Capacitative Properties of Cell Membrane as Evaluated in Voltage-Clamped cultured Embryonic Chick Heart Cells

Hideaki Sada*, Takashi Ban* and Nicholas Sperelakis**

*Department of Pharmacology, School of Medicine, Yamaguchi University, Ube, 755, Japan **Department of Physiology and Biophysics, College of Medicine University of Cincinnati, OH 45267, USA

(Received September 29, 1994, reuiced Marh 15, 1995)

Abstract Using cultured embryonic chick heart cells, the electrical capacitance of cell membrane (C_m) was measured by square and ramp pulse methods. The C_m Values obtained by both methods are in accordance not only with each other, but also with those calculated theoretically. Using a modified P/4 method, we could successfully eliminate the capacitative currents (I_c) alone, so as to isolate the ionic current. We confirmed that both C_m -measuring and I_c-cancelling procedures employed here were efficient.

Key Words : electrophysiology, membrane capacitance, voltage-clamp, heart cell

Introduction

We have been investigating the modes of action of class-1 antiarrythmic agents in heart. Most of such studies were carried out using V_{max} as a measure of the Na^{+(1,2)}. To analyse antidisrythmic drug actions in further detail, direct measurements of the Na⁺ current is required. We recently proposed that the embryonic chick ventricular cells are suitable for this purpose with respect to the better 'space-clamp' under the physiological Na⁺ concentration, because of their spheroidal shapes and small cell sizes⁽³⁾. When we study the detailed kinetic properties of Na⁺ channels. however, we have to take factor of the membrane capacitance into account.

The present study focusses on (1) estimations and comparison of C_m values by two different methods, (2) whether or not the C_m values so estimated have rationale, and (3) test of our modified P/4-method⁴⁾ for cancelling the capacitative transients.

Materials and Methods

Single heart cells were prepared according to the method described previously⁽³⁾. In brief, the hearts from 3- to 17- day-old chick embryos were dissected from fertilized eggs under sterile conditions. Minced ventricular tissues were placed in the Ca/Mg-free phosphate-buffered solution (PBS) containing trypsin (0.1 0.25g/100ml). Myocytes were dispersed by strirring gently for 5 min at 37° C. Two milliliters of the cell suspension (M-199 + 10% new-born calf serum) were seeded into culture dishes, and the culture was placed in a CO₂ incubator at 37° C for 5 -20 hr.

Incubation for > 5 hr allowed cells to adhere loosely to the bottom of the dishes, enabling a single-cell voltage-clamp (v-c) experiment⁽⁵⁾ to be done. Under microscopic observation, the cell diameter was visually

	A B Cell Diameter Surface Area		С		D	E
			Membrane	Capacitance(pF)	Specific Capacitance	Reversal Potential
	(µm)	$(10^{-10} \ \mu m^2)$	a. square	b. ramp	$(\mu F/cm^2)$	(mV)
1	13.75	5.94	6.15	6.20	1.04	+62.3
2	11.25	3.98	4.45	4.60	1.12	-53.8
3	13.75	5.94	6.26	6.30	1.05	+65.5
4	15.00	7.07	7.60	7.65	1.07	+65.0
5	8.75	2.41	2.35	2.05	0.98	+45.0
6	13.75	5.94	7.00	7.06	1.18	+61.0
7	17.50	9.62	12.00	12.13	1.25	+70.3
8	11.25	3.98	4.24	4.20	1.07	+62.0
9	12.50	4.91	5.70	5.75	1.17	+58.4
10	15.00	7.07	7.76	7.80	1.10	+65.3
N = 10	$13.25\pm$	$5.67\pm$	$6.35\pm$	$6.37\pm$	$1.10\pm$	$+60.86\pm$
	0.81	0.67	0.86	0.89	0.03	2.38

Table 1 Summary of Experimental Results

Surface area (B) was calculated by $\pi x D^2$, D is the diameter of spheroidal cells (in μ m, given in A). Values for the membrane capacitance (C, in pF) were obtained by both the square- (a) and ramp (b)-pulse methods. The specific capacitance (C_m value normalized with respect to the membrane area) is the value of the membrane capacitance (shown in C-a) divided by the surface area (B). Values on the bottom; mean \pm S.E.

scaled (Table 1 A). Cells chosen for v-c study had a following criteria: (1) Shape, sphere or spheroidal; (2) diameter, $< 15\mu$ m; (3) Single cells, being isolated from surrounding cells. Experiments were carried out at 20°C.

To determine C_m, two methods (squareand ramp-pulse methods) were employed. After establishing the patched-membrane seal, the capacitative current derived from the glass wall (C_{glass}) was manually minimized using internal compensation circuitry of an amplifier (EPC-7) until obtaining the smallest size of capacitative surge. The residual capacitative currents associated with C_{glass} (usually 1-2 pF) were stored, as both 10 mV-square steps (square-pulse method), and, subsequently, the ramp pulses (ramp-pulse method) were given. After rupture of the patched membrane, currents derived from the cell membrane capacitance (C_m) added further to $I_{c(glass)}$ on the current signal. Subtraction of $I_{c(glass)}$ left the C_m -related I_c alone.

In the square-pulse method, the area [A] under the capacitative spike was calculated.

The area reflects the quantity of charge movements [q], which is equal to $C_m X V$. Hence, the C_m value can be deduced from the equation: $C_m = A/V$.

In the ramp-pulse method, the amplitude (in ampere) of I_c in response to ramp-pulses (slope; 5 V/sec) was measured. As capacitative current $[I_c]$ flows according to the equation: $I_c = C_m dV/dt$, a constant I_c is expected when ramp-pulses having a constant dV/dt are given. The value of C_m was calculated from the equation: $C_m = I_c / 5$.

To cancel the capacitative transient in the v-c study, a modified P/4-method was devised. With the aid of a computer, pulses of varying amplitudes and arbitrary prepared as the main pulse, concomitantly with inverse pulses having 1/4 amplitude of the main pulses (inverse P/4-pulse) so prepared were delivered to cell via a D/A converter (Shosin EM, OI-8). By appling each main pulse with successive four inverse P/4-pulses together, the capacitative current could be subtracted. Ionic currents *per se* here were not affected by these P/4-pulses.

For the fast Na⁺ current recording, K⁺ ions in both the bath and pipette solutions were substituted Cs⁺ ions. In addition, the pipette solution contained 20 mM TEA Cl.

Results

Values of C_m obtained by square- and ramp-pulse methods are presented in Table 1 (C, D). C_m values calculated by both methods coincided with each other. In the table, values of the specific C_m , C_m normalized with respect to the surface area of cell membrane, also are listed. In any measurement, the specific C_m values are found to be close to 1 μ F/ cm².

For I_c -cancellation, we tried a modified P/ 4-method. The effect of I_c elimination was obvious when the v-c data were presented in terms of the current-voltage relation. The difference in Na⁺ current values before and after I_c -cancellation was large at potentials 0 mV to c. a. +70 mV, over which I_{Na} magnitude became smaller for more positive potentials while the I_c magnitude increased.

As a result, the reversal potential (V_{rev}), the potential at which the current altered its sign from negative to positive, was less positive before, an more positive after I_c-cancellation. The extent of the shifts in V_{rev} toward the positive values ranged between $10 \sim 30$ mV in 10 experiments. Thus, the effect of cancellation can be confirmed, employing V_{rev} after I_c subtraction (Table 1, E). As shown here, the values of V_{rev} after cancellation are close to the Na⁺ equilibrium potential (E_{Na}) of +66.7 mV.

Discussion

Since the lipid bilayer in a cell membrane is an electrical non-conductor and since the elctromotive force is present between inside and outside of the membrane, the lipid bilayer functions as a capacitor. Ion-permeating pores in proteins embedded in the bilayer can work as variable resistors. In total, the cell membrane *per se* is regarded as an electical circuit in which both capacitors and resistors are installed in a parallel combination. During the cardiac action potential (AP), the membrane undergoes the discharging/charging sequence, as described by the equation: $dV/dt = -1 / C_m \cdot I_{ion}$, where dV/dt, C_m , and I_{ion} denote the first time-derivative of voltage (i. e. AP), membrane capacitance, and ionic currents, respectively. Hence, the determination of the exact value of C_m is essential when we reproduce the time course of AP based on I_{ion} data. In this sense, C_m , electrophysiologically, is a very important parameter.

In contrast, the cell membrane capacitance is one of obstacles for voltage-clamping the cell membrane. The large capacitative currents always overlap the ionic currents so as to distort the current records. Consequently, not only must we establish a method for cancelling the capacitative currents, but also we must know the exact value of the cell membrane capacitance.

For determining C_m we tried 2 methods, and compared them. Calculations by both methods gave C_m values similar to each other. In general, the capacitance (C) depends on: (1) the area [A] of the conductor plates; (2) the dielectric properties of the insulating materials which space the plates (ε) ; and (3) between plates⁽⁶⁾. The the distance [1] capacitance [C], in turn, is given by the equation: $C = A \ge \epsilon_0 \ge \epsilon_s / l$. In this equation ε_0 is the dielectric constant for air (c.a. 8.842) x 10^{-12} F/m), and ε_s is 6 for the lipid. Assuming that in v-c experiments the width of the non-conductor (i.e. bilayer) is 5 nm and that the diameter of spheroidal cell is D μ m (i.e. A = $\pi x D^2 x 10^{-12} m^2$, then the above equation can be written: $C_m = 0.033 \times D^2 pF$. For $D=10\sim 15 \ \mu m$ as in our study, the equation gives 3 pF ~ 7.5 pF as C_m . This value is comparable to ours, indicating that C_m was satisfactorily determined by our methods.

The specific capacitance value averaged 1. 1 μ F/cm², a little larger than that previously reported (1 μ F/cm²). This might attributed, in part, to the procedure for scaling the cell diameter. Alternatively, this might be due to folding of the cultured cell membrane.

We modified the P/4-method that has so far been employed by others⁽⁷⁾. Through this treatment, net ionic current could be now isolated without any hindrance by capacitative currents. As a result, the reversal potential was near the E_{Na} value which was calculated from the equation (at 20°C): $E_{Na} = RT/F \cdot ln [Na^+] \sim_o / [Na^+]_i = 58.$ 17 mV x log $[Na^+]_o / [Na^+]_i$. In the present experimental conditions ($[Na^+]_o = 140 \text{ mM}$ vs. $[Na^+]_i = 10 \text{ mM}$), the equation yielded an E_{Na} of +66.7 mV. The most advantageous feature of our modified P/4-method that this is applicable to complicated pulse patterns which are required for studies on Na⁺ channel kinetics.

References

- Sada, H. and Ban, T. : Time-independent effects on cardiac action potential upstroke velocity (resting block) and lipid solubility of beta adrenergic blockers. *Experientia*, 37: 171-172, 1981.
- 2. Ban, T., Kojima, M., Ichiyama, M., Sada, H. and Hamamoto, T.: Effects of lidocaine alone and in combination with tetra-ethylammonium on the mmaximum upstroke velocity in guinea-pig papillary muscles.

Arzneim. Forsh./Drug Res., **39**(II): 770-774, 1989.

- Sada, H., Kojima, M. and Sperelakis, N.: Use of single heart cells from chick embryos for the Na⁺ current measurements. *Molec. Cell. Biochem.*, 80: 9-19, 1988.
- 4. Sada, H., Ban, T., Fujita, T., Ebina, Y. and Sperelakis, N.: Developmental change in fast Na channel properties in embryonic chick ventricular heart cells (to be published).
- 5. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J.: Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. *Pflugers Arch.*, **391**: 85 -100, 1981.
- 6. Horowitz, p. and Hill, W.: *The art on elecironins*, 1st edn., 18-20, Cambridge University Press. Cambridge.
- 7. Benzanilla, F. and Armstrong, C. M.: Inactivation of the sodium channel, I. sodium current experiments. J. Gen. Physiol., **70**: 549-566, 1977.