土の残留強度を測定するための 繰返し一面せん断試験の方法と結果の解釈

鈴木素之(社会建設工学科)
山本哲朗(社会建設工学科)
北村一也(社会建設工学専攻)
中森克己((株)復建調査設計)
福田順二(西日本工業大学)

Method of reversal box shear test for determining residual strength of soil and exposition of test result

Motoyuki SUZUKI (Department of Civil Engineering) Tetsuro YAMAMOTO (Department of Civil Engineering) Kazuya KITAMURA (Graduate school of Civil Engineering) Katsumi NAKAMORI (Fukken Co., Ldt) Junji FUKUDA (Nishinippon Institute of Technology)

To determine residual strengths of a kaolin and a landslide clay, reversal box shear tests were carried out. In this paper the normal stress, the shear displacement rate, the overconsolidation ratio, and the disturbance and the grading of the soil samples are taken up among many factors affecting test results. Consequently, residual strength of kaolin is not significantly influenced by the normal stress above 200 kPa, the overconsolidation ratio and the shear displacement rate below 1.0 mm/min. Also, there exists no difference between residual strengths of undisturbed and disturbed samples. Furthermore, residual strength of disturbed samples passed through 0.42 mm and 0.85 mm sieves respectively, was much lower than that of sample having an original grading.

Key Words : landslide, clay, residual strength, reversal box shear test

1. はじめに

地すべり斜面の安定解析において登場する3つの強 度パラメータすなわちピーク強度,完全軟化強度およ び残留強度を従来の逆算法に取り入れて,設計強度定 数を決定する方法が提案されている¹⁾.この方法は, 安定解析に採用すべき強度定数(c,)の組み合わせ は,ピーク強度と残留強度との間で,過圧密比の関数 として連続的に変化するものと考え,対象とする地盤 の強度特性を反映させた形でのc-tan 図の利用法を 提案したものである²⁾.不撹乱土のせん断強度の決定 に有効な繰返し一面せん断試験はこれらの強度パラメ ータを簡便に求めることができるので,この方法にお

ける必要不可欠な項目として位置付けられる.

土の残留強度に関する研究は Skempton³⁾により創始 され,これまでに種々の土の残留強度特性が概略把握 されたと言ってよい.また,土の残留強度を測定する ための試験方法として,繰返し一面せん断試験^{2).4)}な どが開発されている.しかし,地すべり調査から対策 工の設計までの一連の実務において,これら土質試験 はほとんど活用されていない.この背景として,地す べり土のせん断強度を測定する場合,不撹乱試料はも とより撹乱試料においてもすべり面土の採取が難しく, また試料が採取できたとしても礫分を含んでいる場合 が多く,粒度の面で試験の適用限界を超えることが指 摘される.繰返し一面せん断試験は実用上多くの利点 を有し、地すべり調査業務で普通に利用される土質試 験として期待される,そのためには,繰返し一面せん 断試験における残留強度の決定法を確立した上で,残 留強度に及ぼす垂直応力, せん断変位速度, 過圧密比 などの影響因子を整理しておく必要がある.

本文では,繰返し一面せん断試験における双曲線近 似による土の残留強度の決定法を提案するとともに, カオリンを原料とする練返し再構成粘土の試験結果に 基づいて垂直応力, せん断変位速度および過圧密比が 残留強度に及ぼす影響について検討した.次いで,山 口県東部の地すべり地から採取した不撹乱試料と撹乱 試料の試験結果に基づいて残留強度に及ぼす試料の乱 れの影響,また人工的に粒度調整した撹乱試料の試験 結果に基づいて残留強度に及ぼす最大粒径の影響につ いて検討した.

2.既往の研究

土の残留強度は,排水せん断あるいは定圧せん断に おいてせん断応力がピーク値を越え,漸次低下して究 極的な定常せん断状態に達したときの値であり,特に 過圧密粘土において問題となる³⁾.通常,土の残留強 度を測定するために繰返し一面せん断試験やリングせ ん断試験が実施される.繰返し一面せん断試験は, Skempton³⁾が一面せん断試験において残留強度を簡単 に求めるために考案したものであり,供試体のせん断 方向を順次反転させることにより土に大変形を与える ものである,繰返し一面せん断試験が実施され始めた ごく初期に Cullen et al.⁵⁾により試験方法が検討されて いる.試験装置の仕様は Nakamori et al.4)や佐野ら 6)の 型に代表され,Fig.1 に模式的に示すように,試験装置 の構造は基本的な部分で通常の一面せん断試験装置と 同じであるが、繰返しせん断を可能にする載荷機構が 付加されている.繰返し一面せん断試験は一面せん断 試験と同じ長所と短所を有している.ここでは本試験 に特有な点のみを以下に列挙する.

- ・試料の大きさは小さく少量で済むことから,試験の 準備が簡単であり,しかも不撹乱試料の残留強度を 求めるのに都合がよい.
- ・試験装置の機構がリングせん断試験よりも簡単なの で,試験の実施が比較的容易である.
- ・せん断方向が順次反転するために、すべり面(せん断 面)の状態を乱す恐れがある.

これより,試験結果の解釈の際には上記の点に留意す ることが大切である.

Fig.1 Outline of reversal box shear test

Fig.2 Essential features of test apparatus

3. 繰返し一面せん断試験の方法

(1) 試験装置

試験装置はNakamori et al.4)が開発した在来型の繰返 し一面せん断試験装置を一部改良したものである (Fig.2 参照).供試体は直径 60 mm,高さ 20 mmの円板で ある. せん断箱は上部固定・下部可動である. 測定項 目はせん断力, せん断変位, 垂直力および垂直変位で あり,下部せん断箱に高剛性ロードセルを取り付け反 力板側での垂直力の測定を可能にしている.

(2) 試料

用いた試料はカオリンと地すべり土である.カオリ ンは工業用粘土であり,鉱物組成はカオリナイトと石 英である.地すべり土は山口県東部の地すべり地のす べり面付近から不撹乱状態で採取したものである.両 試料の物理特性および粒径加積曲線をそれぞれ Table 1 および Fig.3 に示す.

Table I Physical property of soil samples						
試料	カオリン	地すべり土				
_s (g/cm ³)	2.618	2.687				
D ₅₀ (mm)	0.007	0.030				
D _{max} (mm)	0.200	5.100				
W _L (%)	65.8	34.4				
W _P (%)	41.5	17.5				
I _P	23.8	16.9				
F _{clay} (%)	35.3	25.5				
F _c (%)	56.4	63.9				
土質分類	MH	CL				

Fig.3 Grading of soil samples

(3) 試験手順

カオリンの場合,試料は液性限界の約2倍の含水比 で十分に練り返した後,せん断試験における圧密応力

。の85%の圧密応力で24時間一次元的に予圧密した. 供試体は予圧密試料を直径6cm,高さ2cmの円板に成 形し,所定の圧密応力。の下で24時間圧密した後, 直ちに定圧せん断した.本試験では,せん断変位振幅 D, せん断変位速度 D, 垂直応力 N, 過圧密比 OCR を変化させている なお 累積せん断変位 Dは280 mm とした.地すべり土の場合,不撹乱試料は土塊に含ま れるすべり層から切り出した. 撹乱試料は使用済みの 不撹乱試料を含水比が変化しないように十分こね返し た.供試体は N=98, 196, 294 kPaの3通りで24時 間圧密した後,直ちにD=0.1 mm/min, D=7 mm, D=140 mmまでせん断した.さらに,この撹乱試料を0.425 mmお よび 0.85 mmふるいで裏ごしし,最大粒径 Dmax を各ふる い目に調整した試料(以後,粒度調整試料とする)に対 して繰返し一面せん断試験を実施した.試験では 196 147 98 kPa のように段階的に垂直応力を減少さ せている. なお,予備試験結果に基づいて,排水条件 を満たすDとして0.1mm/minを採用した.

4.試験結果と考察

(1) 双曲線近似による土の残留強度の決定法

繰返し一面せん断試験における土の残留強度の決定 法は既往の研究において明確に規定されておらず,実 際には個々の判断において試験を打ち切り,残留強度 が決定されている.得られるせん断応力~せん断変位 曲線の形状はデータ整理における軸のスケールの取り 方によって異なるので,この曲線から客観的にせん断 応力が一定である残留状態を判定することは難しい. すなわち,せん断変位が十分でない場合,残留強度が いくらか高めに測定される可能性がある.著者らは, リングせん断試験において,せん断変位の大きさに依 存しない客観的な残留強度の決定法として,最大せん 断応力後のせん断応力とせん断変位角の関係の実測値 に対して双曲線近似を適用し,その漸近値を残留強度 と決定する方法を提案した⁷⁾.ここでは,この方法を 繰返し一面せん断試験のデータ整理に応用し,応力比 / N(:せん断応力)と繰返し回数 Nの関係を次の 式のような双曲線関数で表す.

$$-\frac{N}{a+bN} = \frac{N}{a+bN}$$
(1)

ここに, a および b はともに実験定数であり, それぞれ N/(/ _N)とN の関係の実測値に対して最小二乗法によってフイッティングした直線の切片および傾きで与えられる.そして,式(1)と実測値の適合性が良好であれば,残留状態における応力比は上式の漸近値として次の式のように決定される.

$$\left(-\frac{1}{N}\right)_{r} = \frac{1}{b}$$
(2)

Fig.4 に典型的な繰返し一面せん断試験の結果を示 す.図の縦軸は応力比 / N,横軸は累積せん断変位 Dである.試料はカオリンであり,試験条件はD=0.1 mm/min, D=7 mm, N=98 kPa, OCR=1.0 である.各 サイクルにおいて / Nは最大値を示した後,減少・ 再増加している.ここで, / Nの最大値(/ N)mex と最小値(/ N)min, D=0(供試体がせん断前の初期の 位置に戻る)ときの値(/ N)modeのであみ取り,これらに 対応するNを次の式から求める.

$$N = \frac{\mathbf{D}}{4 \cdot |\mathbf{D}|} \tag{3}$$

また,式(3)を式(1)に代入すると,次のような式が得られる.

$$\frac{1}{N} = \frac{D}{4a|D|+b}$$
 (4)

Fig.5 に(/ N)max ,(/ N)min および(/ N)model と N の関係を示す .(/ N)max は N の増加に対して若干変動しつつ減少するのに対して ,(/ N)min および(/

N) D=0 は N の増加に対して単調に減少する.この理由 として, D=0 のときには供試体断面積の変化の影響が 除去されることが考えられる.(/ N) D=0 と(/ N) min の値はほぼ等しいので,本文では(/ N) D=0 とそのと きの N に対して上述の双曲線近似による残留強度の決 定法を適用する.Fig.6 に実験定数 a, b を決定するた

Fig.6 Relationship between N/(/ N) and N

めの N/(/ _N)と N の関係の一例を示す . (/ _N), は b の逆数として与えられる .

Figs.7に Dを変化させた場合の と Dの関係を示 すいずれの Dにおいても Dが大きくなるにつれて は小さくなる.**Fig.8**に Dを変化させた場合のN=10 のときの応力比(/ $_{\rm N})_{\rm N=10}$ によって正規化した応力比 (/ $_{\rm N})/($ / $_{\rm N})_{\rm N=10}$ とNの関係を示す. Dが大きい ほど,少ないNで正規化した応力比は一定値に収束す る.これより,これ以降の試験ケースでは D=7 mm と した.

5. 練返し再構成粘土の残留強度特性

(1) 典型的な試験結果

Figs.7 Relationship between

D under different D

and

Fig.8 Normalized stress ratio plotted against N

Table 2 にカオリンの試験ケースと供試体の初期状 態量を示す.Fig.9 に $_{e}$ =49,98,196,294,392 kPa の場合における圧密過程における対数表示の圧密時間 t と圧密沈下量 v の関係を示す. $_{N}$ =392 kPa の場合を 除いて, $_{o}$ が大きくなるほど,当然ながら v は大きく なる.Fig.10 にこのときの と D の関係を示す.い ずれの $_{N}$ においても最初のせん断過程(N=1)で は単 調増加して最大値を示す.それ以降(N 2)では ~

試験番号	w _o (%)	t0 (a/cm ³)	^{م0} (g/cm ³)	S _{r0} (%)	e _o	 (kPa)	OCR	D (mm/min)	D (mm)
		(9,)	(3,)	(,,,)		((
1	64.5	1.595	0.970	98.0	1.764	98	1	0.02	7
2	66.5	1.613	0.969	100.0	1.768	98	1	0.1	7
3	67.8	1.633	0.973	100.0	1.756	98	1	0.2	7
4	65.6	1.612	0.974	100.0	1.754	98	1	1.0	7
5	65.9	1.586	0.956	97.9	1.804	98	1	0.1	3
6	68.1	1.646	0.979	100.0	1.739	98	1	0.1	5
7	66.5	1.613	0.969	100.0	1.768	98	1	0.1	7
8	63.1	1.469	0.901	86.6	1.906	98	1	0.1	7
9	62.5	1.536	0.945	92.5	1.769	196	2	0.1	7
10	63.6	1.519	0.928	91.5	1.820	392	4	0.1	7
11	63.9	1.536	0.937	93.3	1.794	784	8	0.1	7
12	66.7	1.549	0.929	96.1	1.871	49	1	0.1	7
13	63.1	1.469	0.901	86.6	1.906	98	1	0.1	7
14	59.1	1.588	0.998	95.3	1.624	196	1	0.1	7
15	56.7	1.601	1.022	95.1	1.562	294	1	0.1	7
16	51.0	1.661	1.100	96.7	1.380	392	1	0.1	7

Table 2 Test cases and results of kaolin

Fig.9 Consolidation curves of kaolin

D 曲線はほぼ同じ形状であるものの, の最大値は小 さくなる.Fig.11 に垂直変位 v と D の関係を示す. $_{N}$ の大きさによって v に大きな差はみられない.

Fig.12 に と №の関係を示す. が正の領域におけ るピークおよび残留状態における強度定数はそれぞれ _p=28.8°, c_p=0 kPa および ,=14.8°, c_r=0 kPa で ある. が負の領域におけるピークおよび残留状態に おける強度定数はそれぞれ _p=22.6°, c_p=0 kPa およ び ,=14.2°, c_r=0 kPa である. はせん断箱を押す 方向を正,引く方向を負としており,繰返しせん断は 押し側から開始するので,引き側の pは当然のことな がら一回せん断されているので,押し側の pよりも小 さくなっている.他方, ,は押し側,引き側で大きな 違いがみられない.本文では が正となる押し側のデ ータを整理した.

Fig.13 にピークおよび残留状態における応力比(/ N), および(/ N), と初期垂直応力 NO(= C)の関係を示す. NO=294 kPa 以上で(/ N), は NO に対して 一定になり, NO=196 kPa 以上で(/ N), が NO に対

Fig.10 Relationship between and D under different $_{\rm N}$

Fig.11 Relationship between v and D under different N

Fig.12 Stress paths obtained from reversal box shear test on kaolin

山口大学工学部研究報告

Fig.13 Relationship between / N and NO

Fig.14 Strength lines from reversal box and ring shear tests

して一定になる.このことは,比較的高い垂直 応力の範囲ではピーク強度および残留強度はと もに粘着力をゼロとした破壊線と良く適合する といえる.逆に,低い垂直応力の範囲ではピー ク強度および残留強度は高い垂直応力で描いた 破壊線よりも高くなり,破壊包絡線は湾曲化す る.

Fig.14 では繰返し一面せん断試験とリングせん断試験から得られたピークおよび残留状態の強度定数を比較している.試料はカオリンであり,供試体の作製方法は同じである.両試験ともにD=0.1 mm/min である.垂直応力は,繰返し一面せん断試験では98 kPa,リングせん断試験では196 kPaとしている.繰返し一面せん断試験では196 kPaとしている.繰返し一面せん断試験のそれよりも大きくなる結果が得られた.この理由として,繰返し一面せん断試験の場合には,リングせん断試験の場合と異なり,せん断方向が順次反転するため,せん断面の土粒子のせん断方向への定方向配列が乱されることが考えられる.

(4) せん断変位速度の影響

Fig.15 に D=0.02, 0.1, 0.2, 1.0 mm/min の場合における と Dの関係を示す. ~ D曲線は多少なりと

Fig.15 Relationship between and D under different D

Fig.16 Relationship between v and D under different D

Figs.17 Stress paths of kaolin under different D

も D の影響を受けるようである . Fig.16 には v と D の関係を , Figs.17 には D が異なる場合の応力経路を示 す . D が大きいほど , 繰返しせん断に伴う №の変化は 小さい . D が大きいほど , 供試体は非排水条件すなわ ち定体積条件に近くなり , 供試体とせん断箱との間で

Fig.18 Relationship between / N and D for kaolin

生じる周面摩擦力が小さくなるためと考えられる. Fig.18 に(/ $_{N})_{p}$ および(/ $_{N})_{r}$ とDの関係を示す. D=0.02~1.0 mm/minの範囲では,(/ $_{N})_{p}$ および(/

N), はともに D に対してほぼ一定である.D=0.2 mm /min 以上の範囲では(/ N), および(/ N), がわず かに減少するようである.これは, せん断面に発生す る過剰間隙水圧によって有効垂直応力が減少したこと によるものと考えられる.比較のために, リングせん 断試験から得られた結果を示すと,(/ N), はDの増加に 対してほぼ一定であるが,(/ N), はDの増加に 対して若干増加する.

(5) 過圧密比の影響

Figs.19 に 0CR=1.0, 2.0, 4.0, 8.0 の場合における 圧密挙動と膨潤挙動を示している.**Fig.20** にこれに引 き続く と Dの関係を示す 0CR が大きければピーク 強度が大きくなっており, 2 回目以降においてはほぼ 同じ挙動を示している.また,**Fig.21** に v と Dの関 係を示す.0CR が大きいほど,供試体の体積膨張が顕 著に現れている.**Figs.22** には 0CR を変化させた場合の 応力経路を,**Fig.23** には(/ $_{\rm N}$)_p および(/ $_{\rm N}$)_r と 0CR の関係を示す.(/ $_{\rm N}$)_p は 0CR の増加に対して増 加するのに対して,(/ $_{\rm N}$)_r は 0CR の増加に対してほ ぼ一定である.

5. 不撹乱および撹乱地すべり土の残留強度特性

(1) 地すべり地の概要

地すべり土は、山口県東部にある地すべり地のすべ り面付近から不撹乱状態で採取したものである.現場 の地質は中生代ジュラ系の玖珂郡で、岩種は泥岩であ る.この泥岩は活断層によって破砕され、亀裂面に沿っ て断層ガウジを挟在する.当該地すべりはこの泥岩層 中で粘土化の進んだゾーンをすべり面として発生した ものとみられる.

Figs.19 Consolidation and swelling curves of kaolin

Fig.20 Relationship between / _N and D under different OCR

Fig.21 Relationship between v and D under different OCR

Figs.22 Stress paths of kaolin under different OCR

(2) 圧密挙動

Table 3 に地すべり土の試験ケースと供試体の初期 状態量を示す .Figs.24(a),(b)に地すべり土における不撹 乱試料と撹乱試料の圧密挙動を示す . 各圧密応力にお ける最終沈下量は不撹乱試料の方が撹乱試料よりも大 さい.両試料ともほぼ同じ乾燥密度にしているものの, 不撹乱試料の方が撹乱試料よりも圧縮性が高い.この 理由として,不撹乱試料は自然状態において土粒子間 に膠結物質が付いた状態で骨格構造を有しているのに 対して,撹乱試料は締固めによって土粒子間のインタ ーロッキングした状態で骨格構造を有しているものと 考えられ,圧密沈下量は,不撹乱試料の方が大きいと考 えられる.また,圧密沈下量は載荷に対して即時的に 生じ,その後ほぼ一定となっており,軟弱粘土でみら れるような圧密挙動はみられない.

(3) 繰返しせん断挙動と強度特性

a) 不撹乱および撹乱試料の場合

Skempton³⁾は,残留強度は応力履歴に依らず同じで あることを示唆している.また,Bishop et al.⁸⁾や Townsend and Girbert⁹⁾も不撹乱試料と練返し試料の残 留強度に差異はないことを述べている.一方 Nakamori et al.⁴⁾は繰返し一面せん断試験により測定した不撹乱 試料と練返し試料の残留強度が異なること,さらに, 電子顕微鏡による観察結果に基づいて,それはせん断 面に形成される間隙構造の差異に起因することを示し ている.Figs.25(a),(b)にそれぞれ不撹乱試料および撹乱 試料の と Dの関係を示す.試験時の垂直応力は N

Fig.23 Relationship between / N and OCR

=98,196,294 kPa である 不撹乱試料の場合, 最初のせん断過程(D=7mm)で は単調増加 し,最大値を示す.2 往復以降では ~D 曲線 はほぼ同じ形状であるが, の最大値は小さ くなっている.撹乱試料の場合,不撹乱試料 ほどに明確な強度低下を示さず, D が増え ても はほとんど変わらないようである. Figs.26(a),(b)にそれぞれ不撹乱試料および撹 乱試料の v と D の関係を示す.不撹乱およ び撹乱試料ともに D の増加に伴って v は増

加している.また,せん断方向の反転直後に供試体は 沈下し, せん断が進むにつれて v が減少するようであ る.これはせん断方向が反転したときにせん断面の土 粒子の配列状況が乱れ,緩んだ部分が密度増加したも のと考えられる.Figs.27 に不撹乱試料と撹乱試料のピ ーク強度線を示す.不撹乱試料の場合には。=41.9° および c。=27.0 kPa, 撹乱試料の場合には。=39.4°お よび c_n=0 kPa が得られた . Figs.28 に不撹乱試料と撹 乱試料の残留強度線を示す.不撹乱試料,撹乱試料と もに ,=39.4°および c,=0 kPa が得られた. Nakamori et al.4)は不撹乱試料と撹乱試料の残留強度が必ずしも 同じ値にならないことを指摘しているが、その実験で は撹乱試料は不撹乱試料を液性限界以上の含水比で練 返した後,2.0mm ふるいを通過させているので,両者 の物理的性質は変化している点に注意する必要がある. 本試験では, 撹乱試料は不撹乱試料と同じ含水比で練 返した後,粒度を変化させず供試体を作製している. 以上より,不撹乱試料と撹乱試料の残留強度は本質的 には同じ値になると考えられる.

b) 粒度調整試料の場合

Fig.29 にそれぞれ最大粒径 D_{max} を 0.85 mmおよび 0.425 mmに調整した試料の と Dの関係を示す 試験 時の $_N$ は D=140 mm ごとに段階的に減少させている.いずれも $_N$ の各段階において の明確な低下はみられず, ~ D 曲線は D_{max} =0.85 mmの方が D_{max} =0.425 mm よりも総じて高いようである.**Fig.30** に最大粒径 D_{max} を0.85 mmと0.425 mmに調整した試料の残留強度線を示す.0.85 mmふるい通過試料から $_r$ =40.5°, c_r =0 kPa,

試験番号	試料の状態	W ₀ (%)	(g/cm ³)	e _o	(kPa)	D (mm/min)	D _{max} (mm)
1	不撹乱	18.4	1.648	0.615	98	0.02	5.1
2	不撹乱	19.1	1.658	0.603	196	0.02	5.1
3	不撹乱	19.1	1.632	0.640	294	0.02	5.1
4	撹乱	19.2	1.648	0.630	98	0.02	5.1
5	撹乱	19.1	1.658	0.621	196	0.02	5.1
6	撹乱	17.5	1.632	0.646	294	0.02	5.1
7	撹乱	8.6	1.646	-	196	1.0	0.425
					147		
					98		
8	撹乱	8.6	1.646	-	196	1.0	0.850
					147		
					98		

Table 3 Test cases and results of landslide clay

Figs24 Consolidation curves of undisturbed and disturbed samples

Figs.26 Relationship between v and D curves of undisturbed and disturbed samples

Fig.28 Residual strength lines of undisturbed and disturbed samples

0.425 mmふるい通過試料から ,=31.7 °, c,=0 kPa を 得た.0.425~0.85 mmの粒径範囲の土粒子を除去した 結果, c,はゼロのまま, ,は約8.8 °も低下する.し たがって,残留強度を求める際に試料の粒度を人為的 に調整すると,残留強度を過小評価する可能性がある.

5. 結 論

繰返し一面せん断試験における双曲線近似を適用した土の残留強度の決定法を提案するとともに,カオリンおよび地すべり土の試験結果に基づいて,垂直応力, せん断変位速度,過圧密比,試料の乱れ,粒度の影響について検討した.本文で得られた知見を以下に要約する.

- (1) 繰返し一面せん断試験において双曲線近似によ る残留強度の決定法を提案した.
- (2) 繰返し一面せん断試験における残留強度はせん 断速度の影響をほとんど受けない.
- (3) 残留強度は過圧密比の影響を受けない.
- (4) ピークおよび残留状態における強度定数は繰返

Fig.29 Shear behavior of samples of which maximum grain size changed artificially

Fig.30 Residual strength lines of samples having original and changed gradings

し一面せん断試験の方がリングせん断試験より も大きい.

- (5) 不撹乱試料と撹乱試料の残留強度はほぼ同じで ある.
- (6) 残留状態における強度定数は試料の最大粒径の 影響を受ける.

謝辞:復建調査設計(株)東京支社長福田直三氏には不 撹乱試料の入手で便宜を図って頂いた.大学院生村上 俊秀氏(現 井森工業株)ならびに小山泰正氏には試験 の実施と結果の整理でご助力頂いた.最後に復建調査 設計(株)所有の繰返し一面せん断試験装置を使用させ て頂いたことに対して関係各位に感謝の意を表す次第 である.

参考文献

- Mitachi, T., Okawara, M. and Kawaguchi, T.: Method for determining design strength parameters for slope stability analysis, *Proc. International Symposium on Slope Stability Engineering: Geotechnical and Geoenvironmental Aspects*, Vol.2, pp.781-785, 1999.
- 2) 大河原正文,三田地利之,小野寺賢一:地すべり解析用 小型自動繰返し一面せん断試験装置の開発と試験方法 の最適化,地すべり, Vol.37, No.1, pp.35-37, 2000.
- 3) Skempton, A.W.: Long-term stability of clay slopes,

Geotechnique, Vol.14, No.2, pp.77-102, 1964.

- Nakamori, K., Yang, P. and Sokobiki, H.: Strength characteristics of undisturbed landslide clays in tertiary mudstone, *Soils and Foundations*, Vol.36, No.3, pp.75-83, 1996.
- Cullen, R.M. and Donald, I.B.: Residual strength determination in direct shear, *Proc.1st Australia-New Zealand Conference on Geomechanics*, Vol.1, pp.1-10, 1971.
- 6) 佐野 彰,三田地利之,澁谷 啓,大河原正文:繰返し一 面せん断試験による軟岩の残留強度測定と地すべり安 定問題への適用,直接型せん断試験の方法と適用に関す るシンポジウム発表論文集,pp.239-244,1995.
- 7) 鈴木素之,梅崎健夫,川上浩:リングせん断試験における粘土の残留強度とせん断変位の関係,土木学会論文集,No.575/-40,pp.141-158,1997.
- Townsend, F.C. and Gilbert, P.A.: Tests to measure residual strengths of some clay shales, *Geotechnique*, Vol.23, No.2, pp.267-271, 1973.
- 9) Bishop, A.W., Green, G.E., Garga, V.K., Andresen, A. and Brown, J.D.: A new ring shear apparatus and its application to the measurement of residual strength, *Geotechnique*, Vol.21, No.4, pp.273-328, 1971.

(平成14年12月27日受理)