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Abstract 

Background 

Vegetables of the genus Allium are widely consumed but remain poorly understood 
genetically. Genetic mapping has been conducted in intraspecific crosses of onion (Allium 
cepa L.), A. fistulosum and interspecific crosses between A. roylei and these two species, but 
it has not been possible to access genetic maps and underlying data from these studies easily. 



Description 

An online comparative genomics database, AlliumMap, has been developed based on the 
GMOD CMap tool at http://alliumgenetics.org. It has been populated with curated data 
linking genetic maps with underlying markers and sequence data from multiple studies. It 
includes data from multiple onion mapping populations as well as the most closely related 
species A. roylei and A. fistulosum. Further onion EST-derived markers were evaluated in the 
A. cepa x A. roylei interspecific population, enabling merging of the AFLP-based maps. In 
addition, data concerning markers assigned in multiple studies to the Allium physical map 
using A. cepa-A. fistulosum alien monosomic addition lines have been compiled. The 
compiled data reveal extensive synteny between onion and A. fistulosum. 

Conclusions 

The database provides the first online resource providing genetic map and marker data from 
multiple Allium species and populations. The additional markers placed on the interspecific 
Allium map confirm the value of A. roylei as a valuable bridge between the genetics of onion 
and A. fistulosum and as a means to conduct efficient mapping of expressed sequence 
markers in Allium. The data presented suggest that comparative approaches will be valuable 
for genetic and genomic studies of onion and A. fistulosum. This online resource will provide 
a valuable means to integrate genetic and sequence-based explorations of Allium genomes. 

Background 

The large monocot genus Allium comprises hundreds of species and includes several with 
great economic, culinary and health value. Onion and shallot (Allium cepa L.; 2n = 2X = 16) 
are among the most economically significant monocot species outside the commelinoid 
grasses [1]. A. fistulosum (Japanese Bunching or Welsh Onion; 2n = 2X = 16), leek (A. 
porrum; (2n = 4X = 32) and garlic (A. sativum; 2n = 2X = 16) are widely grown and traded, 
with many other species being locally significant as spices and flavorings. Allium species are 
notable for their very large genomes, typically in the range 10–20 Gbp [2], which have 
complicated genomic studies and precluded genome sequencing to date. Genetic map 
development in onion and other Allium has been limited by difficulty in developing, 
maintaining and exchanging genetic stocks, high degrees of heterozygosity, and a dearth of 
sequence data [3]. 

The first published genetic map of an Allium species was that developed by King and 
colleagues [4] in the intraspecific onion cross 'BYG15-23 x AC43'. Constructed initially 
using RFLP markers, this map was subsequently augmented with SNP and SSR markers 
derived from EST sequencing [5,6]. These more portable markers enabled partial map 
construction in other intraspecific onion crosses to enable map-based genetic analysis of 
fertility restoration [7], color [8] and other bulb traits [9,10]. 

The breeding systems of A. fistulosum have facilitated development of several larger mapping 
pedigrees and detailed genetic maps based initially on SSR and AFLP markers [11,12]. These 
maps were used to conduct QTL analysis for seedling vigor [13]. More recently Tsukazaki 
and colleagues [14] reported a further A. fistulosum map based on A. fistulosum genomic SSR 
markers and onion EST-derived SNP and SSR markers, providing further scope for 
comparative studies between onion and A. fistulosum genomes. The only Allium relative 



known to readily produce fertile hybrids with onion is A. roylei [15], which has been used to 
develop an interspecific map [16] and backcross progenies with valuable disease resistance 
[17,18]. Since A. roylei also crosses with A. fistulosum, this has enabled development of 
bridge crosses containing all three genomes [19], thus enabling a potential path for 
introgression of A. fistulosum genetics into onion. 

The key resource that has enabled alignment of Allium genetic maps to physical 
chromosomes and facilitated comparison among species is the sets of A. fistulosum-A. cepa 
alien monosomic addition lines (AMALs) developed by Shigyo and colleagues [20]. These 
were initially applied to anchor AFLP-based maps in the interspecific A. cepa x A. roylei 
cross [21] and subsequently to anchor the 'BYG15-23 x AC43' map [6]. Subsequently they 
were used to anchor SSR-based maps in A. fistulosum [12] to physical chromosomes, and 
more recently to assign many more onion EST-derived anchor markers used in A. fistulosum 
maps [14]. 

In other studies, a large number of phenotypic and molecular markers, including many 
candidate genes relating to economic traits, have also been assigned to chromosomes [6,22-
26], providing a valuable guide for functional and QTL studies. These findings have been 
reported in diverse publications but have not to date been available in an accessible or 
integrated manner. 

Genome sequence, map and marker data from Allium species have to date been limited and 
difficult to access. Marker assays from the 'BYG15-23 x AC43' population have been 
accessible through Genbank [27] and garlic EST data have been presented through a web 
database [28]. Recently, Bhasi and colleagues [29] presented RobustDb, a generic online 
genomics database most notably containing garlic map and marker data. The VegMarks 
database [30] contains detailed information concerning A. fistulosum markers. Neither of 
these databases provides comparative data. Increasing development of doubled haploid stocks 
[31,32] and availability of next-generation sequencing mean that Allium marker and map 
resources will expand rapidly in the near future. Therefore it is important to provide existing 
map and marker data in an accessible form with links to underlying sequence, to enable 
integration of new data with past studies. 

Comparative genomic approaches have been widely used and proven in crop genetics, and 
are of growing interest as improved sequencing technologies enable ever broader and more 
detailed surveys of germplasm [33]. Online databases integrating genetic map, marker, 
sequence and germplasm data such as Gramene [34] and GDR [35] are now key tools for 
publishing and exploiting such data from the monocot grasses and the Rosaceae family 
respectively. Given their economic significance, there is a clear and pressing need for such 
resources in Allium. 

The use of many common onion EST-derived markers and the extensive use of AMALs to 
anchor both onion and A. fistulosum maps provide the potential for similar comparative 
approaches to be used in Allium genetics and genomics. In this study we present an integrated 
view of genetic maps in onion and A. roylei and an online database in which these can be 
explored. 



Construction and content 

Interspecific allium map integration 

The interspecific A. cepa x A. roylei interspecific map was augmented with additional genetic 
markers to increase correspondences among Allium maps. A total of 107 markers comprising 
73 additional onion EST-SSRs, 3 A. fistulosum genomic SSRs and 31 SNP markers derived 
from onion ESTs were evaluated in the population previously used to construct an AFLP-
based linkage map [16] using previously published methods [9]. Previously unpublished 
markers are shown in Table 1. Revised genetic maps were calculated using JoinMap 4.0 
software [36]. Linkage groups were first formed using LOD 5 cutoff from two data sets each 
containing co-dominant markers plus dominant markers from one parental phase. These were 
then merged and linkage maps constructed using default settings and Kosambi distances. 

Table 1 Previously unpublished primer sets mapped in the interspecific Allium cepa x A. roylei 
population 

Primer Set Genbank 
Accession 

FORWARD PRIMER  REVERSE PRIMER 

ACABE58 CF447676 TCTTCGAGAACTATCCCGACAT ACTCAACCGCTGTTACAAGGAT 

ACI017 AY585678 CCGACTACATGTAAGTTGCATTAAC TCTTGCATAATTTCACTGCACA 

ACM005 BI095610 CGCTTCAGCAGTGAGTTGTT TGTTGTCCGATACAGAGTTGCT 

ACM021 CF448154 AAAACCCTCAACATCTCACTCC TCTCTTCTTCCTCGTCCTGC 

ACM037 CF438925 GACCGACTCCAAAGCCATA CTCTCCCGTTCTCAAAATGC 

ACM049 CF447728 TAACGACATCCCTACCGC GCTTCTTCTTCCACTTTCGG 

ACM050 CF447828 GGTTCTCTGTTTGGGACA CCGTTTCGGCTACCTTGTAT 

ACM052 CF441811 CAGCAGCAACAAAGAATGC CTGGGGAGAATGAGAAGCAC 

ACM053 CF437211 CTGGGCTCTTTTGTTCATCC ATGGTGGAGGTATGTGAGGG 

ACM058 CF435771 GGAGTCACACAACAGAAACACAA AAGAAGGAATAGAGATGTAGCCGA 

ACM060 CF435985 ATCAGCAGCCTTCCCAGTAA ATCACACCCGCAAAAGAAT 

ACM065 CF449328 GCTCTGATGGAGGATGGTTC CTTGCCATCTTTGTCGGT 

ACM072 CF441584 TGAATTCAGGCCAAACATGA GAGGAAAGCCTGAAGAGTAGCA 

ACM076 CF449018 ATTAGAAACATCCATCGCCG CGCGATCATCATTTTCCATA 

ACM080 CF449761 GCATTATGCAGTAACGGGCT GCAGCAGCATTTGATTGAAC 

ACM081 CF447998 CTGAAAAGAAACCCGCAGAG TCAGGATGCACTTGCTTCAG 

ACM082 CF436620 CACCGTTCCTCAGCTCACTT AGAGGGACGAAATGAAAGCA 

ACM092 CF451134 GTGATTTGAAGCCACCACCT TGAATGGTGGTTATTCGGGT 

ACM096 CF446191 TGTGGGCAATTCACGTTATG AAAAGTTGTGAACGGCATCC 

ACM105 CF441894 CAAGTGGAGCGGGTATTTGT GAGGCACAACTTCCTCTTCG 

ACM107 CF449837 CCTTCATTCCCAAAGCACAT GCGATAAAGAGGGACAGCAG 

ACM114 CF436720 TAAGTTTTGCCTCCACCACC GCTCCACTTCAAGGCTGTTT 

ACM129 CF442903 CTAGGTTTCCGTGCTCCAAG CAGTTGGAGATCAACAGGCA 

ACM140 CF442000 TTGAAGCTATTCTCCGCAGC AGGGGGTCATTGATCCTAGC 

ACM144 CF441789 GCAACGGTAGAAGAACCTGC AACCTCTTTTGGTGCCTCCT 

ACM149 CF440830 GAAGATGGGTTTGAGTGGGA CAAGCCTGCCCTTACTCTTG 

ACM174 CF451831 TGCCCAATTATCGTTTCCAT GATGAGGCGAGTTTAGAGCG 

ACM183 CF443106 GATGATGGTGATGGCATTGA GTTTGCAGGCTCCATTGATT 

ACM231 CF441488 AAAGCTTCTACCCTGGCGAT TCCCTACGAACTCGTCATCC 



ACM238 CF443464 TGATAGCCAGTTGATTGCGA TTCCCCAGTACACACCTTCC 

ACM240 CF444554 GTGCAACTCCAAGAGAAGGG AATATAAAGGCGTTGGCCTG 

ACM245 CF445289 GGATCTGATCGGAGATTGGA GCGCACCTCTCTGCTAGACT 

ACM255 CF449065 AAATTCCCAAAACGAAACCC GGGTTTCAGGAACAGTCAGC 

ACM295 CF445600 AGATCCGTCCCATGAAACT GATCCGCTTCTGAAATCTCG 

ACM304 DQ273270 GAATTTAGGCCCATTTCAAGG TGATTTGCCTAATGTTTTTACG 

ACM322 ES449660 TTCTTCTCCTATCCAGCTATCG GTGATTTGGGAGGGGATTTT 

ACM340 CF437547 AAGTCTGGTGGTTGGTCCAG GGTGCCCAAGAAGTTGGTTA 

ACP002 AA451591 AAGCTTCTTTCGATCCTTTGTG GCTTCGATTCCATTTCAAGTTC 

ACP003 BE205590 AAGCTCTTAAAGCTGCTGATGG ATGCACGATAGCACAAGACATC 

ACP034 BQ580357 CAGTCTTGTGGTCATTGGTCA AACCCATGCGTATTTGAAGG 

ACP052 CF445805 TTCCCTCCTCACTCCCTACA CGACCACAAACACAAGCAAC 

APSR AF212155 CAGCTGCAGACTTTTCCTAC CCACGTGATCGAGTAGATCGT 

GGCS AF401621 CTGGAGTCACACCTGCAGAG TCGCCTTCGGAACTGTTATT 

GGT AF401622 TGTTGCTACCGATGATGGTC ATGCAACCCTGCAATTTCTC 

SPS3'UTR EU164758 AAAGGGAGATACAGACCAT ATTATACATCTCATCATGTCACT 

SUCS CF440928 TTTGAAGTGTGGCCTTACCTTGAG TGATGAAGTCTGTTCGATCATGGC 

Database configuration and curation 

Map and marker data provided by authors of previously published linkage mapping studies 
[4,8,12,14,16,37] were compiled in a MySQL relational database and reformatted in a form 
suitable for import into CMAP [38]. Marker data from the `BYG15-23 x AC43' cross [6] 
were reformatted in cross-pollinator format for JoinMap 4 and linkage maps were 
recalculated using default settings. Correspondences between loci with identical names were 
added using the cmap_admin.pl utility provided in CMap, or manually added based on use of 
common underlying sequences, as identified through information provided by authors and/or 
identified in the MySQL database. Further correspondences were identified by cross-
checking primer sets against the Onion Gene Index [39] using the primersearch tool from the 
EMBOSS suite [40] and creating correspondences for any marker pairs amplifying the same 
sequence. AMAL data were compiled into a Google® spreadsheet and published in 
searchable form using Simile Widgets http:nnwww.simile-widgets.org [41]. Sequences used 
for marker design were re-formatted to include marker names in fasta header lines and 
formatted to provide a BLAST [42] database. Information concerning PCR primer sets used 
to reveal SNP and SSR markers is provided via custom SQL queries to an external database 
included in modifications to the distributed CMAP feature information templates. QTL 
information was compiled from published data and manually added as map features using the 
CMAP administrator interface, or bulk uploads with the cmap_admin.pl tool. 

Utility 

The resources provided at http://alliumgenetics.org may be browsed through direct links to 
maps organized by species and publication, or through the standard CMAP interface. Markers 
or any other features may be searched using the built-in feature search option in CMAP, or 
through a simple form interface provided to enable searching for details of specific markers 
or primer sets. A BLAST facility is provided to enable querying any sequences of interest 
against targets of existing markers. 



The markers assigned using AMALs may be browsed and filtered through a web page and 
the RDF data source may be used as input for other Web2.0 mashups [43]. 

AlliumMap currently contains 1,776 markers from 10 Allium maps and 512 correspondences 
between markers. Genetic maps may be browsed through a standard CMAP interface, and 
marker hyperlinks provide access to marker information including links to GenBank 
sequences and other marker assay details. 

Discussion 

Integration of the interspecific allium map 

The addition of 74 co-dominant markers to the A. cepa x A. roylei interspecific map has 
enabled integration of male and female maps previously constructed primarily with dominant 
AFLP markers. The map comprises 11 linkage groups spanning 1 Morgan (Figure 1) 
compared with a length of 660 cM (Kosambi) reported observed for the original AFLP-based 
map [16]. This is the expected map length for onion based on chiasma frequency [44] and 
suggests that this map spans most of the genome. The combination of anchor loci assigned 
using AMALs and mapped in the interspecific cross has provided many additional landmarks 
for aligning genetic linkage maps in A. cepa and A. fistulosum. Alignment of linkage groups 
in this cross with the 'BYG15-23 x AC43' onion map [6] reveals useful synteny, as reported 
previously in studies of onion chromosome 8 [9]. 

Figure 1 Isozyme and PCR-based marker anchor loci on integrated A. cepa ‘Jumbo’ x  
A. roylei interspecific map. Numerals at top denote chromosome number based on AMAL 
assignments. Scale denotes distance in Haldane units (cM). AFLP markers are omitted for 
clarity 

Approximately 30 % of onion EST-derived PCR-based markers do not amplify in A. roylei, 
but may nevertheless be mapped as dominant markers in the A. cepa x A. roylei cross. This 
high degree of polymorphism means that this cross is extremely useful for developing 
detailed genetic maps. Development of additional crosses of this type for mapping with new 
SNP and other marker resources developed with next-generation sequencing in onion would 
be desirable to provide highly informative stocks for researchers mapping new genes of 
interest. 

Consensus maps in allium 

The present database contains 512 correspondences between markers on different Allium 
maps. Map comparison reveals useful degrees of expressed marker portability and suggests 
considerable potential for comparative methods to resolve common questions of crop 
evolution, biological function and economic trait regulation across these major cultivated 
Allium species. A comparative view of Allium chromosome 2 is shown in Figure 2. The Ms 
locus conditioning restoration of male-fertility in S cytoplasm is the basis for most F1 hybrid 
production in onion, and has been mapped to this chromosome [7], and we observed 
association of markers in this region with seed yield from selfed F2, due to segregation at Ms, 
plants (McCallum et al., unpublished observations) in the 'W202A x Texas Grano 438' family 
used to map bulb composition QTL [9,10]. QTL have been reported in an adjacent 
chromosomal region for onion bulb composition [45] and A. fistulosum seedling vigor [13]. 



This comparative view allows ready comparison between the QTL locations and linked 
markers from these studies and provides potential markers for more detailed studies of these 
regions in these or other genetic backgrounds. Comparison of the onion and interspecific 
maps for this linkage group illustrates the typically good agreement between marker order 
and map length in these maps. The relatively small population sizes used to date in these 
studies do not yet allow conclusive identification of inversions or other major rearrangements 
in Allium maps. 

Figure 2 AlliumMap comparative view of Allium chromosome 2, based on genetic maps 
from onion [6,8,10] and A. fistulosum [12] 

Conclusions 

Previous comparative studies have shown no microsynteny of asparagus with rice or onion 
[46], suggesting that comparative genomic studies must focus within the genus Allium. 
AlliumMap provides an integrated point to access details of the genetic markers and sequence 
resources employed across multiple studies in cultivated Allium. New denser linkage maps 
and underlying marker resources currently under development using next-generation 
transcriptome sequencing will be deposited in AlliumMap in the near future and ongoing 
curation will ensure integration with past studies. Despite the rapid advances in sequencing 
technologies, the enormous size of Allium nuclear genomes will preclude full sequencing in 
the short term. However, reduced representation approaches are already practical and the data 
contained in AlliumMap will be valuable for aligning contigs from such studies with genetic 
and physical maps. 

The resource will enable comparative genomics approaches, particularly for basic studies of 
plant physiology, metabolism and bioprotection in onion and A. fistulosum. Current 
transcriptome sequencing initiatives in onion will provide a rapidly expanding resource of 
anchor loci to expand the correspondences reported in this paper. 

Availability and requirements 

The database and associated tools may be freely accessed at http://alliumgenetics.org. Data 
concerning AMAL assignments can be accessed as an RDF data sources at 
http://spreadsheets.google.com/pub?key=pUofr7CKURDMvUcUlAecgPQ&hl=en 
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