Introduction

Constant Leaf-Size Hierarchy of Three-Dimensional

Alternating Turing Machines

Makoto SAKAMOTO
(Dept. of Shipping Technology, Oshima National College of Maritime Technology)
Katsushi INOUE

(Dept. of Computer Science and Systems Engineering)

Abstract

‘Leaf-size’ (or ‘branching’) is the minimum number of leaves of some accepting
computation trees of alternating devices. For example, one leaf corresponds to
nondeterministic computation. In this paper, we investigate the effect of constant
leaves of three-dimensional alternating Turing machines, and show the following facts
: (1) For cubic input tapes, k leaf- and L(m) space-bounded three-dimensional alter-
nating Turing machines with only universal states are equivalent to the same space-
bounded three-dimensional deterministic Turing machines for any integer £ > 1 and
any function L(m). (2) For cubic input tapes, k+ 1 leaf- and o(log m) space-bounded
three-dimensional alternating Turing machines are more powerful than & leaf-bounded
ones for each k > 1.

Keywords : Leaf-size, alternation, space complexity, three-dimensional Turing ma-
chine, three-dimensional finite automaton.

(31) 31

model of two- or three-dimensional pattern pro-

Inoue and Takanami [5] introduced a three-
way two-dimensional leaf-size bounded com-
putation was introduced as a simple, natural
new complexity measure for alternating Tur-
ing machines*. Basically, the ‘leaf-size’ (or
‘branching’) is the minimum number of leaves
of some accepting computation trees of alter-
nating Turing machines. Leaf-size, in a sense,
reflects the minimum number of processors
that run in parallel in accepting a given in-
put. After that, several interesting facts con-
cerning the computational complexity based on
this measure has been revealed. For instance,
Yamamoto shows the leaf compression theo-
rem for time-bounded alternating Turing ma-
chines [15]. Matsuno et al. and Hromkovic
applies the concept of leaf-size to alternating
multihead automata [4, 10]. Moreover, due
to the advances in the processing of pictorial
information by computer, it has become in-
creasingly apparent that the study of two- or
three-dimensional pattern processing should be
very important. Thus, the research of multi-
dimensional automata as the computational

*King independently introduced the same complex-
ity measure as ‘leaf-size’ [9]. In [9], the term ‘branching’
is adopted instead of the term ‘leaf-size’.

cessing has also been meaningful [2, 3, 14, 16].
Ito et al. investigated several properties of
leaf-size bounded two-dimensional Turing ma-
chines. In [7], they showed that a parallel two-
dimensional machine with cooperative proces-
sors is more powerful than a two-dimensional
mechanism with the same number of proces-
sors which run independently. In [6, 8], they
established a hierarchy of complexity classes
besed on leaf-size bounded computations for
two-dimensional alternating Turing machines,
and the constant leaf-size hierarchy of two-
dimensional alternating Turing machines using
small space. On the other hand, we intro-
duced a three-dimensional alternating Turing
machine, and investigated its several proper-
ties [11, 12]. In [13], we provided an unbounded
leaf-size hierarchy of three-dimensional alter-
nating Turing machines.

In this paper, we continue the investigations
about a leaf-size hierarchy of three-dimensional
alternating Turing machines. We show that for
three-dimensional alternating Turing machines
with only universal states, the hierarchy col-
lapses to the deterministic class, as with the

Mem Fac Eng Yamaguchi Univ

32 (32

case of large space bound. In contrast, for nor-
mal three-dimensional alternating Turing ma-
chines using small space bound, a strict hierar-
chy emerges again. More precisely, it is shown
that there exists a set of cubic tapes accepted
by a k + 1 leaf-bounded three-dimensional al-
ternating finite automata, but not accepted by
any k leaf- and o(logm) space bounded three-
dimensional alternating Turing machines.

2. Preliminaries

Definition 2.1. Let ¥ be a finite set of
symbols. A three-dimensional tape over X is
a three-dimensional rectangular array of ele-
ments of ¥. The set of all three-dimensional
tapes over X is denoted by X(3).

Given a tape 2 € X3 for each integer j(1 <
J < 3), we let [;(z) be the length of x along the
j-th axis. If 1 < ¢; < l;(x) for each j(1 < j <
3), let x(i1,42,13) denote the symbol in z with
coordinates (i1,42,43). Furthermore, we define

$[(i1,i2,i3), (11177’/2723)]7

when 1 < i; < i} < [;(x) for each integer
j(1 < j < 3), as the three-dimensional tape
y satisfying the following (i) and (ii) :

(i) for each j(1 < j <3), l;(y) =i} —i; + 1;

(ii) for each r1, 79, r3 (1 < r <
hy),1 < r2 < b(y),l < r3 < I3(y),
y(ri,mo,r3) = x(ri + 41 — Lirg +ip — 1,73 +
is — 1). (We call z[(i1,12,13), (¢],75,75)] the
[(41,12,43), (i1, 15, i4)]-segment of x.)

As usual, an input three-dimensional tape x
over ¥ is surrounded by the boundary symbol
£ (4 ¢ X). Coordinates are naturally assigned
to boundary symbols. That is, if there is an
integer ¢; such that i; = 0 or i; = l;(x) + 1 for
some j (1 < j < 3), then we let z(iy,i2,13) =
. Furthermore, for each i (1 < i < I3(z)),
we call z[(i,1,1), (i,l2(x),l5(x))] the i-th (2-3)
plane of x, and denote it by 2(2-3);. Similarly,
for each j(1 < j < Ix(x)) and k(1 < k <
I3(x)), we call z[(1,7,1),(l1(z),],13(z))] and
:L‘[(].,]-7 k)v (ll(x)a 12(33)? k)] the j_th (1_3) plane
and k-th (1-2) plane of x, and denote them by
x(1-3),; and z(1-2)y, respectively.

We now introduce a three-dimensional alter-
nating Turing machine (3-AT'M), which can be
considered as an alternating version of a three-
dimensional Turing machine [11, 14].

Definition 2.2. A three-dimensional alternat-
ing Turing machine (3-ATM) M is defined by

Vol.50 No.1 (1999)

the septuple
M = (QvQO7 Ua F727F75)7

where

(1) @ is a finite set of states,

(2) qo € Q is the initial state,

(3) U C Q is the set of universal states,

(4) F C Q is the set of accepting states,

(5) X is a finite input alphabet (§ ¢ ¥ is the
boundary symbol),

(6) T is a finite storage-tape alphabet (B € T
is the blank symbol),

and

(7) 6 C (@x(ZU{#H=T) x (@Qx(T'—{B}) x
{east, west, south, north, up, down, no move
} x {right, left, no move }) is the next-move
relation.

A state ¢ in Q@ — U is said to be existen-
tial. The machine M has a read-only three-
dimensional input tape with boundary symbols
f’s and one semi-infinite storage tape, initially
blank. Of course, M has a finite control, an in-
put head, and a storage-tape head. A position is
assigned to each cell of the read-only input tape
and to each cell of the storage tape. A step of
M consists of reading one symbol from each
tape, writing a symbol on the storage tape,
moving the input and storage heads in specified
directions, and entering a new state, in accor-
dance with the next move relation §. Note that
the machine cannot write the blank symbol. If
the input head falls off the input tape, or if
the storage head falls off the storage tape (by
moving left), then the machine M can make no
further move.

Definition 2.3. A configuration of a 3-AT M
M =(Q,q,U, F,%,T,0) is a pair of an element
¥®) and an element of

Cn = (NU{0})? x S,

where Sy = Q% (I'={B})*xN, and N denotes
the set of all positive integers. The first com-
ponent of a configuration ¢ = (x, ((i1, iz, 43), (¢
,a, k))) represents the input to M. The first
component (i1,142,43) of the second component
of ¢ represents the input head position. The
second component (g, a, k) of the second com-
ponent of ¢ represents the state of the finite
control, nonblank contents of the storage state,
and the storage-head position. An element of
C\y is called a semi-configuration of M and an
element of Sy, is called a storage state of M.
If ¢ is the state associated with configuration
¢, then c¢ is said to be a universal (existential,

accepting) configuration if ¢ is a universal (ex-
istential, accepting) state. The initial configu-
ration of M on input x is

IM(x) = ($, ((17 1, 1)7 (QO7 A, 1)))7

where A is the null string.

Definition 2.4. Given M = (Q, qo,U, F, 3, T,
J), we write

chky c

and say ¢’ is a successor of ¢ if configuration ¢’
follows from configuration ¢ in one step of M,
according to the transition rules §. The relation
3, denotes the reflexive transitive closure of I-.
A computation path of M on z is a sequence

cobFmea by Fymen (n>1).

A computation tree of M is a nonempty la-
beled tree with the following properties :
(1) each node 7 of the tree is labeled with a
configuration (),
(2) if 7 is an internal node (a nonleaf) of the
tree, [(m) is universal and

{c|l(m) bpr e} ={ea,. .- cx),

then 7 has exactly k children pq,...
that I(p;) = ¢; (1 <i<k);

(3) if 7 is an internal node of the tree and ()
is existential, then 7 has exactly one child p
such that

, Pr such

Um) Fae Up).

An accepting computation tree of M on an in-
put z is a finite computation tree of M whose
root is labeled with Ip;(z) and whose leaves are
all labeled with accepting configurations. We
say that M accepts x if there is an accepting
computation tree of M on input x. Define

T(M) = {x €) | M accepts x}.

A three-dimensional deterministic Turing
machine and a three-dimensional alternating
Turing machine with only universal states are
special cases of a 3-ATM. That is, the for-
mer is a 3-ATM whose configurations each
have at most one successor and the latter is
a 3-AT'M which has no existential states [12].
By ‘3-DTM’ (‘3-UTM’) we denote a three-
dimensional deterministic Turing machine (a
three-dimensional alternating Turing machine
with only universal states).

(33) 33

Definition 2.5. Let L(m) : N2 — N be a
function with two variables m and n. For any
3 — ATM M, we associate a complexity func-
tion SPACE which takes configuration ¢ =
(z, ((i1,142,13), (g, a, k))) to natural numbers.
Let SPACE(c) =| a |. We say that M is L(m)
space-bounded if for all m > 1 and for each
x with Iy (z) = la(z) = l3(x) = m, if z is ac-
cepted by M, then there is an accepting compu-
tation tree of M on input z such that, for each
node 7 of the tree, SPACE(I(r)) < [L(m)]T.
By ‘3-ATM(L(m))’, we denote an L(m)
space-bounded 3-ATM. ‘3-DTM(L(m))’, ‘3-
UTM(L(m))’ are similarly defined.

Especially, 3-AT'M (0) is denoted by ‘3-AF A’
and called a three-dimensional alternating fi-
nite automaton. ‘3-DFA’, and ‘3-UF A’ are
similarly defined.

We next present a simple, natural complex-
ity measure for 3-AT M’s, called leaf-size [5, 9].
Basically, the leaf-size used by a 3-AT'M on a
given input is the number of leaves of an accept-
ing computation tree with the fewest leaves.
Leaf-size, in a sense, reflects the minimum num-
ber of processors that run in parallel in accept-
ing a given input.

Definition 2.6. Let Z(m) : N2 — N be
a function. For each tree ¢, let LEAF(t)
denote the leaf-size of ¢ (i.e., the number of
leaves of t). We say that a 3-ATM M is
Z(m) leaf-size bounded if for all input = with
li(z) = la(x) = l3(x) = m, if x is accepted
by M then there is an accepting tree t of
M such that LEAF(t) < [Z(m)]. By ‘3-
ATM(L(m), Z(m))’, we denote a simultane-
ously L(m) space-bounded and Z(m) leaf-size
bounded 3-ATM. ‘3-UTM(L(m), Z(m))’, ‘3-
AFA(Z(m))’, and ‘3-UFA(Z(m))’ are simi-
larly defined.

In some part of this paper, we concentrate on
the properties of 3-ATM’s whose input tapes
are restricted to cubic ones. In this case, com-
plexity function L or Z has only one variable,
conventionally m. By ‘3-ATM¢(L(m))’ we de-
note an L(m) space-bounded 3-ATM whose
input tapes are restricted to cubic ones. ‘3-
DTM¢(L(m))’, etc. are defined similarly. The
class of sets accepted by 3-ATM®’s is defined
as follows.

L[3-ATM(L(m))] ={T | T = T(M) for some

7] is the smallest integer greater than or equal to
.

Mem Fac Eng Yamaguchi Univ

34 (34)

3-ATM¢(L(m))M}. L[3-DTMc(L(m))], etc.
are similarly defined.

Definition 2.7. Let g : N — N be a function
and x be a three-dimensional tape with l;(z) =
la(z) =n. For each k (1 <k <l3(x)/g(n)), we
call

z[(1, 1, (k = 1)g(n) + 1), (n,n, kg(n))]

the k-th g(n)-block of x, when l3(x) is divided
by g(n). We simply denote it by z[blocky,)(k)].

3. Results

We mainly investigate a constant leaf-size hier-
archy : Are k + 1 leaves better than k ?

Now we first show that in the case of an al-
ternating Turing machine with only universal
states, no hierarchy exists for any space bound.

Theorem 3.1. For any k € N and any func-
tion L(m),

L[3-UTM(L(m), k)] = L£[3-DTM(L(m))].

Proof : Given a k leaf-size bounded 3-UT M
M and an input tape z, a 3-DTM M’ performs
a depth-first-search (see [1]) on the computa-
tion tree of M on z without any extra cells of
the working tape : Normal tree-search method
needs one stack for backtracking. Instead, M’
adopts only the forward tracking from the root
to each leaf and uses finite internal memories in
the finite control. Note that since M has con-
stant leaves, the branching structure of univer-
sal configurations of M on x is also constant.
After each traversal of a path and finding out
its leaf is labeled with an accepting configura-
tion M’ adds the newly obtained information
about the tree structure into a memory cell of
the finite control. Then, M begins to walk from
the root to the next leaf, whose route can be
specified by referring to the memories of the fi-
nite control. When the whole travel have been
done and if M is surely k leaf-size bounded,
M’ enters an accepting state. Note that M’
accepts exactly T'(M) and that M’ is L space-
bounded iff is L space-bounded. O

Corollary 3.1. For any k € N, L[3-
UFA¢(k)] = L[3-DF A€].

In contrast to six-way universal machines, we
can show that there exists an infinite hierarchy

Vol.50 No.1 (1999)

of o(logm) space-bounded three-dimensional
alternating Turing machines based on leaf-size.
To this end, we have to give several preliminar-
ies at first.

Let M be a 3-ATM¢<(l, z). Note that if the
numbers of states and storage-tape symbols of
M are s and t, respectively, then the number
of possible storage states of M is sit'!. Let 2
be the input alphabet of M, and let f be the
boundary symbol of M. For each k,m,n (k >
I,m>k+1,1<n<m-—1), we now consider
an (m,n, k)-chunk over . For any (m,n,k)-
chunk z over ¥, we denote by z(f) the pattern
(obtained from z by surrounding x with #’s).
Below we assume without loss of generality that
for any (m,n,k)-chunk, M has the following

property :

(A) M enters or exits the object x(f) only
at the [(m,1,1), (m—k+1,n,1)]-segment of z,
and never enters an accepting state in x(f).

Then the number of entrance points to z(f)
[or the exit points from z(f)] for M is (n +
3)k + 3n + 5. We suppose that these en-
trance points (or exit points) are numbered
1,2,...,(n+ 3)k + 3n+ 5. For each (m,n,k)-
chunk z, a configuration of M on z(f) is of the
form

(z(4), (p, (¢, @, 5)))s

where p represents the position of the head of
M on z(f), and (q,«,j) represents a storage
state of M. The second component (p, (¢, a, j))
of a configuration I = (z(f),(p, (¢, ,j))) is
called the semi-configuration component of I.
For convenience sake, for each i (1 < i <
(n+ 3)k + 3n +5), let the position of the cell
confronted with entrance point i of z(f) be
‘’. Further, we consider (n 4+ 2)k + 2n + 2
virtual cells (confronted with x(f)) by using
the same idea in [6], and we assign position
1,2,...,(n+2)k 4+ 2n +2)’ to these virtual
cells. We include these positions in the set of
positions of the head of M on z(}).

A configuration I = (z(#), (p, (¢, @, 7))) is
said to be universal (existential) if g is a uni-
versal (existential) state. For any configura-
tions I and I’ of M on z(f), we write I by I’
and say I' is a successor of I if I' follows
from I in one step of M on z(f). Note that
for any configuration I = (a(8), (p, (4, @))),
where z is an (m,n, k)-chunk, such that p €
{1,2/,...,(n+2)k+2n+2)'} (ie., pis a vir-
tual position), I has no successor.

A computation tree of M on z(f) is a finite,
nonempty labeled tree with the properties :

(1) each node 7 of the tree is labeled with a
configuration, I(r), of M on z(f) ;

(2) if 7 is an internal node (a nonleaf) of
the tree and [(m) is universal and {I | I(7) Fps
I} ={I,..., I}, then 7 has exactly r children
P1,- .-, pr such that I(p;) = I; ;

(3) if 7 is an internal node of the tree and
I() is existential, then 7 has exactly one child
p such that I(7) Far 1(p).

A prominent computation tree of M on an
(m,n, k)-chunk z is a computation tree of M
on z(f) with the properties :

(1) the root node is labeled with a config-
uration of the form (z(f), (¢, (¢, @, J))), where
1<i<(n+3)k+3n+5 (ie., the root node
is labeled with a configuration of M just after
M entered the pattern z(f) from some entrance
point ¢);

(2) each leaf node is labeled either

(a) with a configuration of the form (z(f),
(p, (g, ,7))), where p € {1',2/,...,((n
+2)k+2n+2)'} (ie., a configuration of
M just after M exited the pattern z()),
or
(b) with a configuration I such that start-
ing from the configuration I, M never
reaches a universal configuration which
has two or more successors,and M never
exists from x(f).

(A leaf node labeled with a configuration of
type (b) above is called a looping leaf node. A
leaf node labeled with a configuration of type
(a) above is called a normal leaf node.)

Let C = {e1,c¢a,...,cu} be the set of possi-
ble storage states of M, where u = slt!. For
each prominent computation tree ¢ of M on an
(m,n, k)-chunk, let the leaf semi-configuration
set of t (denoted by LSCS(t)) be a ‘multiset’
of elements of {1',2',..., ((n+2)k+2n+2)'} x
CU{L} (where L is a new symbol) defined as
follows :

(1) for each normal leaf node 7 of t, LSCS(t)
contains the semi-configuration component of
I(m) ;

(2) for each looping leaf node of ¢, LSCS(t)
contains the symbol L ;

(3) LSCS(t) does not contain any element
other than elements described in (1) and (2)
above.

(Note that any prominent computation tree ¢
of M, | LSCS(t) |< z, since M is z leaf-size
bounded.)

For each (m,n,k)-chunk z and for each
(t,¢) €{1,2,...,(n+3)k+3n+5} x C, let

M ¢)(z) = {LSCS(t) | t is a prominent com-

(35) 35

putation tree of M on x whose root is
labeled with the configuration (z(f),

(i,0))}-

Let z, y be two (m,n, k)-chunks. We say that
z and y are M-equivalent if for each (i,¢) €
{1,2,...,(n+3)k +3n + 5} x C, M(; oy(x) =
M(i,c) (y)

For any (m,n,k)-chunk = and for any tape
v e XG) with 1) (v) = k, lo(v) = n, and I3(v) =
1, let x[v] be the tape in %) consisting of v
and x.

The following lemma means that M cannot
distinguish between two (m, n, k)-chunks which
are M-equivalent.

Lemma 3.1. Let M be a 3-ATM¢(l, z), with
the property (A) and X be the input alphabet of
M. Let x,y be M-equivalent (m,n,k)-chunks
over ¥.. Then, for any tape v € 3t with
I1(v) = k, la(v) =m, and l3(v) = 1, is accepted
by M if and only if y[v] is accepted by M.

Proof : (If part). We assume that y[v] is
accepted by M. Then there exists an ac-
cepting computation tree ¢ of M on y[v] such
that LEAF(t) (i.e., the number of leaves of
t) < z. Since z and y are M-equivalent, we
can construct from ¢ an accepting computation
tree ¢ of M on z[v] such that LEAF(t') =
LEAF(t) < z. Therefore, z[v] is accepted by
M.

(Only-if part). Analogous to ‘if part’. O

Clearly, M-equivalent is an equivalence re-
lation on (m,n, k)-chunks, and we obtain the
following lemma.

Lemma 3.2. Let M be a 3-ATM¢(l,z), and
Y be the input alphabet of M. Further, let s
and t be the numbers of states and storage tape
symbols of M, respectively, and let u = slt'.
Then there are at most (szﬂ)d M-equivalence
classes of (m,n,k)-chunks over 3, where b =
(n+2)k+2n+2u+1andd= ((n+3)k+
3n + 5)u.

Proof : The lemma follows from the observa-
tion that

(1)] {1,2,...,83+n)k+3n+5} xC |=
((n+3)k+3n+5)u = d (where C is the set of
possible storage states of M), and

(2) the number of possible leaf configuration
sets of prominent computation trees of M on
(m, n, k)-chunks is bounded by

Mem Fac Eng Yamaguchi Univ

36 (36)

b+b*+ - 4+ b* <b*T!
(where b= (n+2)k 4+ 2n+2)u+ 1)

since M is z leaf-size bounded. O
We are now ready to prove the key lemma.
Lemma 3.3. For each k € N, define

T<k>={zc{0,1}®% | Im>2[(z) =
Ia(z) =l3(x) = km &Fi(1 < i <m—
—1)[z[blocky(7)] = x[blocky(m)]]&Viy
(1 <41 <Uli(z)) [(each Tow of the

top (1-2) plane of x has exactly one

Il
Then
(1) T <k+1>e L[3-AFA°(k)], and
(2) if L(m) = o(logm), T < k+2 >¢ L[3-
ATMe(L(m), k)].

Proof : (1) We construct a 3-AFA°(k) M
which accepts T' < k41 > as follows. Given an
input tape € {0,1}®*, M checks that = has
m (k+1)-blocks for some m > 2 and that each
row of the top (1-2) plane of x has just one ‘1’.
(In order to locate itself within a (k 4 1)-block
of ¢, M uses a mod(k+1) counter and increases
or decreases the counter at each step along the
1st axis.) If this check succeeds, M moves to
the position of the symbol ‘1’ on the first row of
the last (k + 1)-block of x. From this position,
M begins to move north looking for ‘1’. Each
time M meets the symbol ‘1’ on the first row
of some (k+1)-block, it guesses whether or not
the current (k + 1)-block is equal to the last
(k + 1)-block. If so, it moves south from the
first row to the last row of this block. On the
I-th row in the block (2 <1 < k), it universally
branches into two machines, one to continue
descending along the 1st axis and the other to
move east or west along the 2nd axis looking
for ‘1’ on the I-th row. On the k + 1st row in
the block, M only moves east or west along the
2nd axis looking for ‘1’. Each machine, say M;
(2 <1 < k+1), which has reached the sym-
bol ‘1’ on the I-th row begins to move south
along the 1st axis for row-by-row check of two
(k+1)-blocks equality. In the last (k4 1)-block
of z, machine M; (2 <1 <k + 1) enters an ac-
cepting state if and only if the symbol of the
l-th row in the last block is ‘1’. It is clear that
T(M)=T < k+1> and M is k leaf-bounded.

(2) Suppose to the contrary that there exists
a 3-ATM¢(L(m), k) M accepting T < k+2 >,

Vol.50 No.1 (1999)

where L(m) = o(logm). Without loss of gener-
ality, we assume that when M accepts a given
input tape z, it enters an accepting state at the
westmost position of the last row of the top (1-
2) plane of . For each n > 1, let

Vin)={zeT <k+2>|lLx) =1k =
I3(x) = (k+2)(nF 24+ 1) &z[(1,n+1
’ 1)7 (ll(x)J?(x)v 1)] € {0}(3)+}7 and

Y(n) = {z € {0,1}3F | [y (z) = k + 2&lI(x)
= n&l3(z) = 1}.

Clearly, A(n) = {p | for some z in V(n), p is the
pattern obtained from x by cutting the segment
z[(l1(z) — (k+2) +1,1,1), (l1(z),n,1)] off } is
a set of ((k+2)(n*+24-1), n, k+2)-chunks over
{0,1}. For each chunk z in A(n), let

BLOCK (z) = {y € Y(n) | 3i(1 <i < n**+?)
(i(k +2),n,1)] =y},

where vy is an arbitrary fixed element in
Y (n). Furthermore, let equas(x) denote the M-
equivalent class of a ((k+2)(n**2+1),n, k+2)-
chunk z over {0,1}. Then, the following propo-
sition holds.

Proposition 3.1. For any chunks x and y in

A(n),

if BLOCK (z) # BLOCK (y), then
equu (z) # equar(y)-

[Proof Suppose to the contrary that
BLOCK(z) # BLOCK(y) but equy(z) =
equps (y). Without loss of generality, we assume
B € BLOCK(z) and 8 ¢ BLOCK (y) for some
B € Y(n). Consider M on two tapes z[0] and
y[B]. Since z[B] e V(n) CT <k+2> M
accepts z[(]. Then, from Lemma 3.1, it follows
that M also accepts y[3], which is a contradic-
tion. (Note that y[8] ¢ T < k+2>.)]

]

Proof of Lemma 3.3 (continued) : Since M
can use at most L((k + 2)(n**2 + 1)) cells of
the storage tape and M is k leaf-size bounded
when M reads a tape in V(n), from Lemma
3.2, there are at most

E(n) = (gb[n]’““)d[n]

M-equivalence classes of ((k + 2)(nFt2 +
1),n,k + 2)-chunks (over {0,1}) in A(n),
where bin] = ((n + 2)k + 2n + 2)u[n] +
1, dln] = ((n + 3)k + 3n + 5)uln] and
u[n] — sL((k 4 2)(nk+2 + 1))tL((k+2)(nk+2+1))'

We denote these M-equivalence classes by
C1,Ca,...,CEgm)- On the other hand, defin-
ing B(n) = {BLOCK (z) | x € A(n)}, we have

1B |= (") + () 4+ (U
—on*? g,

Since L(m) = o(logm), it follows that L((k +
2)(n**2 + 1)) = o(logn). Thus, it follows that
for large n,

| B(n) |> E(n).

For such an n, it follows that there exist two
M-equivalent ((k+2)(n**241), n, k+2)-chunks
x and y such that BLOCK (z) # BLOCK (y),
which contradicts Proposition 3.1. We have fin-
ished the proof of Lemma 3.3. O

From Lemma 3.3, we got the desired result.

Theorem 3.2. For each k € N, if L(m) =
o(logm), then

L[3-ATM*(L(m), k)]
C L[3-ATM®(L(m), k+1)].

Corollary 3.2. For each k € N,
L[3-AFA°(k)] C L[3-AFA(k + 1)].

4. Concluding Remarks

In this paper, we introduced restricted
types of three-dimensional alternating Tur-
ing machines, called ‘leaf-size bounded three-
dimensional alternating Turing machines’. We
mainly investigated the constant leaf-size hi-
erarchy of three-dimensional alternating Tur-
ing machines. We first showed that for three-
dimensional alternating Turing machines with
only universal states, the hierarchy collapses to
the deterministic class, as with the case of large
space bound. In contrast, we next showed that
for three-dimensional alternating Turing ma-
chines using small space bound, a strict hier-
archy emerges again. More precisely, it was
shown that there exists a set of cubic tapes
accepted by a k + 1 leaf-size bounded three-
dimensional alternating finite automata, but
not accepted by any o(logm) space-bounded
and k leaf-size bounded three-dimensional al-
ternating Turing machines. Thus, even the
three-dimensional alternating finite automata
of two leaves are more powerful than three-
dimensional nondeterministic finite automata.

It will also be interesting to investigate leaf-
size hierarchy properties of the classes of sets

(37) 37

accepted by 3-ATM¢s with spaces of size
greater than log m.

References

[1] Aho,A., J.E.Hopcroft, and J.D.Ullman,
The Design and analysis of computer algo-
rithms, Addison-Wesley, Reading, Mass.,
1974.

[2] Blum,M. and C.Hewitt, Automata on a
two-dimensional tape, in IEEE Sympo-
sium on Switching and Automata Theory,
pages 155-160, 1967.

[3] Blum,M. and W.J.Sakoda, On the ca-
pability of finite automata in 2 and 3
dimensional space, in Proc. 18th Annual

Symposium on Fundations of Computer
Sciences, pages 147-161, 1977.

[4] Hromkovic,J., K.Inoue, and I.Takanami,
Lower bounds for language recognition
on two-dimensional alternating multihead
machines, to appear in Journal of Com-
puter and System Sciences.

[5] Inoue,K., I.Takanami, and H.Taniguchi,
Two-dimensional alternating Turing ma-
chines, Theoretical Computer Science,
27:61-83, 1983.

[6] Inoue,K., I.Takanami, and J.Hromkovic,
A leaf-size hierarchy of two-dimensional
alternating Turing machines, Theoretical
Computer Science, 67:99-110, 1989.

[7] Ito, A., K. Inoue, I. Takanami, and
H. Taniguchi, Two-dimensional alternat-
ing Turing machines with only univer-

sal states, Information and Control, 55(1-
3):193-221, 1982.

[8] Ito,A. K.Inoue,I.Takanamiand Y.Inagaki,
Constant leaf-size hierarchy of two-
dimensional alternating Turing machines,
International Journal of Pattern Recogni-
tion and Artificial Intelligence, 8(2):509-
524, 1994.

[9] King,K.N., Measures of parallelism in al-
ternating computation trees, in Proc. 13th
ACM Symposium on Theory of Comput-
ing, pages 189-201,1981.

Mem Fac Eng Yamaguchi Univ

38 (38)

[10]

[12]

[13]

Matsuno,H.,K.Inoue, I.Takanami, and
H.Taniguchi, Alternating simple multi-
head automata, Theoretical Computer Sci-
ence, 36(2/3):291-308, 1985.

Sakamoto,M., K.Inoue, and I.Takanami,
A note on three-dimensional alternating
Turing machines with space smaller than
logm, Information Sciences, 72:225-249,
1993.

Sakamoto, M., and K. Inoue, Three-
dimensional alternating Turing machines
with only universal states, Information
Sciences — Information and Computer
Science, 95:155-190, 1996.

Sakamoto,M., K.Inoue, and A.Ito, A leaf-
size hierarchy of three-dimensional alter-
nating Turing machines, Technical Report
of the Yamaguchi University, 5(5) :367-
382, 1996.

Vol.50 No.1 (1999)

[14]

Taniguchi,H., K.Inoue, and I.Takanami, A
note on three-dimensional finite automata,
Information Sciences, 26:65-85,1982.

Yamamoto,H., Leaf reduction theorem on
time- and leaf-bounded alternating Turing
machines, IEICE Transactions on Infor-
mation and Systems, E75-D(1):133-140,
1992.

Yamamoto,Y., K.Morita, and K.Sugata,
Space complexity for recognizing con-
nected patterns in a three-dimensional
tape (in Japanese), Technical Report of the
IECE, AL79-104:91-96, 1979.

(Received August 2, 1999)

