ¼ 0:4.
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where the subscript ‘‘max’’ denotes the values at which ~� ¼
~�max. As for ~Rmax for n ¼ 0 or ~rmax, it is reasonable to take
~R or ~r where ~� becomes about 0:5 ~�max.

What we want to discuss is whether ~E, ~Q, ~e, and ~q
approach zero, infinity, or nonzero finite values as �2

approaches the upper or lower limit. The approximate
expression (27) is appropriate for this purpose.

First, we discuss the upper limit of �2, or equivalently,
the lower limit of !2. In type I solutions, where min½V� ¼
Vð0Þ ¼ 0, in the limit of ! ! min½2V=�2�, the minimum
of V! approaches zero. In this case, in the Newtonian-
mechanics picture of Fig. 1, a particle rolls down from the
top of the hill over infinite time, i.e., Rmax diverges. This
limit corresponds to the thin-wall limit. From the expres-

sion (27), we see that ~Q, ~E, ~q, and ~e diverge.
On the other hand, in the type II solutions, where

min½V�< 0, because V! < V, there is no limit of

minV! ! 0. Therefore, ~Q, ~E, ~q, and ~e must have their
upper limits.
Next, we investigate the lower limit of �2, or equiva-

lently, the upper limit of !2. This limit corresponds to the
thick-wall limit. Except for the Vgrav model, � satisfies

�2 ¼ d2 ~V!

d ~�2
ð0Þ; (28)

(a)

(b)

FIG. 10. (a) ~q-~e and (b) ~q-�2 relations for type II Q-tubes in
the V4 model: ~m2 ¼ 0:4.

TABLE III. Extreme values of the energy and the charge of
Q-balls and Q-tubes in the V4 model.

�2 ! min½1=2; ~m2� �2 ! 0 (thick)

Type I: ~m2 > 1=2 ~E, ~Q, ~e, ~q ! 1 ~E, ~Q ! 1
~e, ~q ! nonzero finite

Type II: ~m2 < 1=2 ~E, ~e ! nonzero finite ~E, ~Q ! 1
~Q, ~q ! 0 ~e, ~q ! nonzero finite

(a)

(b)

FIG. 11. (a) ~Q- ~E and (b) ~Q-�2 relations for Vgrav: K ¼ �0:1.
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which means that � is the mass scale of V!. If we remem-
ber that the Compton wavelength of a particle is inverse of
the particle mass, the wall thickness is of order of 1=�.
Because the radius and the wall thickness are of the same
order in the thick-wall limit, except for the Vgrav model,

we obtain

~r max; ~Rmax � 1

�
: (29)

In the following, from the approximate expressions (27)
and (29) we evaluate the limits of the charge and the

energy as � approaches the lower limit. Since ~� can be
approximated by a constant in this limit, we concentrate on

evaluating ~�max.
(A) V3 case

The solution of V! ¼ 0 is

~�max ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p

2
: (30)

In the lower limit �2 ! 0, we have ~�max ’ �2=2.
Therefore, from Eqs. (27)–(29), we find

~Q; ~E; ~q; ~e ! 0; (31)

which agree with the numerical results in Table II.

TABLE IV. Extreme values of the energy and the charge of
Q-balls and Q-tubes in the AD gravity-mediation type.

�2 ! 1 �2 ! �1 (thick)

Type II ~E, ~e ! nonzero finite ~E, ~Q, ~e, ~q ! 0
~Q, ~q ! 0

(a)

(b)

FIG. 13. (a) ~Q- ~E and (b) ~Q-�2 relations for Vgauge.

(a)

(b)

FIG. 12. (a) ~q-~e and (b) ~q-�2 relations for Vgrav: K ¼ �0:1.
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(B) V4 case
From V! ¼ 0, we obtain

~� 2
max ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p

2
: (32)

In the lower limit �2 ! 0, we have ~�max ’ �.
Substituting this and (29) into (27), we have

~E� 1

�3
1

2
~!2�2 ! 1; ~Q� ~!

1

�3
�2 ! 1;

~e� 1

�2
1

2
~!2�2 ! const; ~q� ~!

1

�2
�2 ! const;

(33)

which agree with the numerical results in Table III.
This explains why the results between Q-tubes and
Q-balls are different in this model while no quali-
tative difference appears in the V3 model.

(C) Vgrav case

The solution of V! ¼ 0 is

~�max ¼ e��2

2K: (34)

We note that dependence on K is exteremely large.
~�max approaches zero in the lower limit �2 ! �1.
Since Rmax does not diverge,

~Q; ~E; ~q; ~e ! 0; (35)

which agree with the numerical results in Table IV.
In a realistic situation, we anticipate that Vgrav has

also the nonrenormalization term ~VNR ¼ � ~�n

where �> 0 and n > 2. This does not change the
qualitative behavior in the lower limit. However, in
the upper limit, V! ¼ 0 has degenerate solutions as
in type I models. Therefore, we anticipate that the
charge-energy relation for Vgrav with ~VNR is similar

to that for type I solutions in the V3 model.
(D) Vgauge case

We should solve

lnð1þ ~�2
maxÞ ¼ ~!2 ~�2

max

2
: (36)

In the lower limit �2 ! 0, if we use the Maclaurin

expansion and neglect higher order terms Oð ~�5
maxÞ,

we have

~�2
max�

2 ’ ~�4
max: (37)

Then, we obtain

~�max ’ �; (38)

as in the V4 model. Therefore, the limit values are
identical to (33), which agree with the numerical
results in Table V. We also understand why the
results for V4 with ~m2 > 1=2 and for Vgauge are

qualitatively the same [18].

V. SUMMARYAND DISCUSSIONS

We have made a comparative study of Q-balls and
Q-tubes. First, we investigated their equilibrium solutions
for four types of potentials. The charge-energy relation
depends on potential models. We also noted that in some
models the charge-energy relation is similar between

(a)

(b)

FIG. 14. (a) ~q-~e and (b) ~q-�2 relations for Vgauge.

TABLE V. Extreme values of the energy and the charge of
Q-balls and Q-tubes in the AD gauge-mediation type.

�2 ! 2 (thin) �2 ! 0 (thick)

Type I ~E, ~Q, ~e, ~q ! 1 ~E, ~Q ! 1
~e, ~q ! nonzero finite

TAKASHI TAMAKI AND NOBUYUKI SAKAI PHYSICAL REVIEW D 86, 105011 (2012)

105011-10



Q-balls and Q-tubes while in other models the relation is
quite different between them. To understand what deter-
mines the charge-energy relation, which is a key of stabil-
ity of the equilibrium solutions, we established an
analytical method to obtain the two limit values of the
energy and the charge. Our results indicated how the
existent domain of solutions and their stability depends
on their shape as well as potentials. This method would

also be useful for other Q-objects or those in higher-
dimensional spacetime. These are our next subjects.
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