1	Heterologous overexpression and characterization of a
2	flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter
3	japonicus NBRC3260
4	
5	Shota Kawai ¹ , Maiko Goda-Tsutsumi ¹ , Toshiharu Yakushi ² *, Kenji Kano ¹ , and
6	Kazunobu Matsushita ²
7	
8	¹ Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University,
9	Sakyo-ku, Kyoto 606-8502, Japan; ² Department of Biological Chemistry, Faculty of
10	Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
11	
12	Running title: Expression of the <i>fdhSCL</i> genes of <i>Gluconobacter</i> sp.
13	
14	*To whom correspondence should be addressed: Toshiharu Yakushi, Department of
15	Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi
16	753-8515, Japan, Tel: +81-83-933-5857, Fax: +81-83-933-5859, E-mail:
17	juji@yamaguchi-u.ac.jp
18	

18 Abstract

19	A heterotrimeric flavoprotein-cytochrome c complex fructose dehydrogenase (FDH) of
20	Gluconobacter japonicus NBRC3260 catalyzes the oxidation of D-fructose to produce
21	5-keto-D-fructose and is used for diagnosis and basic research purposes as a direct electron
22	transfer-type bioelectrocatalysis. The <i>fdhSCL</i> genes encoding the FDH complex of <i>G</i> .
23	japonicus NBRC3260 were isolated by a PCR-based gene amplification method with
24	degenerate primers designed from the amino terminal amino acid sequence of the large
25	subunit and sequenced. Three open reading frames for <i>fdhSCL</i> encoding the small,
26	cytochrome <i>c</i> , and large subunits, respectively, were found and presumably in a
27	polycistronic transcriptional unit. Heterologous overexpression of <i>fdhSCL</i> was conducted
28	using a broad host range plasmid vector pBBR1MCS-4 carrying a DNA fragment containing
29	the putative promoter region of the membrane-bound alcohol dehydrogenase gene of
30	Gluconobacter oxydans and a G. oxydans strain as the expression host. We also
31	constructed a derivative modified in the translational initiation codon to ATG from TTG,
32	designated as TTGFDH and ATGFDH. Membranes of the cells producing recombinant
33	TTGFDH and ATGFDH showed approximately 20-times and 100-times higher specific activity
34	than those of <i>G. japonicus</i> NBRC3260, respectively. The cells producing only FdhS and
35	FdhL had no fructose oxidizing activity, but showed significantly high
36	D-fructose: ferricyanide oxidoreductase activity in the soluble fraction of cell extracts,

- 37 whereas the cells producing the FDH complex showed activity in the membrane fraction. It
- is reasonable to conclude that the cytochrome c subunit is responsible not only for
- 39 membrane anchoring but also for ubiquinone reduction.
- 40

40 Introduction

41	Fructose dehydrogenase (FDH; EC 1.1.99.11) of Gluconobacter japonicus NBRC3260
42	(formerly Gluconobacter industrius IFO3260), which catalyzes the oxidation of D-fructose
43	to produce 5-keto-D-fructose, is a heterotrimeric membrane-bound enzyme with a molecular
44	mass of ca. 140 kDa, consisting of subunits I (67 kDa), II (51 kDa), and III (20 kDa). The
45	enzyme, purified for the first time in 1981, is a flavoprotein-cytochrome c complex, since
46	subunits I and II have covalently bound flavin adenine dinucleotide (FAD) and heme C as
47	prosthetic groups, respectively (1).
48	FDH shows strict substrate specificity to D-fructose, and thus, is used in diagnosis
49	and food analysis and is commercially available (2). This enzyme is also used in a number
50	of basic research projects to examine the electrochemical properties of enzyme-catalyzed
51	electrode reactions, which is called bioelectrocatalysis (3). The reaction is classified into two
52	types. One is the direct electron transfer (DET)-type system in which electrons are
53	transferred directly between the enzyme and electrode. The other is the mediated electron
54	transfer (MET)-type system in which mediators transfer electrons between the enzyme and
55	electrode. As far as we know, FDH has the highest ability of DET-type bioelectrocatalysis
56	on the anode (4). The DET-type system is convenient in the construction of compact
57	bioelectrochemical devices, and is utilized to develop biosensors, biofuel cells, and
58	bioreactors. However, DET-type bioelectrocatalysis occurs only at some limited kinds of

59	electrodes suitable for individual redox enzymes such as FDH (3), alcohol dehydrogenase
60	(5), cellobiose dehydrogenase (6), bilirubin oxidase (7), and Cu efflux oxidase (8).
61	Although DET-type bioelectrocatalysis is attractive for applications, mechanisms for the
62	reaction have not been fully described yet. For the first step to explore the mechanisms of
63	the DET-type bioelectrocatalytic reaction of FDH, we sequenced the genes encoding each
64	subunit of the FDH complex from G. japonicus NBRC3260 and constructed an expression
65	system to highly produce FDH in a Gluconobacter oxydans strain.
66	
67	
68	Materials and Methods
69	
70	Materials
71	Fructose dehydrogenase of Gluconobacter japonicus NBRC3260 was both a gift from and
72	purchased from Toyobo (Osaka, Japan). Restriction endonucleases and modification
73	enzymes for genetic engineering were kind gifts from Toyobo (Osaka, Japan) and were also
74	purchased from Takara Shuzo (Kyoto, Japan) and Agilent Technologies (Santa Clara, CA,
75	USA). Yeast extract was a generous gift from Oriental Yeast (Osaka, Japan). All other
76	materials were purchased from commercial sources of guaranteed grade.
77	

78 Bacterial strains, plasmids, and growth conditions

79 The bacterial strains and plasmids used in this study are listed in Table 1. Gluconobacter japonicus NBRC3260 and Gluconobacter oxydans ATCC621H and NBRC12528 and its 80 $\Delta adhA$::Km^R derivative (9) were used in this study. The broad host range vector 81 pBBR1MCS-4 was used for the heterologous expression of the *fdhSCL* genes in *G. oxydans*. 82 Gluconobacter spp. were grown on ΔP medium, consisting of 5 g of glucose, 20 g of 83 glycerol, 10 g of polypeptone, and 10 g of yeast extract per liter, at 30°C with vigorous 84 shaking, unless otherwise stated. Kanamycin and ampicillin were used at final 85 concentrations of 50 μ g ml⁻¹ and 250 μ g ml⁻¹, respectively. 86

87 *Escherichia coli* DH5 α was used for plasmid construction (10). *E. coli* HB101 88 harboring pRK2013 was used for a helper strain for conjugative plasmid transfer using a 89 triparental mating method (11). *E. coli* strains were grown on modified Luria-Bertani 90 medium, consisting of 10 g of polypeptone, 5 g of yeast extract, 5 g of NaCl, filled to 1 liter 91 with distilled water, and adjusted pH to 7.0 with NaOH. Ampicillin was used at a final 92 concentration of 50 µg ml⁻¹.

93

94 Determination of the N-terminal amino acid sequence of purified FDH

95 Commercially available FDH was subjected to SDS-PAGE (10% acrylamide). The

96 proteins in the gel were transferred electrophoretically onto a polyvinylidene difluoride

97	membrane at 2 mA cm ⁻² for 40 min. Proteins were stained with CBB (Coomassie brilliant
98	blue) stain one (Nacalai Tesque, Japan), destained with 5% (vol vol ⁻¹) methanol, followed by
99	the excision and drying of bands. The N-terminal amino acid sequence was analyzed with
100	the peptide sequencer Procise 491 (Life Technologies, Carlsbad, CA, USA).

102 Sequencing of the *fdhSCL* genes

103 Degenerate primers, Forward primer A and Reverse primer B, were designed for PCR-based 104 gene amplification (Table S1). The genomic DNA of G. japonicus was isolated from cells grown to a mid-exponential phase of growth by the method of Marmur (12) with some 105 modifications, i.e. we used cetyltrimethylammonium bromide at a final concentration of 1% 106 (wt vol⁻¹) to remove polysaccharides but omitted the perchlorate step in the original 107 108 procedure. PCR was performed with the genomic DNA of G. japonicus as the parental DNA molecule using KOD Dash polymerase (Toyobo, Japan) and the MyCycler thermal 109 cycler (Bio-Rad, CA, USA). The amplified DNA fragment was sequenced using the same 110 The thermal asymmetric interlaced PCR (TAIL-PCR) method was repeatedly 111 primers. conducted to extend sequencing to the 5' and 3' directions using one of the three arbitrary 112 degenerate primers, AD1, AD2, or AD3, and KOD Dash polymerase, according to Liu et al. 113 114 (13). The product of TAIL-PCR was sequenced to be homologous to the 3' region of the gene encoding the cytochrome *c* subunit of sorbitol dehydrogenase. 115 Thus, degenerate

primers were designed from the conserved amino acid sequence in the heme C binding
motives in the cytochrome *c* subunits of other dehydrogenases to extend sequencing. We
repeated the TAIL-PCR method to further obtain the complete structural genes for the FDH
complex.

120

121 Construction of plasmids

122	For plasmid	construction.	we used H	Ierculase]	II Fusion	DNA	pol	vmerase	(Ag	gilent
							F	J	< C	

123 Technologies, Santa Clara, CA, USA) to amplify the designed DNA fragments. A putative

124 promoter region of the *adhAB* genes, which encode two major subunits of the

125 pyrroloquinoline quinone-dependent alcohol dehydrogenase, was amplified with Herculase

126 II Fusion DNA polymerase using a genomic DNA preparation of G. oxydans 621H and two

127 primers, 621H-adh-pro(+) and 621H-adh-pro(-) (Table S1). The PCR product was inserted

128 into pBBR1MCS-4 (9) treated with KpnI and XhoI to yield pSHO8. The fdhSCL genes

129 were amplified with the DNA polymerase using the genome DNA of G. japonicus

130 NBRC3260 and two primer sets, fdhS-5-Eco(+) and fdhL-3-PstBam(-) and

131 fdhS-370-ATG-Xho(+) and fdhL-3-PstBam(-) (Table S1), respectively. The PCR products

132 were inserted into pSHO8 treated with *Eco*RI and *Bam*HI and with *Xho*I and *Bam*HI to yield

pSHO12 and pSHO13, respectively. To construct a plasmid to express only the *fdhSL*

134 genes, an in-frame deletion in the *fdhC* gene was introduced in pSHO13 by fusion PCR as

135	follows. The 5' and 3' fragments for a deletion derivative of pSHO13, in which most of
136	subunit II (from His ¹¹ to Trp ⁴⁵¹ , amino acid number of the putative mature subunit II) is lost
137	in-frame, were amplified with the DNA polymerase with the primer sets of
138	fdhS-370-ATG-Xho(+) and delta-fdhC(-) and delta-fdhC(+) and fdhL-3-PstBam(-),
139	respectively (Table S1). The two PCR products were purified and conducted to fusion PCR
140	with the primers fdhS-370-ATG-Xho(+) and fdhL-3-PstBam(-). The amplified 2.4-kb
141	DNA fragment was inserted into pSHO8 treated with XhoI and BamHI to yield pSHO16.
142	All nucleotide sequences of PCR cloning were confirmed by cycle sequencing techniques
143	using a 310 DNA sequencer (Applied Biosystems, CA, USA).
144	

145 Expression of recombinant FDH and preparation of the membrane fraction

G. oxydans NBRC12528 $\Delta adhA$::Km^R was transformed with the plasmids via a triparental 146 mating method using the HB101 strain harboring pRK2013 (11). Acetic acid was added to 147 the media for selection at a final concentration of 0.1% (wt vol⁻¹) to eliminate *E. coli* growth. 148 Acetic acid- and ampicillin-resistant conjugant colonies were screened twice on ΔP agar 149 medium containing 0.1% (wt vol⁻¹) acetic acid and 250 μ g ml⁻¹ ampicillin. Finally, the 150 transconjugants were screened in liquid ΔP medium containing 250 µg ml⁻¹ ampicillin. 151 *Gluconobacter* cells were cultivated in ΔP medium with or without 250 µg ml⁻¹ 152 ampicillin to the late exponential growth phase. Cells were collected by centrifugation at 153

154	10,000 g for 10 min and washed twice with 20-fold-diluted McIlvaine buffer (McB, mixture
155	of 0.1 M citric acid and 0.2 M disodium hydrogenphosphate) (pH 6.0). Preparation of the
156	membrane fraction was carried out as described by Ameyama et al. (1) with some
157	modifications, as follows. Cells were suspended in 20-fold-diluted McB (pH 6.0) and were
158	disrupted by two passages through a French pressure cell press (Thermo Fisher Scientific,
159	Waltham, MA, USA). After cell debris was sedimented by low speed centrifugation
160	(10,000 g, 10 min, 4°C), the supernatant was ultracentrifuged (100,000 g, 1 h, 4°C). The
161	supernatant was used as the soluble fraction and precipitates were resuspended in
162	20-fold-diluted McB (pH 6.0) and used as the membrane fraction.

164 **Purification of recombinant FDH**

165	The solubilization and purification of FDH were performed as described (1) with some
166	modifications, as follows. Membranes were suspended in 20-fold diluted McB (pH 6.0) at
167	a concentration of 10 mg membrane protein ml ⁻¹ containing 1 mM 2-mercaptoethanol and
168	1.0% (wt vol ⁻¹) Triton X-100 and gently stirred for 10 h at 4°C. FDH was obtained in the
169	supernatant fraction of ultracentrifugation at 100,000 g for 1.5 h. The supernatant fraction
170	was applied on a DEAE-sepharose column equilibrated with 20-fold diluted McB (pH 6.0)
171	containing 1 mM 2-mercaptoethanol and 0.1% (wt vol ⁻¹) Triton X-100. The elution of
172	FDH from a DEAE-sepharose column was carried out by a concentration gradient of McB,

173	i.e. from 20-fold diluted McB (pH 6.0) to the original concentrations of McB (pH 6.0)
174	containing 1 mM 2-mercaptoethanol and 0.1% (wt vol ⁻¹) Triton X-100. The purities of
175	recombinant FDH were judged by Coomassie brilliant blue R-250 staining of SDS-PAGE.
176	
177	Oxygen consumption rates by intact cells
178	Oxygen consumption of intact <i>Gluconobacter</i> cells was measured at 25°C with a Clark-type
179	oxygen electrode (OPTO SCIENCE, Tokyo, Japan). Cell suspensions were prepared at
180	concentrations of 1.0 OD_{600nm} with 50 mM sodium phosphate buffer (pH 6.0). D-Glucose
181	and D-fructose were added at 200 mM as the respiration substrate. Oxygen concentrations
182	were recorded amperometrically as the reduction current of oxygen at -600 mV vs. the
183	Ag AgCl reference electrode.
184	
185	Other analytical methods
186	Global identity between predicted amino acid sequences was calculated by the software
187	GENETYX-MAC (ver. 14; GENETYX, Tokyo, Japan). Protein concentrations were
188	determined with the DC Protein Assay Kit (Bio-Rad, CA, USA) using bovine serum albumin
189	as a standard. FDH activity was measured spectrophotometrically with potassium
190	ferricyanide and the ferric-dupanol reagent as described (1). One FDH unit was defined as
191	the enzyme amount oxidizing one micromole of D-fructose per min. Covalently bound

192	heme C on protein separated by SDS-PAGE was stained by heme-catalyzed peroxidase
193	activity (14). Heme C content was determined spectrophotometrically as described (15).
194	
195	Nucleotide sequence accession number
196	The nucleotide sequence and their predicted amino acid sequence were deposited to the
197	DNA data bank of Japan (DDBJ) with the accession number of AB728565.
198	
199	
200	Results
201	
202	Sequencing of the <i>fdhSCL</i> genes
203	We determined the N-terminal amino acid sequence of subunit I of the commercially
204	available FDH complex purified from G. japonicus NBRC3260 (Gluconobacter sp. in the
205	instructions provided by Toyobo) to be SNETLSADVVIIGAGICGSLLAH (in an amino to
206	carboxyl direction) as shown in Fig. S1. Basic Local Alignment Search Tool (BLAST)
207	analysis of the determined amino acid sequence revealed that subunit I of sorbitol
208	dehydrogenase (SLDH) of Gluconobacter frateurii THD32 shows the highest identity with
209	the N-terminal amino acid sequence of subunit I of FDH (16). We thus designed
210	degenerate primers for PCR (Table S1) based on the N-terminal sequence and conserved the

211	amino acid sequence in the SLDH subunit I, respectively. To obtain sequence information
212	upstream and downstream of the PCR product, the TAIL-PCR method was conducted as
213	described in the Materials and Methods section. We also designed degenerate primers from
214	the heme C binding consensus sequence, and further repeated the TAIL-PCR method. We
215	determined the nucleotide sequence of the 4,208-base PCR product containing the complete
216	structural genes for the FDH complex.
217	The nucleotide and predicted amino acid sequences of FDH and the flanking regions
218	are shown in Fig. S1. Three open reading frames (ORFs) were found for <i>fdhSCL</i> encoding
219	the small, cytochrome <i>c</i> , and large subunits, or subunit III, II, and I, respectively. They
220	may be in the same transcriptional unit. A sequence of SRRKLLA, similar to the
221	consensus motif SRRXFLK (where X is any polar amino acid) for the twin-arginine
222	translocation (tat) system of <i>E. coli</i> that translocates secretory proteins across the
223	cytoplasmic membrane, was found in the N terminus of FdhS (17). Since there was no
224	ATG or GTG codon between the tat signal and nonsense codon in the upstream region, a
225	TTG codon at nucleotide (nt) 93 can be the start codon for <i>fdhS</i> . A possible
226	Shine-Dalgarno sequence was found at 6-bp upstream of this start codon. We did not find a
227	rho-independent terminator-like sequence around the termination codon for <i>fdhL</i> , rather
228	there seems to have been another ORF from nt 3,794 of which the product is homologous to
229	the hypothetical protein GDI_0857 of Gluconacetobacter diazotrophicus PAI5 and the

230	hypothetical protein GMO_23960 of <i>Gluconobacter morbifer</i> G707. Since we failed to
231	obtain the sequence for upstream and downstream regions of the <i>fdhSCL</i> genes, a whole
232	structure of the <i>fdh</i> operon is uncertain. A 35-amino acid stretch in the predicted N
233	terminus of subunit III can be recognized as a signal sequence by the SOSUIsignal program
234	(18), whereas no signal sequence was found for the N terminus of subunit I, suggesting that
235	subunit I may be translocated together with subunit III by the tat system. The <i>fdhS</i> gene
236	encoded 183 amino acids but 148 for the mature protein, of which the calculated molecular
237	mass was approx. 16 kDa.
238	The ORF corresponding to subunit II, <i>fdhC</i> , started at the position of nt 663. A
239	possible SD sequence, AGGA, was found 15-nt upstream of the start codon. The 25 amino
240	acid sequence of the predicted N terminus of FdhC was suggested as a sec-dependent signal
241	sequence by the SOSUIsignal program (18). The molecular mass of the mature protein
242	could be calculated as approx. 49 kDa composed of 461 amino acids, but it should be higher
243	because the deduced amino acid sequence was revealed to have three CXXCH sequence
244	motives for heme C binding sites.
245	The coding region of subunit I was started at position 2,145 with the ATG codon.
246	There was a possible SD sequence, AGG, 9-nt upstream of the initiation codon. No signal
247	sequence for translocation was found in the predicted sequence, consistent with the result of
248	the N-terminal amino acid sequencing of purified FDH, which started at the second Ser

249	residue. The <i>fdhL</i> gene encoded a polypeptide of 544 amino acid residues with a calculated
250	molecular mass of approx. 60 kDa being assembled with and covalently bound to FAD.
251	The deduced amino acid sequence was found to have the GAGICG sequence at a position
252	between the 14th and 19th residues, corresponding to the binding motif of FAD (GXGXXG)
253	(19).
254	Global identity between the predicted amino acid sequences of each subunit of FDH
255	and SLDH from G. frateurii (16) was calculated as follows using the putative mature forms
256	of protein: subunit I, 52% identity; subunit II, 44% identity; subunit III, 24% identity. Even
257	though there are high identities, the SLDH of Gluconobacter thailandicus NBRC3254
258	(formally <i>Gluconobacter suboxydans</i> var. α IFO3254) closely related to that of <i>G. frateurii</i>
259	(16) has been shown to be inert on sugars but active on D-mannitol at only a 5% rate of
260	D-sorbitol (20). The global identity of each subunit of FDH with that of GDH from
261	Burkholderia cepacia (21) was 52%, 45%, and 32% for subunit I, subunit II, and subunit III,
262	respectively. B. cepacia GDH shows relatively wide substrate specificity, i.e. this enzyme
263	oxidizes maltose at half the rate of D-glucose (22). On the other hand, since thorough
264	substrate specificity has not been reported so far, it is not clear yet whether <i>B. cepacia</i> GDH
265	oxidizes other monosaccharides.
266	The putative mature form of the predicted amino acid sequence of <i>fdhC</i> showed
267	considerable identity to those of the cytochrome c subunits of ADH of G. oxydans (36%,

268 (23)) and aldehyde dehydrogenase of *Gluconacetobacter europaeus* (31%, (24)).

269

270 Construction of *Gluconobacter* strains for *fdhSCL* expression

271	Since G. oxydans NBRC12528 highly produces c-type cytochromes and flavoproteins (25)
272	but does not have FDH activity (1), we tried heterologous expression of the <i>fdhSCL</i> genes in
273	this strain. Moreover, because ADH is one of major membrane proteins in NBRC12528
274	and may disturb protein purification, its derivative, which has gene replacement in the <i>adhA</i>
275	gene encoding a large subunit of ADH ($\Delta adhA$::Km ^R strain), was used in this study. The
276	broad-host-range plasmid vector pBBR1MCS-4 was stable in G. oxydans NBRC12528 and
277	easy to manipulate, thus we used this plasmid vector to express the <i>fdhSCL</i> genes. To
278	ensure heterologous expression, a putative promoter region for the $adhAB$ genes of G .
279	oxydans 621H was inserted at the upstream region of the fdhSCL genes.
280	Judging from the multiple alignment analysis of subunit III of several
281	flavoprotein-cytochrome c complex dehydrogenases (data not shown), the start codon of the
282	FdhS subunit seemed to be TTG and not ATG. In addition to simple cloning of the native
283	fdhSCL genes, in order to confirm the translational start site of subunit III and examine
284	translation efficiency, we constructed modified $fdhSCL$ genes to designate $fdh_{ATG}SCL$, where
285	the TTG codon was replaced with ATG and a termination codon (TAA) was inserted just
286	before the ATG codon. The $\Delta adhA$ strain was transformed with the constructed plasmids

287 by conjugation-based gene transfer.

288

289 Comparison between wild-type and recombinant FDHs

290	The G. japonicus NBRC3260 strain, which produces wild-type FDH, showed 0.15 FDH
291	units (mg membrane protein) ^{-1} in the membranes. Although we did not examine this in
292	detail, the low specific FDH activity in the membranes of G. japonicus NBRC3260 may be
293	attributed to the difference in the media used in the present and former studies, i.e. ΔP
294	medium was used in this study, while the former study used synthetic medium.
295	Membranes of the $\Delta adhA$ cells harboring pSHO12 carrying the wild-type <i>fdhSCL</i> genes
296	showed 3.5 ± 0.3 units mg ⁻¹ , activity approximately 20-times higher than those of G.
297	<i>japonicus</i> NBRC3260 (Fig. 1). Furthermore, those of $_{ATG}FDH$ showed 16 ± 0.8 units mg ⁻¹ ,
298	approximately 5-times higher than _{TTG} FDH. We could not detect FDH activity in the
299	membranes of the Δadh strain harboring pSHO8 carrying the putative promoter region only.
300	Heme-catalyzed peroxidase staining of the SDS-PAGE gel revealed that both
301	membranes having $_{TTG}FDH$ and $_{ATG}FDH$ showed approx. 51-kDa bands, while the Δadh
302	strain harboring pSHO8 did not. The apparent intensity of staining of $_{ATG}FDH$ was the
303	highest in the samples examined in this study, and that of $_{\rm TTG}$ FDH was also higher than that
304	of G. japonicus NBRC3260 (data not shown). These results clearly indicate that the
305	initiation codon for subunit III is TTG at nt 93, and also suggest that expressions of not only

306 subunit III, but also the whole FDH complex are increased by changing the initiation codon307 to ATG.

308

309 Characterization of purified ATGFDH

310 The specific activity of $_{ATG}$ FDH purified in this study was 260 units (mg protein)⁻¹ at 25°C,

311 which is approx. 1.5-times higher than that reported in the previous study (1). The

312 purified _{ATG}FDH had three main bands of 68, 51, and 18 kDa on SDS-PAGE (Fig. S2),

313 which are similar sizes to those reported previously (1), and correspond with the expected

314 molecular masses from the *fdhSCL* genes determined in this study. At least two smaller

bands could be seen in the CBB-stained SDS-PAGE of our FDH preparation (Fig. S2).

316 However, we did not find these bands when we used other detergents for preliminary FDH

317 purification, such as n-dodecyl-β-D-maltoside and n-octyl-β-D-glucoside (S. Kawai, T.

318 Yakushi, K. Matsushita, and K. Kano, unpublished data). Thus, we likely consider them as319 contaminants.

The purified _{ATG}FDH showed a reduced cytochrome *c*-like absorption spectrum (data not shown), which is derived from the heme C moieties in subunit II. Based on the FDH complex being a heterotrimeric structure, the number of heme C was determined to be 2.1 per complex, which was calculated from spectrometric heme C contents and protein contents as described in the Materials and Methods section. We suggest that FDH has three

325	heme C moieties as predicted from the deduced amino acid sequence of subunit II, although
326	the estimated value is more than two but much less than three, because some protein
327	impurities can be seen in the CBB-stained SDS-PAGE of our FDH preparation (Fig. S2) and
328	minor invisible contaminations are also possible.
329	The purified $_{ATG}FDH$ transferred electrons to the electrodes directly, as
330	commercially available FDH does (S. Kawai, T. Yakushi, K. Matsushita, and K. Kano,
331	unpublished data).
332	
333	Characterization of the subunit I/III subcomplex
334	To examine the roles of subunit II in the electron transfer to ubiquinone, the physiological
335	electron acceptor, and ferricyanide, an artificial electron acceptor, and in the subcellular
336	localization of the FDH complex, we constructed a strain to produce only subunits I and III.
337	Oxygen consumption with D-glucose and D-fructose by the $\Delta adhA$ cells harboring pSHO8
338	(vector), pSHO13 ($fdh_{ATG}SCL$), or pSHO16 ($fdh_{ATG}SL$) were measured (Fig. 2).
339	D-Fructose-dependent oxygen consumption by the $\Delta adhA$ cells harboring the empty vector
340	was much lower than oxygen consumption with glucose by the same cells ($p < 0.01$,
341	Student's <i>t</i> test; $n = 6$), suggesting that the $\Delta adhA$ strain and even the parental strain <i>G</i> .
342	oxydans NBRC12528 have the glucose oxidizing respiratory chain as previously reported
343	(26), but do not have the fructose oxidizing respiratory chain. They presumably have the

344	ability to metabolize D-fructose to produce NADH being re-oxidized by the respiratory chain.
345	D-Glucose-dependent oxygen consumption rates by the $\Delta adhA$ cells harboring pSHO13
346	($fdh_{ATG}SCL$) and pSHO16 ($fdh_{ATG}SL$) were increased by approx. 1.5-fold that of the cells
347	harboring pSHO8 (vector) by a mechanism that has yet to be elucidated ($p < 0.01$, Student's t
348	test; $n = 6$). The cells harboring pSHO13 (<i>fdh</i> _{ATG} <i>SCL</i>) showed the ability to consume
349	oxygen depending on fructose at approx. a 10-fold faster rate than that of the cells harboring
350	the empty vector ($p < 0.01$, Student's <i>t</i> test; $n = 6$), which is much higher than that observed
351	with glucose, suggesting that the fructose-oxidizing respiratory chain was heterologously
352	reconstituted in the $\Delta adhA$ cells. On the other hand, the difference in D-fructose-dependent
353	oxygen consumption between the cells harboring pSHO16 ($fdh_{ATG}SL$) and those harboring
354	the empty vector may be considered negligible ($p > 0.1$, Student's <i>t</i> test; $n = 6$).
355	In order to know whether the functional subunit I/III subcomplex is expressed, we
356	examined the <i>in vitro</i> fructose dehydrogenase activity of the cell-free extract of the $\Delta adhA$
357	cells harboring pSHO16 ($fdh_{ATG}SL$). The activity of the cells that express whole FDH
358	complex could be found mostly in the membrane fraction at a specific activity of 20 ± 5
359	units mg ⁻¹ at pH 5.0 (Fig. 3A). However, the activity of the cells that express the subunit
360	I/III subcomplex (I/III) was detected mostly in the soluble fraction at a specific activity of
361	3.8 ± 0.4 units mg ⁻¹ , indicating that functional I/III is produced and subunit II is a
362	membrane-anchoring subunit for the FDH complex. Because I/III had significant activity

363	to oxidize fructose but failed to link the respiratory chain, it is reasonable to conclude that
364	subunit II is responsible for ubiquinone reduction. By using the purified FDH complex and
365	partially purified I/III, we determined bimolecular rate constants for the reduction of several
366	artificial electron acceptors. I/III had no selectivity for electron acceptors, while the FDH
367	complex reacted specifically with 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q-0) and
368	2,3-dimethoxy-5-farnesyl-1,4-benzoquinone (Q-1) (S. Kawai, T. Yakushi, K. Matsushita,
369	and K. Kano, unpublished data). We examined the pH-dependency of fructose
370	dehydrogenase activity for the FDH complex in the membrane fraction and I/III in the
371	soluble fraction (Fig. 3B). They were different from each other, i.e. the optimum pH of the
372	FDH complex in the membrane fraction was pH 4.0, whereas I/III showed the highest
373	activity at pH 6.0.
374	

375 Discussion

We purified the FDH complex from the membranes of *G. japonicus* NBRC3260 (formerly *G. industrius* IFO3260) in 1981 (1). This enzyme is useful for the determination of D-fructose, which can be applied in diagnosis (2), and more recently for basic research to understand the properties of enzyme electrodes that can transfer electrons directly (3). Here, we sequenced whole structural genes for the heterotrimeric complex for the first time. The genes for several kinds of flavoprotein-cytochrome *c* complexes have been sequenced so far, such as

382	gluconate 2-dehydrogenase from <i>Erwinia cypripedii</i> (27), glucose dehydrogenase from <i>B</i> .
383	<i>cepacia</i> (BcGDH) (21), and sorbitol dehydrogenase from <i>G. frateurii</i> (16). Each enzyme
384	including FDH has strict substrate specificity, the genes determined in this study offer the
385	4th new member of the flavoprotein-cytochrome c complex family as fructose-specific
386	enzyme. Genes for 2-ketogluconate 5-dehydrogenase, a flavoprotein-cytochrome c
387	complex, still remain to be determined (28). The gene organization of the fdh genes is
388	unique to the others, i.e. the order of the genes is the small, large, and cytochrome c subunits
389	in the 5' to 3' direction for those reported so far, whereas that of the <i>fdh</i> genes was the small,
390	cytochrome c , and large subunits. However, we anticipate that there is less physiological
391	significance for the difference in gene organization because we qualitatively reconstituted an
392	FDH complex from partially purified I/III and the cytochrome subunit independently
393	expressed (S. Kawai, T. Yakushi, K. Matsushita, and K. Kano, unpublished data). Another
394	unique feature predicted from the primary sequence of the FDH complex is a hydrophobic
395	patch in the C terminus of subunit II for integration into the membrane by a hydrophobic
396	helical structure, which can be predicted by a hydropathy plot using the SOSUI program (29)
397	(data not shown). However, we ran the secondary structure prediction program Jpred 3
398	(30), and the hydrophobic patch would be part of a sheet structure rather than helix with a
399	relatively high probability (data not shown). Thus, it is an interesting issue whether the
400	hydrophobic patch has a role in the membrane localization of subunit II or not.

401	We successfully overexpressed the FDH complex in the G. oxydans $\Delta adhA$ strain.
402	This strain is beneficial for the expression of the heterologous protein in the host strain for
403	purification because it fails to produce the ADH complex, one of the major membrane
404	proteins in <i>Gluconobacter</i> . In addition, compared to <i>E. coli</i> , our expression system does
405	not need to consider heme C assembly because Gluconobacter produces high amounts of
406	<i>c</i> -type cytochromes naturally (25). Tsuya et al. reported on the heterologous expression of
407	BcGDH in the <i>E. coli</i> strain harboring a plasmid to express the heme C assembly system
408	(21). When pSHO13 ($fdh_{ATG}SCL$) was used, the membranes contained a specific FDH
409	activity of 16 units mg ⁻¹ , suggesting that approx. 5% of the membrane proteins were the
410	FDH complex, taking into account purified FDH, which had a specific activity of 260 units
411	mg ⁻¹ . We suggest that <i>G. oxydans</i> can produce the FDH complex at such high productivity
412	because it is a related species of G. japonicus.
413	The translation of subunit III was found to start at the TTG codon, by constructing
414	the plasmid derivative pSHO13 ($fdh_{ATG}SCL$) containing a termination codon in-frame just
415	before the initiation codon, which was substituted to the ATG codon. The G. oxydans
416	strain harboring pSHO13 not only produced the FDH complex, but also a much higher
417	amount of FDH. Translation initiation by the TTG codon is enhanced by the T signal
418	(ATTT) in the 5' side of the initiation codon (31). However, we did not find a candidate
419	for the T signal in the nucleotide sequence near the initiation codon. The results in this

420	study suggest that the TTG codon is a less efficient codon even in Gluconobacter, and its
421	substitution to the ATG codon improves translation efficiency.
422	Since we reconstituted the D-fructose oxidizing respiratory chain in G. oxydans
423	$\Delta adhA$ cells, we suggest that the FDH complex is a D-fructose:ubiquinone 5-oxidoreductase
424	functioning as the primary dehydrogenase in the respiratory chain of G. japonicus.
425	Moreover, the $\Delta adhA$ cells harboring pSHO16 (<i>fdh</i> _{ATG} SL) producing I/III only failed to
426	support the D-fructose oxidizing ability, even though these cells showed significantly high
427	D-fructose:ferricyanide oxidoreductase activity in the soluble fraction. Thus, we suggest
428	that subunit II is responsible for anchoring the FDH complex to the cytoplasmic membrane
429	and transferring electrons to ubiquinone. Another Gluconobacter membrane-bound
430	enzyme ADH consists of three subunits; one of which is a triheme cytochrome c subunit
431	(AdhB) responsible for ubiquinone reduction and membrane anchoring (32). The
432	cytochrome c subunit of heterotrimeric BcGDH has a functionally critical role in the
433	ubiquinone reaction and membrane localization (21). Indeed, a significant homology was
434	observed among FdhC, AdhB, and the β subunit of BcGDH (see the Results section). Our
435	results suggest an analogy of the cytochrome c function of other Gluconobacter enzymes
436	such as molybdopterin-dependent aldehyde dehydrogenase (24, 33) and other heterotrimeric
437	flavoprotein-cytochrome c complexes that can be found in many kinds of bacterial genomes.
438	As described earlier, the FDH complex was characterized by its ability to transfer

439	electrons to electrodes directly. As far as we know, this ability is unique to this enzyme			
440	and details of the mechanisms remain unknown. We can start creating FDH derivatives			
441	through genetic engineering procedures to characterize their electrochemical properties and			
442	discuss the mechanism underlining direct electron transfer. Indeed, we observed large			
443	differences in the pH-dependencies of the FDH complex and I/III (Fig. 3B). These findings			
444	suggest that I/III has a different intramolecular electron transport pathway and different			
445	electrochemical properties from the FDH complex.			
446				
447	Acknowledgements			
448	We thank Yuichi Yoshino for his technical assistance. We are grateful to Osao Adachi			
449	who continuously encourages us to proceed with our FDH study. This work was supported			
450	in part by a Grant-in-Aid from the Japan Society for the Promotion of Science.			
451				
452	References			
453	1. Ameyama M, Shinagawa E, Matsushita K, Adachi O. 1981. D-fructose			
454	dehydrogenase of Gluconobacter industrius: purification, characterization, and			

456	2.	Nakashima K, Takei H, Adachi O, Shinagawa E, Ameyama M. 1985.
457		Determination of seminal fructose using D-fructose dehydrogenase. Clin Chim Acta.
458		151: 307-310.
459	3.	Kamitaka Y, Tsujimura S, Kano K. 2007. High current density bioelectrolysis of
460		D-fructose at fructose dehydrogenase-adsorbed and Ketjen black-modified electrodes
461		without a mediator. Chemistry Letters 36: 218-219.
462	4.	Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K. 2007.
463		Fructose/dioxygen biofuel cell based on direct electron transfer-type
464		bioelectrocatalysis. Phys Chem Chem Phys. 9:1793-1801.
465	5.	Ikeda T, Kobayashi D, Matsushita F, Sagara T, Niki K. 1993. Bioelectrocatalysis
466		at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme c
467		serving as a built-in mediator. Journal of Electroanalytical Chemistry 361: 221-228.
468	6.	Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I. 1999.
469		Direct electron transfer between heme-containing enzymes and electrodes as basis
470		for third generation biosensors. Analytica Chimica Acta 400:91-108.
471	7.	Tsujimura S, Nakagawa T, Kano K, Ikeda T. 2004. Kinetic study of direct
472		bioelectrocatalysis of dioxygen reduction with bilirubin oxidase at carbon electrodes.
473		Electrochemistry 72:437-439.

474	8.	Miura Y, Tsujimura S, Kamitaka Y, Kurose S, Kataoka K, Sakurai T, Kano K.
475		2007. Bioelectrocatalytic reduction of O ₂ catalyzed by CueO from <i>Escherichia coli</i>
476		adsorbed on a highly oriented pyrolytic graphite electrode. Chemistry Letters
477		36: 132-133.
478	9.	Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D,
479		Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K. 2009.
480		Microbial production of glyceric acid, an organic acid that can be mass produced
481		from glycerol. Appl Environ Microbiol. 75:7760-7766.
482	10.	Grant SG, Jessee J, Bloom FR, Hanahan D. 1990. Differential plasmid rescue
483		from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
484		Proc Natl Acad Sci U S A. 87:4645-4649.
485	11.	Figurski DH, Helinski DR. 1979. Replication of an origin-containing derivative of
486		plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci
487		U S A. 76: 1648-1652.
488	12.	Marmur J. 1963. A procedure for the isolation of deoxyribonucleic acid from
489		microorganisms. Methods in Enzymology 6:726-738.
490	13.	Liu YG, Mitsukawa N, Oosumi T, Whittier RF. 1995. Efficient isolation and
491		mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric
492		interlaced PCR. Plant J. 8:457-463.

493	14.	Goodhew CF, Brown KR, Pettigrew GW. 1986. Haem staining in gels, a useful
494		tool in the study of bacterial <i>c</i> -type cytochromes. Biochimica et Biophysica Acta
495		852: 288-294.
496	15.	Berry EA, Trumpower BL. 1987. Simultaneous determination of hemes <i>a</i> , <i>b</i> , and <i>c</i>
497		from pyridine hemochrome spectra. Anal Biochem. 161:1-15.
498	16.	Toyama H, Soemphol W, Moonmangmee D, Adachi O, Matsushita K. 2005.
499		Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase
500		from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci
501		Biotechnol Biochem. 69:1120-1129.
502	17.	Berks BC, Palmer T, Sargent F. 2005. Protein targeting by the bacterial
503		twin-arginine translocation (Tat) pathway. Curr Opin Microbiol. 8:174-181.
504	18.	Gomi M, Sonoyama M, Mitaku S. 2004. High performance system for signal
505		peptide prediction: SOSUIsignal. Chem-Bio Informatics Journal 4:142-147.
506	19.	Dym O, Eisenberg D. 2001. Sequence-structure analysis of FAD-containing
507		proteins. Protein Sci. 10:1712-1728.
508	20.	Shinagawa E, Matsushita K, Adachi O, Ameyama M. 1982. Purification and
509		characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter
510		suboxydans var. α. Agricultural and Biological Chemistry 46:135-141.

511	21.	Tsuya T, Ferri S, Fujikawa M, Yamaoka H, Sode K. 2006. Cloning and functional
512		expression of glucose dehydrogenase complex of Burkholderia cepacia in
513		Escherichia coli. J Biotechnol. 123:127-136.
514	22.	Yamaoka H, Yamashita Y, Ferri S, Sode K. 2008. Site directed mutagenesis
515		studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia
516		cepacia. Biotechnol Lett. 30:1967-1972.
517	23.	Kondo K, Horinouchi S. 1997. Characterization of the genes encoding the
518		three-component membrane-bound alcohol dehydrogenase from Gluconobacter
519		suboxydans and their expression in Acetobacter pasteurianus. Appl Environ
520		Microbiol. 63: 1131-1138.
521	24.	Thurner C, Vela C, Thony-Meyer L, Meile L, Teuber M. 1997. Biochemical and
522		genetic characterization of the acetaldehyde dehydrogenase complex from
523		Acetobacter europaeus. Arch Microbiol. 168:81-91.
524	25.	Matsushita K, Toyama H, Adachi O. 1994. Respiratory chains and bioenergetics of
525		acetic acid bacteria. Adv Microb Physiol. 36:247-301.
526	26.	Matsushita K, Shinagawa E, Adachi O, Ameyama M. 1989. Reactivity with
527		ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter
528		suboxydans. J Biochem. 105:633-637.

529	27.	Yum DY, Lee YP, Pan JG. 1997. Cloning and expression of a gene cluster
530		encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia
531		cypripedii ATCC 29267 in Escherichia coli. J Bacteriol. 179:6566-6572.
532	28.	Shinagawa E, Matsushita K, Adachi O, Ameyama M. 1981. Purification and
533		characterization of 2-keto-D-gluconate dehydrogenase from Gluconobacter
534		melanogenus. Agricultural and Biological Chemistry 45:1079-1085.
535	29.	Hirokawa T, Boon-Chieng S, Mitaku S. 1998. SOSUI: classification and secondary
536		structure prediction system for membrane proteins. Bioinformatics. 14:378-379.
537	30.	Cole C, Barber JD, Barton GJ. 2008. The Jpred 3 secondary structure prediction
538		server. Nucleic Acids Res. 36:W197-201.
539	31.	Ganoza MC, Marliere P, Kofoid EC, Louis BG. 1985. Initiator tRNA may
540		recognize more than the initiation codon in mRNA: a model for translational
541		initiation. Proc Natl Acad Sci U S A. 82:4587-4591.
542	32.	Matsushita K, Yakushi T, Toyama H, Shinagawa E, Adachi O. 1996. Function of
543		multiple heme c moieties in intramolecular electron transport and ubiquinone
544		reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of
545		Gluconobacter suboxydans. J Biol Chem. 271:4850-4857.

546	33.	Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M. 1980.
547		Purification and characterization of membrane-bound aldehyde dehydrogenase from
548		Gluconobacter suboxydans. Agricultural and Biological Chemistry 44:503-515.
549	34.	Boyer HW, Roulland-Dussoix D. 1969. A complementation analysis of the
550		restriction and modification of DNA in <i>Escherichia coli</i> . J Mol Biol. 41: 459-472.
551	35.	Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, 2nd,
552		Peterson KM. 1995. Four new derivatives of the broad-host-range cloning vector
553		pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 166:175-176.
554		
555	Figur	e legends
556	Fig. 1.	Comparison of specific FDH activity in the membranes of <i>G. japonicus</i> NBRC3260
557	(wild t	ype) and the $\Delta adhA$ strains harboring pSHO8 (vector), pSHO12 (native <i>fdhSCL</i>), or
558	pSHO	13 ($fdh_{ATG}SCL$). Data are shown as mean values with 90% confidence intervals
559	(error	bars; $n = 3$).
560		
561	Fig. 2.	D-Fructose-dependent oxygen consumption (heavy gray columns) of the whole cell
562	prepar	ations of the $\Delta adhA$ strains harboring pSHO8 (vector), pSHO13 (<i>fdh</i> _{ATG} SCL), or
563	pSHO	16 ($fdh_{ATG}SL$). Control experiments were also conducted with D-glucose (light gray
564	colum	ns). The rates of oxygen consumption were normalized by optical density of the cell

preparations. Data are shown as mean values with 90% confidence intervals (error bars; n = 3). Significance can be seen between columns with a and b, a and c, and c and d (p < 0.01, Student's t test; n = 6). Columns with the same letters were not significantly different (p > 0.1, Student's t test; n = 6).

569

Fig. 3. Comparison of the FDH complex (FDH) and I/III. (A) The membrane (light gray 570 columns) and soluble (heavy gray columns) fractions of the $\Delta adhA$ strains harboring pSHO8 571 (vector), pSHO13 ($fdh_{ATG}SCL$), or pSHO16 ($fdh_{ATG}SL$) were prepared, and FDH activity in 572 the membrane and soluble fractions were measured at pH 5.0 and pH 6.0, respectively. 573 Total activity in each fraction was shown. (B) FDH activities of the membrane fraction for 574 the FDH complex and the soluble fraction for I/III were measured under various pH 575 576 conditions. Relative activity to that of the highest activity was shown individually. Data are shown as mean values with 90% confidence intervals (error bars; n = 3). The specific 577 FDH activities of the membrane fraction of the cells harboring pSHO13 ($fdh_{ATG}SCL$) and the 578 soluble fraction of the cells harboring pSHO16 ($fdh_{ATG}SL$) were 20 ± 5 and 3.8 ± 0.4 units 579 mg⁻¹, respectively. 580

581

582

Strains and plasmids	Description	Source or reference
Bacterial strains		
Escherichia coli		
DH5a	F^{-} endA1 hsdRJ7 (r_{k}^{-} , m_{k}^{+}) supE44 thi-1	(10)
	λ^{-} recAl gyrA96 relA1 deoR	
	Δ(<i>lacZYA-argF</i>)U169 φ80d <i>lacZ</i> AM15	
HB101	F^{-} thi-1 hsdS20 (r_B , m_B) supE44 recA13	(34)
	ara14 leuB6 proA2 lacY1 galK2 rpsL20	
	$(\operatorname{str}^{r} xyl-5 mtl-1 \lambda)$	
Gluconobacter japonicus		
NBRC3260	Wild type	NBRC ^a
Gluconobacter oxydans		
NBRC12528	Wild type	NBRC ^a
$\Delta adhA$	NBRC12528 ΔadhA::Km ^R	(9)
ATCC621H	Wild type	ATCC ^a
Plasmids		
pKR2013	The plasmid mediates plasmid transfer, Km ^R	(11)
pBBR1MCS-4	A broad host range plasmid, mob Ap ^R	(35)
pSHO8	pBBR1MCS-4, a 0.7-kb fragment of a	This study
	putative promoter region of the <i>adhAB</i>	
	gene of G. oxydans 621H	
pSHO12	pSHO8, a 3.8-kb fragment of the <i>fdhSCL</i>	This study
	genes of G. japonicus NBRC3260	
pSHO13	pSHO8, a 3.7-kb fragment of the	This study
	<i>fdh</i> _{ATG} SCL genes	
pSHO16	pSHO8, a 2.4-kb fragment of the	This study
	<i>fdh</i> _{ATG} <i>SL</i> genes (in-frame deletion of	
	fdhC)	

582 Table 1. The bacterial strains and plasmids used in this study.

^a, The URL addresses of NBRC and ATCC are "http://www.nbrc.nite.go.jp/" and

584 "http://www.atcc.org/", respectively.

585

Fig. 1. Comparison of specific FDH activity in the membranes of *G. japonicus* NBRC3260 (wild type) and the $\triangle adh$ strains harboring pSHO8 (vector), pSHO12 (native *fdhSCL*), or pSHO13 (*fdh*_{ATG}SCL). Data are shown as mean values with 90% confidence intervals (error bars; n = 3).

Fig. 2. D-Fructose-dependent oxygen consumption (heavy gray columns) of the whole cell preparations of the Δadh strains harboring either pSHO8 (vector), pSHO13 ($fdh_{ATG}SCL$), or pSHO16 ($fdh_{ATG}SL$). Control experiments were also conducted with D-glucose (light gray columns). The rates of oxygen consumption were normalized by optical density of the cell preparations. Data are shown as mean values with 90% confidence intervals (error bars; n = 3). Significance can be seen between columns with a and b, a and c, and c and d (p < 0.01, Student's *t* test; n = 6). Columns with the same letters were not significantly different (p > 0.1, Student's *t* test; n = 6).

Fig. 3. Comparison of the FDH complex (FDH) and I/III. (A) The membrane (light gray columns) and soluble (heavy gray columns) fractions of the $\Delta adhA$ strains harboring pSHO8 (vector), pSHO13 ($fdh_{ATG}SCL$), or pSHO16 ($fdh_{ATG}SL$) were prepared, and FDH activity in the membrane and soluble fractions were measured at pH 5.0 and pH 6.0, respectively. Total activity in each fraction was shown. (B) FDH activities of the membrane fraction for the FDH complex (heavy gray diamonds) and the soluble fraction for I/III (light gray squares) were measured under various pH conditions. Relative activity to that of the highest activity was shown individually. Data are shown as mean values with 90% confidence intervals (error bars; n = 3). The specific FDH activities of the membrane fraction of the cells harboring pSHO13 ($fdh_{ATG}SCL$) and the soluble fraction of the cells harboring pSHO16 ($fdh_{ATG}SL$) were 20 ± 5 and 3.8 ± 0.4 units mg⁻¹, respectively.

190200210220230240250260270cagcaattggagcaccatcgaaaggatctactcaggacgttgtggcatcaatcgcgatagcatttcggatttatgcagctttccgcttA I G A P S K G S T Q D V V A S N R D S I S D F M Q L S A F

280290300310320330340350360ttgccaccggtcacaaaatctggatctcaatatcggatcagcacttctgttggcatttgaagctcagaagcatgatttttctactcaaaA T G H K N L D L N I G S A L L L A F E A Q K H D F S T Q I

460470480490500510520530540cgctcatccagattatccgggcgtggtattcaggtgtcatcgaagatgaaccaaacgctaaagtttacgctttcgaaaaagcactcatgtL I Q I I R A W Y S G V I E D E T N A K V Y A F E K A L M Y

550560570580590600610620630atcagccgtcccgcgatgtcgtggtcattccgacatatgctcatacggggcccaattactgggtctcggaacccgcatccgtcgatgtcaQPSRDVVIPTYAHNGPNYWVSEPASVDVM

640 650 660 670 680 690 700 710 720 tgccggcatttaa**gga**cttattccgtgattatgcgatatttcgccctctgtccgccacagccatgacaaccgttctgcttctcgcag P A F * M R Y F R P L S A T A M T T V L L A G FdhC (Subunit II)

730740750760770780790800810ggacgaacgtacggggggcaaccgacagaaccaacacctgcttcagcgcatcgcccctccatcagccgcggtcattatctggcaattgccgTNVRAQPTEPTAAHRPSISRGHYLAIA

820830840850860870880890900ccgattgtgcggcctgccataccatgggcgtgacggtcaatttettgetggtggttatgccatttettecccatggggaatatettattDCACHTNGRDQFLAGYAISSPMGNIYS

910920930940950960970980990caaccaatattacgccgtcgaagacgcacggtatcggaaactatacactggagcagttttctaaggctctccggcacggtattcggcgcgTNITPSKTHGIRAD

1000 1010 1020 1030 1040 1050 1060 1070 1080 atggcgcgcaactgtatcccgccatgccttatgacgcttacaatcgtctgacggatgaagacgtcaaatcgctctacgcttacatcatga G A Q L Y P A M P Y D A Y N R L T D E D V K S L Y A Y I M T

Kawai et al., Fig. S1 (continued).

145014601470148014901500151015201530atgctcgtgcagcaggaccaatggcagaagcaatcgagcatagcctacaatatcttccggatgccgatatttctgccatagttacatatc148014901500151015201530A R A A G P M A E A I E H S L Q Y L P D A D I S A I V T Y L

1630 1640 1650 1660 1670 1680 1690 1700 1710 ctaactcccgtcgcagcaatagtactctgacaaaaacaaccgatggtgctgcactctacgaggctgtgtgcgccagttgccatcaatctg N S R R S N S T L T K T T D G A A L Y E A V **C A S C H** Q S D

1720 1730 1740 1750 1760 1770 1780 1790 1800 acggtaaagggtccaaagacggttattatccttcctcgtaggaaatacgacgggcaactcaatccaatgatctgatcgccagta G K G S K D G Y Y P S L V G N T T T G Q L N P N D L I A S I

181018201830184018501860187018801890ttctttacggtgggaccgcacaacggataaccacggataaccacggataaccacggataccagggcttttggtccagactctctcgtacaggccggcttttggtccagactctcccgtacaggatgLYGVDRTTDNHEILMPAFGPDSLVQPLTDE

 2080
 2090
 2100
 2110
 2120
 2130
 2140
 2150
 2160

 tggtagccggcctctggtggctgatcagccgtcgcaaaaagcgttccgcttaataagattca**agg**gtcaaaatcatgtctaatgaacgc
 V
 A
 G
 L
 W
 W
 L
 I
 S
 R
 K
 R
 S
 A
 *
 M
 S
 N
 E
 T
 L

FdhL (Subunit I)

226022702280229023002310232023302340tggatgcaggtcccccgcggaccgtccccagatcgtagaaaactgcgggacatgccgcctgccagatcgtagaaaactgcgggacatgccgcctgacaacaagtcccagtacgattatgcaaD A G P R R D R S Q I V E N W R N M P P D N K S Q Y D Y A T

235023602370238023902400241024202430caccttaccccagcgtaccctgggccccgcataccactacttcccagacaataactacctgattgtcaaaggcccggaccggacggcttPYPSVPMAPHTNYFPDNNYLIVKGPDRTAY

Kawai et al., Fig. S1 (continued).

262026302640265026602670268026902700tgggaccaaacggcgaagagattacaccgtctgcgcctcgccaaaatccatggccgatgacctccatgccttacggatatggagaccgcaG P N G E E I T P S A P R Q N P W P M T S M P Y G Y G D R T

271027202730274027502760277027802790ctttcacggagatcgtcagcaagctcggtttctcaacactcctgttccgcaggacagggacagggacagtcgtccttatgatggccgaccacaatFTEIVSKLGFSNTPVPQARNSRPYDGRPQC

280028102820283028402850286028702880gctgtggcaacaacaactgcatgccaatctgcccgattggcgcgatgtacaatggcgtatacgcggcaataaaagcgggaaaagctgggcgCGNNCMPICPIGAMYNGVYAIKAKKLGA

298029903000301030203030304030503060agtcccatcgcgtcgttgcaaaacatttgtgatcgccgcaaacgggatcgaaacaccgaaactgctgcttctggcggcaaatgatcgaaSHRVVAKTFVIANGIETPKLLLANDRN

307030803090310031103120313031403150accctcatgggattgccaactcatgagccttgtggccggaacatgatggaccatcggggatggcatcgggatgggctccagtctgggggggPHGIANSDLVGRNMDHPGIGMSFQSAEP

334033503360337033803390340034103420gccgtcgtacggcgcatggtgtggacatttatgccaaccatgaagtcctcccggaccccaacaaccgtcttgttctctcccaaagactataRRTAHGVDIYANHEVLPDPNNRLVLSKDYK

343034403450346034703480349035003510aggatgcgctcggtattccacatcctgaagtcacctacgatgttggggagtatgttcggaagtcagctgccatctcaagacagcgcctgaD A L G I P H P E V T Y D V G E Y V R K S A A I S R Q R L M

3520 3530 3540 3550 3560 3570 3580 3590 3600 tggatatcgccaaagccatgggcggtacggaaatcgagatgactccgtattttacgcccaacaccacatcaccggtggcactatcatgg D I A K A M G G T E I E M T P Y F T P N N H I T G G T I M G

Kawai et al., Fig. S1 (continued).

 3610
 3620
 3630
 3640
 3650
 3660
 3670
 3680
 3690

 gccatgate
 gccatgate

3700 3710 3720 3730 3740 3750 3760 3770 3780 cgtccggtacggtcaattcaacgttaacaatggccgcactgtcattacgcgcggcagatgccattctcaatgacctgaaacagggta**ag** S G T V N S T L T M A A L S L R A A D A I L N D L K Q G *

379038003810382038303840385038603870tcttttgaacaagtgtttcaacgccacgctattggcgcttttctaagtattttcatcgcatcagcaagtctgactggtctcgcatcagcM F Q R H A I G A F L S I F I A S A S L T G L A S A

Hypothetical protein

388038903900391039203930394039503960aaaggatttgaccgtgaatctggaaacatccaatactctcattgaccaagaaactggcgactgccagtcataaccggtgcgcatKDLTVNLETSNTLDQAKKLASHNRVAI

4060 4070 4080 4090 4100 4110 4120 4130 4140 caagactgctctttccttcgcccgcccgactgctgacatggaacatgccctcaatagtgggaattacatgatcagcacgctccccaatgc K T A L S F A R P T A D M E H A L N S G N Y M I S T L P N A

415041604170418041904200tctgcccgcaggtggaggatacccgatcatggtgaacaatgaacttgtggtcggccatcataaggacgLPAGGYPIMVNNELVVGHHKD

Kawai et al.

Fig. S1. Nucleotide and predicted amino acid sequences of *fdhSCL* are shown. Part of the gene for a hypothetical protein downstream of *fdhL* is also shown. Possible ribosome-binding sites located prior to the initiation codon of each gene are shown in bold face. Consensus sequences for heme C binding and FAD binding are shown in bold face. Black arrowheads indicate putative cleavage sites for the precursor forms of subunits II and III, predicted by the SOSUIsignal program. The amino acid sequence of subunit I determined by the peptide sequencer is underlined. The nucleotide sequence and predicted amino acid sequences for *fdhSCL* were deposited to DDBJ with the accession number AB728565.

Fig. S2. Coomassie staining of the purified FDH complex separated by SDS-PAGE. Lane M, Molecular mass standard and 10 μ g of the purified FDH complex were applied on lanes 1 and M, respectively.

Table S1. Oligonucleotides used in this stue	Jy.
--	-----

rable ST. Oligonucleotides used in this study.			
Primer name	Sequence (5´> 3´) ^a	Objective	
Forward primer A	CSGCCGAYGTCGTGATYATYGGTG	Degenerate PCR and sequencing	
Reverse primer B	GGCARATCGGCATRCARTTRTTRTTN CC	Degenerate PCR and sequencing	
AD1	NTCGASTWTSGWGTT	TAIL-PCR	
AD2	NGTCGASWGANAWGAA	TAIL-PCR	
AD3	WGTGNAGWANCANAGA	TAIL-PCR	
621H-adh-pro(+)	GG <u>GGTACC</u> TTCTGGCGGTACGGAGT C [⊳]	pSHO8	
621H-adh-pro(-)	CCG <u>CTCGAG</u> ATTAACCAGAAGTCAT GATCCAAC ^b	pSHO8	
fdhS-5-Eco(+)	<u>GAATTC</u> CAAACAAAAAATAGTC ^b	pSHO12	
fdhL-3-PstBam(-)	<u>GGATCC</u> TGCAGCGTGGCGTTGAAAC ACTG ^b	pSHO12	
fdhS-370-ATG-Xho(+)	<u>CTCGAG</u> GAGAAGGTAAATGGAAAAA ATAGCTGATTC [♭]	pSHO13	
delta-fdhC(+)	gaaccaacacctgcttcagcgCTGATCAGCC GTCGCAAAAAG ^c	pSHO16	
delta-fdhC(-)	CTTTTTGCGACGGCTGATCAGcgctga agcaggtgttggttc ^c	pSHO16	

^a, N = A, C, G, or T; R = A or G; Y = C or T.

^b, The engineered endonuclease recognition site is underlined.

^c, The 3' and 5' regions of *fdhC* are shown in lower and upper cases,

respectively.