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Abstract

We develop a systematic method for constructing the bright N -soliton solution

of a multi-component modified nonlinear Schrödinger equation. We present the

two different expressions of the solution both of which are expressed as a ratio of

determinants. We find a simple relation between them by employing the properties

of the Cauchy matrix. Last, we propose a (2+1)-dimensional nonlocal modified

nonlinear Schrödinger equation arising from the multi-component system as the

number of dependent variable tends to infinity and then obtain its bright N -soliton

solution. In this paper, we describe only the main results. The detail has been

published in Matsuno (2011) [1].

1. Introduction

We consider the following multi-component system of nonlinear PDEs which is a

hybrid of the coupled nonlinear Schrödinger (NLS) equation and coupled derivative

NLS equation

i qj,t + qj,xx + µ

(
n∑

k=1

|qk|2
)

qj + iγ

[(
n∑

k=1

|qk|2
)

qj

]

x

= 0, (j = 1, 2, ..., n), (1.1)

where qj = qj(x, t) (j = 1, 2, ..., n) are complex-valued functions of x and t, µ(≥ 0)

and γ are real constants, n is an arbitrary positive integer and subscripts x and t

appended to qj denote partial differentiations.

• Integrability of Eq. (1.1): Hisakado and Wadati (1995) [2]

•Special cases:

1) n = 1, µ 6= 0, γ = 0: NLS equation, Zakharov and Shabat (1972) [3]

2) n = 1, µ = 0, γ 6= 0: Derivative NLS equation, Kaup and Newell (1978) [4]

3) n = 2, µ 6= 0, γ = 0: Manakov system, Manakov (1974) [5]

4) n = 2, µ 6= 0, γ 6= 0: A model equation describing the propagation of short

pulses in birefringent optical fiber, Hisakado, Iizuka and Wadati (1994) [6]

5) Bright N -soliton solution of Eq. (1.1) with n = 2: Matsuno (2011) [7]
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2. Bilinearization and bright N-soliton solution

2.1. Bilinearization

We first apply the gauge transformations

qj = uj exp

[
− iγ

2

∫ x

−∞

n∑

k=1

|uk|2dx

]
, (j = 1, 2, ..., n), (2.1)

to the system (1.1) subjected to the the boundary conditions qj → 0, uj → 0

(j = 1, 2, ..., n) as |x| → ∞, where uj = uj(x, t) (j = 1, 2, ..., n) are complex-

valued functions of x and t. Then, we obtain the system of nonlinear PDEs for

uj

i uj,t + uj,xx + µ

(
n∑

k=1

|uk|2
)

uj + iγ

(
n∑

k=1

u∗kuk,x

)
uj = 0, (j = 1, 2, ..., n), (2.2)

where the asterisk appended to uk denotes complex conjugate.

Proposition 2.1. By means of the dependent variable transformations

uj =
gj

f
, (j = 1, 2, ..., n), (2.3)

the system of nonlinear PDEs (2.2) can be decoupled into the following system of

bilinear equations for f and gj

(iDt + D2
x)gj · f = 0, (j = 1, 2, ..., n), (2.4)

Dxf · f ∗ =
iγ

2

n∑

k=1

|gk|2, (2.5)

D2
xf · f ∗ = µ

n∑

k=1

|gk|2 +
iγ

2

n∑

k=1

Dxgk · g∗k. (2.6)

Here, f = f(x, t) and gj = gj(x, t) (j = 1, 2, ..., n) are complex-valued functions of

x and t and the bilinear operators Dx and Dt are defined by

Dm
x Dn

t f · g =

(
∂

∂x
− ∂

∂x′

)m (
∂

∂t
− ∂

∂t′

)n

f(x, t)g(x′, t′)
∣∣∣
x′=x, t′=t

, (2.7)

where m and n are nonnegative integers.

Proof. Substituting (2.3) into (2.2) and rewriting the resultant equation in terms

of the bilinear operators, equations (2.2) can be rewritten as

1

f 2
(iDtgj ·f+D2

xgj ·f)+
gj

f 3f ∗

(
−f ∗D2

xf · f + µf

n∑

k=1

|gk|2 + iγ
n∑

k=1

g∗kDxgk · f
)

= 0,
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(j = 1, 2, ..., n). (2.8)

Insert the identity

f ∗D2
xf · f = fD2

xf · f ∗ − 2fxDxf · f ∗ + f(Dxf · f ∗)x, (2.9)

into the second term on the left-hand side of (2.8). Then, equations (2.8) become

1

f 2
(iDtgj ·f +D2

xgj ·f)+
gj

f 3f ∗

[
f
{
−D2

xf ·f ∗+µ

n∑

k=1

|gk|2−(Dxf ·f ∗)x+iγ
n∑

k=1

g∗kgk,x

}

+fx

{
2Dxf · f ∗ − iγ

n∑

k=1

|gk|2
}]

= 0, (j = 1, 2, ..., n). (2.10)

As easily confirmed by a direct calculation, the left-hand side of (2.10) becomes

zero by virtue of equations (2.4)-(2.6). ¤

It now follows from (2.3) and (2.5) that

− iγ

2

n∑

k=1

|uk|2 =
∂

∂x
ln

f ∗

f
, (2.11)

which, substituted into (2.1), yields the solution of the system (1.1) in the form

qj =
gjf

∗

f 2
, (j = 1, 2, ..., n). (2.12)

Note that for the n-component NLS equation (the system (1.1) with γ = 0), the

solution (2.12) simplifies to qj = gj/f . Indeed, if γ = 0, then the bilinear equation

(2.5) reduces to Dxf · f ∗ = 0. Thus, the ratio f ∗/f turns out to be an arbitrary

function of t which can be set to 1 under appropriate boundary condition.

2.2. Bright N-soliton solution

We now state the main result:

Theorem 2.1. The bright N-soliton solution of the system of bilinear equations

(2.4)-(2.6) is given by the determinants f and gj (j = 1, 2, ..., n) where

f =

∣∣∣∣∣
A I

−I B

∣∣∣∣∣ , gj =

∣∣∣∣∣∣∣

A I zT

−I B 0T

0 −a∗j 0

∣∣∣∣∣∣∣
, (j = 1, 2, ..., n). (2.13)

Here, A,B and I are N×N matrices and z, aj and 0 are N-component row vectors

defined below and the symbol T denotes the transpose:

A = (ajk)1≤j,k≤N , ajk =
1

2

zjz
∗
k

pj + p∗k
, zj = exp(pjx + ip2

j t), (2.14a)
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B = (bjk)1≤j,k≤N , bjk =
(µ + iγpk)cjk

p∗j + pk

, cjk =
n∑

s=1

αsjα
∗
sk, (2.14b)

I = (δjk)1≤j,k≤N , : N ×N unit matrix , (2.14c)

z = (z1, z2, ..., zN), aj = (αj1, αj2, ..., αjN), 0 = (0, 0, ..., 0). (2.14d)

The above bright N -soliton solution is characterized by (n + 1)N complex pa-

rameters pj(j = 1, 2, ..., n) and αsj(s = 1, 2, .., n; j = 1, 2, ..., N). The former

parameters determine the amplitude and velocity of the solitons whereas the lat-

ter ones determine the polarizations and the envelope phases of the solitons.

To simplify the proof of theorem 2.1, the following observation is useful:

Proposition 2.2. If we introduce the gauge transformations

f = f̃ , gj = exp

[
i

{
µ

γ
x̃ +

(
µ

γ

)2

t̃

}]
g̃j, (j = 1, 2, ..., n), (2.15a)

x = x̃ +
2µ

γ
t̃, t = t̃, (2.15b)

then the bilinear equations (2.4)-(2.6) recast to

(iDt̃ + D2
x̃)g̃j · f̃ = 0, (j = 1, 2, ..., n), (2.16)

Dx̃f̃ · f̃ ∗ =
iγ

2

n∑

k=1

|g̃k|2, (2.17)

D2
x̃f̃ · f̃ ∗ =

iγ

2

n∑

k=1

Dx̃g̃k · g̃∗k, (2.18)

respectively.

Thus, the form of equations (2.4) and (2.5) is unchanged whereas equation (2.6)

becomes a simplified equation with µ = 0. Consequently, the proof of the N -

soliton solution may be performed for the corresponding solution with µ = 0.

Hence, in the analysis developed in the following sections, we put µ = 0 without

loss of generality.

3. Notation and some basic formulas for determinants

In this section, we first introduce the notation for matrices and then provide some

basic formulas for determinants.
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3.1. Notation

We define the following matrices associated with the N -soliton solution (2.13) with

(2.14):

D =

(
A I

−I B

)
, (3.1)

D(a∗;b) =




A I 0T

−I B bT

0 a∗ 0


 , D(a∗; z) =




A I zT

−I B 0T

0 a∗ 0


 ,

D(z∗; z) =




A I zT

−I B 0T

z∗ 0 0


 . (3.2)

Note the position of the vectors a∗, b, z and z∗ in the above expressions. The

matrices which include more than two vectors will be introduced as well. For

example,

D(a∗, z∗;b, z) =




A I 0 zT

−I B bT 0T

0 a∗ 0 0

z∗ 0 0 0


 , D(a∗, z∗; z, z′) =




A I zT z′T

−I B 0T 0T

0 a∗ 0 0

z∗ 0 0 0


 .

(3.3)

3.2. Formulas for determinants

Let A = (ajk)1≤j,k≤M be an M × M matrix with M being an arbitrary positive

integer, Ajk be the cofactor of the element ajk and a,b, aj and bj (j = 1, 2, ..., n) be

M -component row vectors. The following well-known formulas are used frequently

in our analysis:

∂

∂x
|A| =

M∑

j,k=1

∂ajk

∂x
Ajk, (3.4)

∣∣∣∣∣
A aT

b z

∣∣∣∣∣ = |A|z −
M∑

j,k=1

Ajkajbk, (3.5)

|A(a1, a2;b1,b2)||A| = |A(a1;b1)||A(a2;b2)| − |A(a1;b2)||A(a2;b1)|. (3.6)

The formula (3.4) is the differentiation rule of the determinant and (3.5) is the

expansion formula for a bordered determinant with respect to the last row and

last column. The formula (3.6) is Jacobi’s identity.

The following two formulas may not be popular but are very important in our

analysis. In particular, formula (3.7) gives rise to the expansion formulas for the
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bordered determinant (see (3.9) and (3.10) below):

|A(a1, ..., an;b1, ...,bn)||A|n−1 =

∣∣∣∣∣∣∣

|A(a1;b1)| · · · |A(a1;bn)|
...

. . .
...

|A(an;b1)| · · · |A(an;bn)|

∣∣∣∣∣∣∣
, (n ≥ 2), (3.7)

∣∣∣∣∣A + ε

n∑
s=1

bT
s as

∣∣∣∣∣ = |A|+
n′∑

m=1

(−ε)m
∑

1≤s1<...<sm≤n

|A(as1 , ..., asm ;bs1 , ...,bsm)|

= |A|+
n′∑

m=1

(−ε)m

m!

n∑
s1,...,sm=1

|A(as1 , ..., asm ;bs1 , ...,bsm)|. (3.8)

Here, ε is an arbitrary parameter, the notation bT
s as on the left-hand side of

(3.8) represents an M × M matrix whose (j, k) element is given by βsjαsk and

n′ = min(n,M). The formula (3.7) is a variant of the Sylvester theorem in the

theory of determinants.

Suppose that |A| 6= 0. Expanding the determinant on the right-hand side of

(3.7) with respect to the first column and using (3.7) with n replaced by n− 1, we

then obtain an expansion formula

|A(a1, ..., an;b1, ...,bn)|

=
1

|A|
n∑

j=1

(−1)j−1|A(aj,b1)||A(a1, ..., aj−1, aj+1, ..., an;b2, ...,bn)|. (3.9)

Similarly, the expansion with respect to the first row gives

|A(a1, ..., an;b1, ...,bn)|

=
1

|A|
n∑

j=1

(−1)j−1|A(a1,bj)||A(a2, ..., an;b1, ...,bj−1,bj+1, ...,bn)|. (3.10)

4. Proof of the bright N-soliton solution

4.1. Formulas

In terms of the notation introduced in section 3.1 (see (3.1) and (3.2)), f and gj

are written in the form

f = |D|, gj = −|D(a∗j ; z)|, (j = 1, 2, ..., n). (4.1)

The differentiation rules of f and gj with respect to t and x are given by the

following formulas:

6



Lemma 4.1.

ft = − i

2
{|D(z∗; zx)| − |D(z∗x; z)|} , (4.2)

fx = −1

2
|D(z∗; z)|, (4.3)

fxx = −1

2
{|D(z∗; zx)|+ |D(z∗x; z)|} , (4.4)

gj,t = −|D(a∗j ; zt)|+ i

2
|D(a∗j , z

∗; z, zx)|, (4.5)

gj,x = −|D(a∗j ; zx)|, (4.6)

gj,xx = −|D(a∗j ; zxx)|+ 1

2
|D(a∗j , z

∗; zx, z)|. (4.7)

Here, zt, zx and zxx are N-component row vectors given by zt = (ip2
1z1, ip

2
2z2, ...,

ip2
NzN), zx = (p1z1, p2z2, ..., pNzN) and zxx = (p2

1z1, p
2
2z2, ..., p

2
NzN), respectively.

Lemma 4.2.

f ∗ = |D̄|, D̄ ≡
(

A I

−I B − iγC

)
, (4.8)

f ∗x = −1

2
|D̄(z∗; z)|, (4.9)

g∗j = |D̄(z∗; aj)|. (4.10)

Lemma 4.3.

|D̄| = |D|+ 1

2
|D(z∗; z̃)|, (4.11)

|D(b∗k; z̃)| = |D̄(a∗k; z)|, (4.12)

|D̄(a∗k;bk) = −|D(b∗k; ak)| − 1

2
|D(b∗k, z

∗; ak, z̃)|, (4.13)

|D̄(a∗k; zx)| = |D(b∗k; z) +
1

2
|D(b∗k, z

∗; z, z̃)|. (4.14)

|D(z∗; z)| = 2iγ
n∑

k=1

|D(b∗k; ak)|, (4.15)

|D̄(z∗; z)| = −2iγ
n∑

k=1

|D̄(a∗k;bk)|, (4.16)

where z̃ and bk are N-component row vectors given respectively by z̃ = (z1/p1, z2/p2,

..., zN/pN) and bk = (αk1p
∗
1, αk2p

∗
2, ..., αkNp∗N).
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4.2. Proof of (2.4)

Let P1 be

P1 = (iDt + D2
x)gj · f. (4.17)

Substituting (4.1)-(4.7) into (4.17), P1 becomes

P1 = −|D(a∗j , z
∗; z, zx)||D|+ |D(a∗j ; z)||D(z∗; zx)| − |D(a∗j ; zx)||D(z∗; z)|

−{
i|D(a∗j ; zt)|+ |D(a∗j ; zxx)|

}
. (4.18)

Referring to Jacobi’s identity (3.6) and the fundamental formula α|D(a;b1)| +
β|D(a;b2)| = |D(a; αb1 + βb2)| (α, β ∈ C), P1 simplifies to P1 = −|D(a∗j ; izt +

zxx)|. Since i zt + zxx = 0 by (2.14a), the last column of the determinant consists

only of zero elements, implying that P1 = 0. ¤

4.3. Proof of (2.5)

The equation to be proved is P2 = 0, where

P2 = Dxf · f ∗ − iγ

2

n∑

k=1

|gk|2. (4.19)

Substituting (4.1), (4.3) and (4.8)-(4.10) into (4.19), P2 becomes

P2 = −1

2
|D̄||D(z∗; z)|+ 1

2
|D||D̄(z∗; z)|+ iγ

2

n∑

k=1

|D(a∗k; z)||D̄(z∗; ak)|. (4.20)

Further simplication is possible with use of (4.11), (4.15) and (4.16) with (4.13),

giving rise to

P2 =
iγ

2

n∑

k=1

(
−|D(b∗k; ak)||D(z∗; z̃)|+ |D(b∗k, z

∗; ak, z̃)||D|+ |D(a∗k; z)||D̄(z∗; ak)|
)
.

(4.21)

Applying Jacobi’s identity (3.6) to the middle term and replacing |D(b∗k; z̃)| by

the right-hand side of (4.12) in the resultant expression, P2 reduces to

P2 =
iγ

2

n∑

k=1

(
−|D̄(a∗k; z)||D(z∗; ak)|+ |D(a∗k; z)||D̄(z∗; ak)|

)
. (4.22)

It now follows from (3.8) that

|D̄(a∗k; z)| = |D(a∗k; z)|+
n′′∑

m=1

(iγ)m

m!

n∑

k1,...,km=1

|D(a∗k, a
∗
k1

, ..., a∗km
; z, ak1 , ..., akm)|,

(4.23a)
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|D̄(z∗; ak)| = |D(z∗; ak)|+
n′′∑

m=1

(iγ)m

m!

n∑

k1,...,km=1

|D(z∗, a∗k1
, ..., a∗km

; ak, ak1 , ..., akm)|,

(4.23b)

where n′′ = min(n − 1, N − 1). Referring to the expansion formulas (3.9) and

(3.10), one has

|D(a∗k, a
∗
k1

, ..., a∗km
; z, ak1 , ..., akm)| = |D|−1|D(a∗k; z)||D(a∗k1

, ..., a∗km
; ak1 , ..., akm)|

+|D|−1

m∑

l=1

(−1)l|D(a∗kl
; z)||D(a∗k, a

∗
k1

, ..., a∗kl−1
, a∗kl+1

, ..., a∗km
; ak1 , ..., akm)|, (4.24a)

|D(z∗, a∗k1
, ..., a∗km

; ak, ak1 , ..., akm)| = |D|−1|D(z∗; ak)||D(a∗k1
, ..., a∗km

; ak1 , ..., akm)|

+|D|−1

m∑

l=1

(−1)l|D(z∗; akl
)||D(a∗k1

, ..., a∗km
; ak, ak1 , ..., akl−1

, akl+1
, ..., akm)|.

(4.24b)

By introducing (4.23) into (4.22) and then using (4.24), P2 takes the form

P2 =
iγ

2|D|
n′′∑

m=1

(iγ)m

m!

m∑

l=1

(−1)l×

×
n∑

k,k1,...,km=1

[
−|D(a∗kl

; z)||D(z∗; ak)||D(a∗k, a
∗
k1

, ..., a∗kl−1
, a∗kl+1

, ..., a∗km
; ak1 , ..., akm)|

+|D(a∗k; z)||D(z∗; akl
)||D(a∗k1

, ..., a∗km
; ak, ak1 , ..., akl−1

, akl+1
, ..., akm)|

]
. (4.25)

Interchange the indices k and kl in the first term and then shift the row vector a∗kl

in front of akl+1
and the column vector ak in front of ak1 , respectively. This leads

to the following relation

|D(a∗k, a
∗
k1

, ..., a∗kl−1
, a∗kl+1

, ..., a∗km
; ak1 , ..., akm)|

→ |D(a∗kl
, a∗k1

, ..., a∗kl−1
, a∗kl+1

, ..., a∗km
; ak1 , ..., akl−1

, ak, akl+1
, ..., akm)|

= |D(a∗k1
, ..., a∗km

; ak, ak1 , ..., akl−1
, akl+1

, ..., akm)|.

Note that the value of the determinant is not altered since the total signature

caused by the above manipulation is (−1)2(l−1) = 1. Thus, the first term on the

right-hand side of (4.25) coincides with the second term and cosequently, P2 = 0.

¤
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4.3. Proof of (2.6)

Instead of proving (2.6) directly, we differentiate (2.5) by x and add the resultant

expression to (2.6) and then prove the equation P3 = 0, where

P3 = fxxf
∗ − fxf

∗
x −

iγ

2

n∑

k=1

gk,xg
∗
k. (4.26)

This reduces the total amount of calculations considerably and the proof becomes

transparent. It now follows from (4.1), (4.3), (4.4), (4.6) and (4.8)-(4.10) that

P3 = −1

2
{|D(z∗; zx)|+ |D(z∗x; z)|} |D̄| −

1

4
|D(z∗; z)||D̄(z∗; z)|

+
iγ

2

n∑

k=1

|D(a∗k; zx)||D̄(z∗; ak)|. (4.27)

Differention of (4.15) with respect to x gives

|D(z∗; zx)|+ |D(z∗x; z)| = −iγ
n∑

k=1

|D(b∗k, z
∗; ak, z)|. (4.28)

Inserting (4.15) and (4.28) into (4.27), P3 can be put into the form

P3 =
iγ

2

n∑

k=1

{
|D̄||D(b∗k, z

∗; ak, z)|+ |D(z∗; z)||D̄(a∗k;bk)|+ |D(a∗k; zx)||D̄(z∗; ak)|
}

.

(4.29)

Note from (4.11), (4.13), (4.14) and Jacobi’s identity (3.6) that

|D̄||D(b∗k, z
∗; ak, z)|+ |D(z∗; z)||D̄(a∗k;bk)|

= −|D(z∗; ak)|
{
|D(b∗k; z) +

1

2
|D(b∗k, z

∗; z, z̃)|
}

= −|D(z∗; ak)||D̄(a∗k; zx)|. (4.30)

After substituting (4.30) into (4.29), P3 becomes

P3 =
iγ

2

n∑

k=1

{
−|D̄(a∗k; zx)||D(z∗; ak)|+ |D(a∗k; zx)||D̄(z∗; ak)|

}
. (4.31)

This expression reduces to (4.22) if one replaces zx by z. Hence, the proof of the

relation P3 = 0 completely parallels that of P2 = 0 with P2 from (4.22). ¤
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5. Alternative expression of the bright N-soliton solution

Theorem 5.1. The determinants f ′ and g′j (j = 1, 2, ..., n) given below satisfy the

system of bilinear equations (2.4)-(2.6):

f ′ = |A′ + B′|, g′j =

∣∣∣∣∣
A′ + B′ yT

−a′j
∗ 0

∣∣∣∣∣ , (j = 1, 2, ..., n), (5.1)

where A′ and B′ are N ×N matrices and y and a′j are N-component row vectors

defined below:

A′ = (a′jk)1≤j,k≤N , a′jk =
1

2

yjy
∗
k

qj + q∗k
, yj = exp(qjx + iq2

j t), (5.2a)

B′ = (b′jk)1≤j,k≤N , b′jk =
(µ− iγq∗k)c

′
jk

qj + q∗k
, c′jk =

n∑
s=1

α′sjα
′
sk
∗
, (5.2b)

y = (y1, y2, ..., yN), a′j = (α′j1, α
′
j2, ..., α

′
jN). (5.2c)

Here, qj (j = 1, 2, ..., N) and α′sj (s = 1, 2, ..., n; j = 1, 2, ..., N) are complex pa-

rameters characterizing the solution.

Let us show that the determinants f and gj from (2.13) are closely related to

the determinants f ′ and g′j given by (5.1). The following lemma is useful for this

purpose:

Lemma 5.1. The determinants f and gj given by (2.13) can be rewritten in the

form

f = |I + AB|, gj =

∣∣∣∣∣
I + AB zT

−a∗j 0

∣∣∣∣∣ , (j = 1, 2, ..., n). (5.3)

We now establish the following theorem:

Theorem 5.2. Under the parameterization qj = −p∗j (j = 1, 2, ..., N) and α′sj =

−αsj/(2c
∗
j) (s = 1, 2, ..., n; j = 1, 2, ..., N), the determinants f, f ′, gj and g′j satisfy

the relations

f = c|A|f ′, (5.4)

gj = c|A|g′j, (j = 1, 2, ..., n), (5.5)

where

c = (−1)N

N∏

l=1

(4c∗l cl), cl =

∏N
m=1(pl + p∗m)∏N
m=1
(m6=l)

(pl − pm)
, (l = 1, 2, ..., N). (5.6)
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The parameters pj (j = 1, 2, ..., N) are assumed to satisfy the conditions pl+p∗m 6= 0

for all l and m and pl 6= pm for l 6= m.

Thus, we have obtained the two different expressions for the bright N -soliton

solution of the system of nonlinear PDEs (2.2). Explicitly, they read uj = gj/f =

g′j/f
′ (j = 1, 2, ..., n).

The following proposition provides an alternative proof of theorem 5.1:

Proposition 5.1. If f and gj given respectively by (5.4) and (5.5) satisfy the

system of bilinear equations (2.4)-(2.6), then f ′ and g′j satisfy the same system of

equations, and vice versa.

6. A continuum model

The n-component system (1.1) yields a continuum model when one takes a limit

n →∞. It represents a (2+1)-dimensional nonlocal modified NLS equation of the

form

i qt + qxx + µ

(∫ ∞

−∞
|q|2dy

)
q + iγ

(∫ ∞

−∞
|q|2dy q

)

x

= 0, q = q(x, y, t). (6.1)

Recall that when γ = 0, this equation reduces to a (2+1)-dimensional nonlocal

NLS equation proposed by Zakharov [8]. The exact method of solution for equation

(6.1) can be developed following the same procedure as that for the system of

nonlinear PDEs (1.1). Hence, we summarize the main results.

First, application of the gauge transformation

q = u exp

[
− iγ

2

∫ x

−∞

∫ ∞

−∞
|u(x, y, t)|2dxdy

]
, u = u(x, y, t), (6.2)

to the system (6.1) subjected to the the boundary conditions q → 0, u → 0 |x| →
∞ transforms (6.1) to a nonlocal nonlinear PDE for u

i ut + uxx + µ

(∫ ∞

−∞
|u|2dy

)
u + iγ

(∫ ∞

−∞
u∗uxdy

)
u = 0. (6.3)

The proposition below is an analog of proposition 2.1:

Proposition 6.1 By means of the dependent variable transformation

u =
g

f
, (6.4)

equation (6.3) can be decoupled into the following system of bilinear equations for

f = f(x, t) and g = g(x, y, t)

(iDt + D2
x)g · f = 0, (6.5)

12



Dxf · f ∗ =
iγ

2

∫ ∞

−∞
|g|2dy, (6.6)

D2
xf · f ∗ = µ

∫ ∞

−∞
|g|2dy +

iγ

2

∫ ∞

−∞
Dxg · g∗dy. (6.7)

Proof. The proof proceeds exactly as that of proposition 2.1. Formally, one may

simply replace the sum
∑n

k=1 by the integral
∫∞
−∞ dy. ¤

It follows from (6.2), (6.4) and (6.6) that

q =
gf ∗

f 2
, (6.8)

which is just a continuum limit of (2.12).

The following theorem can be derived from a continuum limit of the bright

N -soliton solution given by theorem 2.1 and theorem 5.1:

Theorem 6.1. The system of bilinear equations (6.5)-(6.7) admits the following

two different expressions f, g and f ′, g′ for the bright N-soliton solution :

f =

∣∣∣∣∣
A I

−I B

∣∣∣∣∣ , g =

∣∣∣∣∣∣∣

A I zT

−I B 0T

0 −a∗ 0

∣∣∣∣∣∣∣
, (6.9)

f ′ = |A′ + B′|, g′ =

∣∣∣∣∣
A′ + B′ yT

−a′∗ 0

∣∣∣∣∣ . (6.10)

Here, A and B are N × N matrices given respectively by (2.14a) and (2.14b)

with cjk being replaced by
∫∞
−∞ αj(y)α∗k(y)dy, A′ and B′ are N ×N matrices given

respectively by (5.2a) and (5.2b) with c′jk being replaced by
∫∞
−∞ α′j(y)α′k

∗(y)dy and

a = a(y) = (α1, α2, ..., αN) and a′ = a′(y) = (α′1, α
′
2, ..., α

′
N) are N-component row

vectors where αj and α′j (j = 1, 2, ..., N) are continuous functions of y.

Proof. The proof can be done in the same way as that of theorem 2.1 and theorem

5.1. ¤

Theorem 6.2. Under the parameterization qj = −p∗j and α′j = −αj/(2c
∗
j) (j =

1, 2, ..., N), the determinants f, f ′, g and g′ satisfy the relations

f = c|A|f ′, (6.11)

g = c|A|g′, (6.12)
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where c is defined by (5.6) and the parameters pj (j = 1, 2, ..., N) are specified such

that pl + p∗m 6= 0 for all l and m and pl 6= pm for l 6= m.

Proof. The proof parallels theorem 5.2. ¤

Proposition 6.2. If f and g given by (6.9) satisfy the system of bilinear equations

(6.5)-(6.7), then f ′ and g′ given by (6.11) and (6.12) satisfy the same system of

equations, and vice versa.

Proof. The proof is completely parallel to that of proposition 5.1. ¤

7. Conclusion

1. We have obtained two different expressions of the bright N -soliton solution of

a multi-component modified NLS equation in terms of determinants.

2. We have proposed a continuum model arising from the multi-component system

as the number of dependent variables tends to infinity and presented its bright N -

soliton solution.

3. Our solutions include existing bright N -soliton solutions of the multi-component

NLS equation and its continuum model.
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