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Abstract

We develop a systematic method for constructing the bright N-soliton solution
of a multi-component modified nonlinear Schrodinger equation. We present the
two different expressions of the solution both of which are expressed as a ratio of
determinants. We find a simple relation between them by employing the properties
of the Cauchy matrix. Last, we propose a (2+1)-dimensional nonlocal modified
nonlinear Schrodinger equation arising from the multi-component system as the
number of dependent variable tends to infinity and then obtain its bright /N-soliton

solution. In this paper, we describe only the main results. The detail has been
published in Matsuno (2011) [1].

1. Introduction

We consider the following multi-component system of nonlinear PDEs which is a
hybrid of the coupled nonlinear Schrédinger (NLS) equation and coupled derivative
NLS equation

1t + Qa1 (Z qu|2> q; +1iy

k=1

(qu?) qj] —0, (j=1,2,.im), (1.1)

where ¢; = ¢;(z,t) (j = 1,2, ...,n) are complex-valued functions of x and ¢, ;1(> 0)
and v are real constants, n is an arbitrary positive integer and subscripts x and ¢
appended to ¢; denote partial differentiations.

e Integrability of Eq. (1.1): Hisakado and Wadati (1995) [2]

eSpecial cases:
1) n=1,u # 0,7 = 0: NLS equation, Zakharov and Shabat (1972) [3]
2) n=1,u = 0,7 # 0: Derivative NLS equation, Kaup and Newell (1978) [4]
3) n =2, # 0,7 =0: Manakov system, Manakov (1974) [5]
4)n=2u%#0,7# 0: A model equation describing the propagation of short
pulses in birefringent optical fiber, Hisakado, lizuka and Wadati (1994) [6]
5) Bright N-soliton solution of Eq. (1.1) with n = 2: Matsuno (2011) [7]



2. Bilinearization and bright N-soliton solution

2.1. Bilinearization
We first apply the gauge transformations

iy [T _
qj = uj exp [_%/_ > |Uk|2dff?] , (=12,...n), (2.1)

k=1
to the system (1.1) subjected to the the boundary conditions ¢; — 0,u; — 0
(7 = 1,2,...,n) as |z| — oo, where u; = u;(z,t) (j = 1,2,...,n) are complex-
valued functions of x and t. Then, we obtain the system of nonlinear PDEs for

Uj

VU4 + Ujew + 11 (Z |uk|2> u; + iy (Z ukuk$> u; =0, (j=1,2,...,n), (2.2)

k=1 k=1

where the asterisk appended to u; denotes complex conjugate.

Proposition 2.1. By means of the dependent variable transformations

9j .
uj = 73, (j=1,2,...,n), (2.3)
the system of nonlinear PDEs (2.2) can be decoupled into the following system of
bilinear equations for f and g;

(iD;+ D3g;- f=0, (j=1,2,..,n), (2.4)
* lfy . 2
D.f- "= §Z|9k| : (2.5)
k=1
Dif-f :MZ‘QMQ—FEZDI%'Q/{;- (2.6)
k=1 k=1

Here, f = f(x,t) and g; = gj(x,t) (j = 1,2,...,n) are complez-valued functions of
x and t and the bilinear operators D, and D, are defined by

DIy g = (3 - i) (2 _ 3) P, ()

or Ox' ot ot ’ (2.7)

=z, t'=t

where m and n are nonnegative integers.

Proof. Substituting (2.3) into (2.2) and rewriting the resultant equation in terms
of the bilinear operators, equations (2.2) can be rewritten as

fﬁ}* (—f*Dif Y ol 17D giDage - f) =0,
k=1 k=1

1

7 (iDyg;- f+D2g;-f)+
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(1=1,2,...,n). (2.8)
Insert the identity
fDIf-f=fDof - [ =2fuDuf - [+ f(Duf - [)as (2.9)

into the second term on the left-hand side of (2.8). Then, equations (2.8) become

3Dy 4 D2y 1)+ [{ =D P+ 3 P = (Duf- £t Y g
k=1 k=1

12D =0 Y e} =00 G=12,m), (2.10)
k=1

As easily confirmed by a direct calculation, the left-hand side of (2.10) becomes
zero by virtue of equations (2.4)-(2.6). O

It now follows from (2.3) and (2.5) that

i < 2 a . J
—_r = —1In— 2.11
92 Z | or £ (2.11)
k=1
which, substituted into (2.1), yields the solution of the system (1.1) in the form
9;f" :
¢ = }2 , (1=1,2,...,n). (2.12)

Note that for the n-component NLS equation (the system (1.1) with v = 0), the
solution (2.12) simplifies to ¢; = g;/f. Indeed, if v = 0, then the bilinear equation
(2.5) reduces to D, f - f* = 0. Thus, the ratio f*/f turns out to be an arbitrary
function of ¢ which can be set to 1 under appropriate boundary condition.

2.2. Bright N-soliton solution
We now state the main result:

Theorem 2.1. The bright N-soliton solution of the system of bilinear equations
(2.4)-(2.6) is given by the determinants f and g; (j = 1,2,...,n) where

T
e, A I zT .
f= 1 Bl gi=|-1 B 0, (j=12,.,n). (2.13)
0 —-a* 0

J

Here, A, B and I are N x N matrices and z,a; and 0O are N-component row vectors
defined below and the symbol T denotes the transpose:
1 ZjZZ

A = (ajk)i<jp<n, Gjp = = =
J SRS J 2 p]+pk

z; = exp(p;x + ip?t), (2.14a)
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(1 +iypr)cjn -
B = bk k<N 5 bk = T Cil. — Oés‘Oé: y 2.14b
(])1§J§ J pj—i-pk J ; J sk ( )
I = (0k)1<jk<n,: N X N unit matriz, (2.14c¢)
zZ = (21722,...,21\7), a; = (Oéjl,OéjQ,...,OéjN), 0= (0,0,,0) (214d)

The above bright N-soliton solution is characterized by (n + 1)N complex pa-
rameters p;(j = 1,2,...,n) and og(s = 1,2,..,n; j = 1,2,...,N). The former
parameters determine the amplitude and velocity of the solitons whereas the lat-
ter ones determine the polarizations and the envelope phases of the solitons.

To simplify the proof of theorem 2.1, the following observation is useful:

Proposition 2.2. If we introduce the gauge transformations

2
= fa gj = exp [i{%i:+ <%> f}] g, (=12,..,n), (2.15a)

2 - )
c=i+EF =% (2.15b)

Y
then the bilinear equations (2.4)-(2.6) recast to

(iD; +D3)g;-f=0, (j=1,2,...,n), (2.16)
Foork ’V - ~ 12
Dsf-f" = 5Z|gk| : (2.17)
k=1
Frx 7 - ~ ~x
Dif-fr= E;Digk "Ik (2.18)

respectively.

Thus, the form of equations (2.4) and (2.5) is unchanged whereas equation (2.6)
becomes a simplified equation with 4 = 0. Consequently, the proof of the N-
soliton solution may be performed for the corresponding solution with p = 0.
Hence, in the analysis developed in the following sections, we put pu = 0 without
loss of generality.

3. Notation and some basic formulas for determinants

In this section, we first introduce the notation for matrices and then provide some
basic formulas for determinants.



3.1. Notation
We define the following matrices associated with the N-soliton solution (2.13) with

(2.14):
A T
(4 1) o

A T 0oF A I ZT
D(a*;b)=| -1 B b'|, D(@%z)=|-1I B 0],
0 a* 0 0 a* o0
A T 27
D(z;z)=| -1 B 0T ]. (3.2)
z 0 O

Note the position of the vectors a*, b,z and z* in the above expressions. The

matrices which include more than two vectors will be introduced as well. For

example,
A T 0 z' A T 27 27
-1 B br of -1 B of of
D(a*,z*;b,z) = 0 , D(a"z"z,7) = o0
0 a~ 0 O 0 a* 0 O
z2 0 0 O z- 0 0 O
(3.3)

3.2. Formulas for determinants

Let A = (ajk)1<jr<m be an M x M matrix with M being an arbitrary positive
integer, A, be the cofactor of the element a;;, and a,b,a; and b, (j = 1,2, ...,n) be
M-component row vectors. The following well-known formulas are used frequently

in our analysis:

0 M da
ik
1Al = > a; A, (3.4)
j.k=1
A a” M
Lo = |Alz = > Ajasy, (3.5)
j,k=1

[A(ar, ag; by, by)[[A] = [A(ar; by)[[A(ag; by)| — [A(ar; by)|[A(az; by)]. (3.6)

The formula (3.4) is the differentiation rule of the determinant and (3.5) is the
expansion formula for a bordered determinant with respect to the last row and
last column. The formula (3.6) is Jacobi’s identity.

The following two formulas may not be popular but are very important in our
analysis. In particular, formula (3.7) gives rise to the expansion formulas for the



bordered determinant (see (3.9) and (3.10) below):

|A(ar;by)| -+ |Aai;by))
|A(ay, ...,a,; by, ..., by)||A" ! = : : ., (n>2), (3.7
|A<an;b1)| |A(an§bn)|

:|A|+Z(_e)m > |Aag,, - ag,; by, by )|

1<s51<...<sm<n

|A|+Z Z |A(ay,,...,a,,:bs,...b, ). (3.8)

A+e 2": bla,
s=1

Here, € is an arbitrary parameter, the notation bZa, on the left-hand side of
(3.8) represents an M x M matrix whose (j,k) element is given by (o, and
n’ = min(n, M). The formula (3.7) is a variant of the Sylvester theorem in the
theory of determinants.

Suppose that |A|] # 0. Expanding the determinant on the right-hand side of
(3.7) with respect to the first column and using (3.7) with n replaced by n — 1, we
then obtain an expansion formula

|A(a1, ...,an;bl, ,bn)|

|A| Z Y A(a;, b1)||A(aL, -y a5 1,811, .y An; o, oo b)) (3.9)
Similarly, the expansion with respect to the first row gives

|A(a1, ...,an;bl, ,bn)|

|A| Z J 1’14 al, »)||A(a2,...,an;bl,...,bj_l,bj+1,...,bn)|. (310)
4. Proof of the bright N-soliton solution

4.1. Formulas
In terms of the notation introduced in section 3.1 (see (3.1) and (3.2)), f and g;
are written in the form

= |D|7 95 = _|D(a;kvz>|7 (] = 1727 7”) (41)

The differentiation rules of f and g; with respect to ¢t and x are given by the
following formulas:



Lemma 4.1.

o=~ (ID("s2,)| ~ Dz )]} (4.2
fo = —5 D7), (13

foe = =5 1D 2] + DGz )} (1.4
50 = ~1D@5 )| + 5|D (@5, 2555, (4.5
9j. = —|D(a}; z5)|, (4.6)

Gjw = —|D(aj-;zm)\ + %]D(a;f,z*;zx,zﬂ. (4.7)

Here, 7, 7, and z,, are N-component row vectors given by z; = (ip3z1,ipazs, ...,

ipAan), 2z = (D121, D222, <o, DNZN) AN Zyy = (D221, P322, ..., DX 2N ), TESPECtivEly.

Lemma 4.2.

_ _ A I
*—= | D D= 4.8
Jr =10, (_I B_%WC), (18)
* 1 B *
fo =—5|D(z";z)|, (4.9)
g; = |D(z"; a;)]. (4.10)
Lemma 4.3.
_ 1 .
DI = D[+ 5|D(z"2)], (4.11)
|D(by;2)| = |D(ay; 2)], (4.12)
_ 1 -
| D(ai; i) = —[D(bg; ax)| — 5 D(by, 2% a, 2)], (4.13)
B * * 1 * * ~
|D(ay;2.)| = | D(by; 2) + 5| D (b}, 27 2, 2)]. (4.14)
D(z":2)] = 2y 3 [D(bjs )], (4.15)
k=1
|D(z";z)| = —2iy Y _ |D(aj; by, (4.16)
k=1

where z and by, are N -component row vectors given respectively by z = (z1/p1, 22/ pa,

ey 2N /DPN) and by, = (g1}, Qgaps, ..., GeNDN)-
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4.2. Proof of (2.4)
Let P, be

P, = (D, + D2)g, - I (417)
Substituting (4.1)-(4.7) into (4.17), P, becomes
Py = —|D(aj, z"; 2,2, )||D| + | D(aj; 2)|| D(2"; 2,)| — | D(aj; 2,)|| D(z"; z))|

~ {iID(aj; 2| + D@ 7)) (4.18)

Referring to Jacobi’s identity (3.6) and the fundamental formula «|D(a;by)| +
B|D(a; by)| = [D(a;aby + 8by)| (a, 3 € C), Py simplifies to P, = —|D(aj;iz; +
Zyy)|. Since iz; + z,, = 0 by (2.14a), the last column of the determinant consists
only of zero elements, implying that P, = 0. U

4.8. Proof of (2.5)
The equation to be proved is P, = 0, where

Ly
P=Dof f =5 > ol (4.19)
k=1
Substituting (4.1), (4.3) and (4.8)-(4.10) into (4.19), P, becomes
1 = * 1 B * 17 - * B *
Py =~ |D|ID(a" 2)] + 3|D|ID(z's2) + 3 (e )| D(as ). (4:20)
k=1

Further simplication is possible with use of (4.11), (4.15) and (4.16) with (4.13),
giving rise to

i = ~ k% ~ * DY
Py =052 (Db )| D0 2] + D (b} " v, 2) D] + | Diais2) | Dl ) ).
k=1

(4.21)
Applying Jacobi’s identity (3.6) to the middle term and replacing |D(b};z)| by
the right-hand side of (4.12) in the resultant expression, P, reduces to

P, =05 (H1DGak AIIDGE a0 + D)D) ). (422

It now follows from (3.8) that

- ()" §
|D(a};z)| = |D(a;;z)| + Z p_ Z |D(a,ay,,...,a; 1%, a,...,a, )|,
m=1 ) k1yeeny km=1

(4.23a)



B n 1 m n
|D(z%;a;)| = |D(z";a;)| + Z () Z |D(z",ag,,...,a; ;&g ax, ..., ax, )|,

(4.23b)
where n” = min(n — 1, N — 1). Referring to the expansion formulas (3.9) and
(3.10), one has

|D(a},ay,,...,a; ;2z,ak,...,a5,)| =|D|""|D(ay;z)||D(ay,, ..., a), ;a,...,ax,)]
m
+DI™Y (=) [D(ay,; 2)|| D(@g, af, oo 8,8k A Ay A, (4.240)
=1
|D(z*,aj,,...,a; ;ak,ay,...a,)| = [D|7'|D(z";a)||D(ay,, ..., a) ;au,...,ak,)]
m
HDITY (=D 1D(z @) D@, s @5, @k ks By gy o B )
=1
(4.24b)

By introducing (4.23) into (4.22) and then using (4.24), P, takes the form

F= 2|D| Z Z Rl

n

X Z [—|D(azl;z)||D(z*;ak)||D(a,:,azl, @ AL Ay S Ay, e ag, )|
ke ko =1

+|D(az;z)HD(z*;akl)HD(azl,...,azm;ak,akl,...,aklfl,akm,...,akm)|]. (4.25)

Interchange the indices k& and &; in the first term and then shift the row vector aj
in front of ay, , and the column vector a; in front of ay,, respectively. This leads
to the following relation

* % * * *
|D(ay, ay,, ..., a5, Qs A3 Ay ey a, )|

* * * * x
— \D(akl,akl, e @A A 8y e By, A, By o ag )|

= [D(ay,,...,a) &k, Ak, ooy Ak Akyy gy -oos Ak ) |-

Note that the value of the determinant is not altered since the total signature
caused by the above manipulation is (—1)2¢=%) = 1. Thus, the first term on the
right-hand side of (4.25) coincides with the second term and cosequently, P, = 0.
O



4.8. Proof of (2.6)
Instead of proving (2.6) directly, we differentiate (2.5) by x and add the resultant
expression to (2.6) and then prove the equation P; = 0, where

Py = fouf" = fofi = 5 D Orati- (4.26)
k=1

This reduces the total amount of calculations considerably and the proof becomes
transparent. It now follows from (4.1), (4.3), (4.4), (4.6) and (4.8)-(4.10) that

]- * * T~ ]‘ * B *
Py = =5 {ID(2" 2.)| + [ D(z;;2)[} [D] — 1| D(2%; 2)|| D(2"; 2)]

17 - * B *
+5 > " [D(ay; z.)||D(z"; ax)). (4.27)

k=1

Differention of (4.15) with respect to = gives

D(#';2,)| + |D(z:2)| = —17 Y [D(bj 2" 2, 7). (4.28)

k=1

Inserting (4.15) and (4.28) into (4.27), P53 can be put into the form

17 - B * * * B * * B *
Py =5 > {IDIID(b}. 2" . 2)| + [D(z":2) | Dlaji bu)| + | Dlai 2.)]| D(z's )| |-

k=1
(4.29)
Note from (4.11), (4.13), (4.14) and Jacobi’s identity (3.6) that
|DIID (b}, 2% a, 2)| + [D(27; 2)|| D(aj; by)|
* * 1 * % ~
— —|D(z";a)[{ ID(b};2) + 5| D(b}, 25 2,2) | |
= —|D(z"; a)||D(aj; 2.) |- (4.30)
After substituting (4.30) into (4.29), P; becomes
l’}/ - B * * * B *
Py =3 {-ID(@i 21D a0 | + D(aji2) Dm0l p. - (4:31)

k=1

This expression reduces to (4.22) if one replaces z, by z. Hence, the proof of the
relation P3 = 0 completely parallels that of P, = 0 with P, from (4.22). O
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5. Alternative expression of the bright N-soliton solution

Theorem 5.1. The determinants f" and g; (j = 1,2,...,n) given below satisfy the
system of bilinear equations (2.4)-(2.6):

A/—l—B, yT

] *
a; 0

f/:‘A/—‘—B/’, gl:

J

. (1=1,2,..,n), (5.1)

where A" and B' are N x N matrices and'y and a} are N-component row vectors
defined below:

A

A = (d <N, @ = .y = exp(gix + ig?t), 5.2a
(@ )i<imen, Qg Yot Y p(g;x + iqjt) (5.2a)
(1 — iya;)cy - "
B' = (b )icjpsn, by = Tq*j’ G =Y ok, (5.20)
J k s=1
Y = (Y1, Y2, s YN ), a) = (0, Ay, oy Ay ). (5.2¢)

Here, q; (j = 1,2,...,N) and ai; (s = 1,2,..,n;j = 1,2,..., N) are complex pa-
rameters characterizing the solution.

Let us show that the determinants f and g; from (2.13) are closely related to
the determinants f* and g} given by (5.1). The following lemma is useful for this

purpose:

Lemma 5.1. The determinants f and g; given by (2.13) can be rewritten in the
form
I+ AB z"

*
aj 0

f=|I+ABj, gj = : (1=1,2,...,n). (5.3)

We now establish the following theorem:

Theorem 5.2. Under the parameterization ¢; = —p; (j = 1,2,..., N) and o; =
—ag;/(2¢5) (s =1,2,...,n;5 = 1,2,..., N), the determinants f, f', g; and g; satisfy
the relations

f=cAlf, (5.4)
gi =cAlg;, (1=1,2,...,n), (5.5)
where
N N *
c=(-DN[[Ace), o= H;Vn=1<pl+pm) . (=1,2,..N). (5.6)
=1 H(szé%) (pl - pm)

11



The parametersp; (j = 1,2,..., N) are assumed to satisfy the conditions p;+p;, # 0
for all I and m and p; # pm, for L # m.

Thus, we have obtained the two different expressions for the bright N-soliton
solution of the system of nonlinear PDEs (2.2). Explicitly, they read u; = ¢;/f =

g;/f(G=12,..n).
The following proposition provides an alternative proof of theorem 5.1:

Proposition 5.1. If f and g; given respectively by (5.4) and (5.5) satisfy the
system of bilinear equations (2.4)-(2.6), then f" and g} satisfy the same system of
equations, and vice versa.

6. A continuum model

The n-component system (1.1) yields a continuum model when one takes a limit
n — oo. It represents a (241)-dimensional nonlocal modified NLS equation of the
form

iqt+qm+u</ Iq\zdy)quiv(/ IQIQdyq) =0, g=q(z,y,t). (6.1)

[e.e] e}

Recall that when v = 0, this equation reduces to a (2+41)-dimensional nonlocal
NLS equation proposed by Zakharov [8]. The exact method of solution for equation
(6.1) can be developed following the same procedure as that for the system of
nonlinear PDEs (1.1). Hence, we summarize the main results.

First, application of the gauge transformation

q = uexp {—%/ / IU(x,y,t)Idedy} , u = u(z,y,t), (6.2)

to the system (6.1) subjected to the the boundary conditions ¢ — 0,u — 0 || —

oo transforms (6.1) to a nonlocal nonlinear PDE for u

T + Ugy + 1 (/ \u|2dy) u+ 1y (/ u*uxdy> u=0. (6.3)

The proposition below is an analog of proposition 2.1:

Proposition 6.1 By means of the dependent variable transformation
g
u==, (6.4)
f
equation (6.3) can be decoupled into the following system of bilinear equations for
f=1Ff(zt) and g = g(z,y,1)

(iD; + D?)g- f =0, (6.5)

12



Do = | loPay (6.6

—00

. ~ [ ‘
2o =n [ oPdy+y [ Dug-gdy (67

Proof. The proof proceeds exactly as that of proposition 2.1. Formally, one may
simply replace the sum >_7_, by the integral ffooo dy. (]

It follows from (6.2), (6.4) and (6.6) that

g9
=

which is just a continuum limit of (2.12).

q (6.8)

The following theorem can be derived from a continuum limit of the bright
N-soliton solution given by theorem 2.1 and theorem 5.1:

Theorem 6.1. The system of bilinear equations (6.5)-(6.7) admits the following
two different expressions f,qg and f', g for the bright N-soliton solution :

A A I z7
f=10 4 9=|-1 B 07, (6.9)
0 —-a* o0
A/ B/ T
f=|A+B| 4= _Z,* "t (6.10)

Here, A and B are N x N matrices given respectively by (2.14a) and (2.14b)
with cji, being replaced by f_oooo a;(y)og(y)dy, A" and B' are N x N matrices given
respectively by (5.2a) and (5.2b) with ¢y being replaced by ffooo o (y)oy, " (y)dy and
a=a(y) = (a1, qq,...,ay) and &' = a'(y) = (o), b, ..., y) are N-component row
vectors where o and o (1 =1,2,...,N) are continuous functions of y.

Proof. The proof can be done in the same way as that of theorem 2.1 and theorem
5.1. OJ

Theorem 6.2. Under the parameterization q; = —p; and of; = —a;/(2¢;) (j =
1,2,...,N), the determinants f, f', g and g’ satisfy the relations

f=dAlf, (6.11)

g9 =clAld, (6.12)

13



where ¢ is defined by (5.6) and the parameters p; (j = 1,2,..., N) are specified such
that p; + pr, # 0 for all | and m and p; # p, for 1 # m.

Proof. The proof parallels theorem 5.2. O]

Proposition 6.2. If f and g given by (6.9) satisfy the system of bilinear equations
(6.5)-(6.7), then [’ and g' given by (6.11) and (6.12) satisfy the same system of
equations, and vice versa.

Proof. The proof is completely parallel to that of proposition 5.1. 0
7. Conclusion

1. We have obtained two different expressions of the bright N-soliton solution of
a multi-component modified NLS equation in terms of determinants.

2. We have proposed a continuum model arising from the multi-component system
as the number of dependent variables tends to infinity and presented its bright V-
soliton solution.

3. Our solutions include existing bright /N-soliton solutions of the multi-component
NLS equation and its continuum model.
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