福岡県西方沖を震源とする地震津波の数値計算

朝位孝二(社会建設工学科)・坪郷浩一((株)エイトコンサルタント)

Numerical Simulation on Tsunami Induced by West off Fukuoka Prefecture Earthquake

Koji ASAI (Department of Civil and Environmental Engineering) Koichi TSUBOGO (Eight Consultants co., ltd)

Numerical simulations on Tsunami induced by west off Fukuoka earthquake are conducted. Characteristics of the Tsunami are investigated by varying a parameter of rake among fault parameters to 4, 30, 60 90degree. It is found that the maximum Tsunami wave height appear at Maebaru city and Genkai Island. The maximum Tsunami wave height is 7 cm when the rake is 4 degree. On the other hand, the maximum height is 72 cm when the rake is 90 degree.

Key Words : tsunami, numerical simulation, west off Fukuoka Prefecture Earthquake

1. はじめに

近年,東海地震や東南海・南海地震などの海溝 型地震の発生が懸念されている¹⁾. 揺れによる被 害に加えて地震津波による被害も甚大となるこ とが予測されている. そのため津波に備えて,防 波堤や避難施設などのハード的対策,あるいは津 波ハザードマップなどのソフト的対策の整備が 進められている.

一方,海溝型地震の他に内陸部の活断層に起因 する地震がある.大規模な地震がないと思われて いた福岡市においても平成17年3月20日に震度 6の地震が発生した(福岡県西方沖地震).活断層 による地震はその発生時期の予測が難しい.また 未知の活断層も多く存在しており,特に海底の活 断層は探索が困難である.したがって,地震はい つどこで発生してもおかしくないのが実情であ ろう.

さて,福岡県西方沖地震では3月20日午前10 時53分に津波注意報が発表されたが,同日正午 に解除され,津波の報告はなかった²⁾.津波が発 生しなかった理由は,断層はほぼ水平方向にずれ たためと思われる.しかしながら,縦方向に断層 がずれていたとすれば津波が発生し,被害が生じ ていた可能性は否定できない.本研究では,断層 パラメーターの内, すべり角をパラメーターとして, 福岡県西方沖を震源とする津波の特性を検討 するものである.

2. 数値モデル

2.1 基礎方程式

地震津波の基礎方程式は以下に示す浅水方程 式である.

$$\frac{\partial h}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0 \tag{1}$$

$$\frac{\partial M}{\partial t} + \frac{\partial u M}{\partial x} + \frac{\partial v M}{\partial y} = -gh\frac{\partial (h+z_b)}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} - \frac{\tau_{bx}}{\rho}$$
(2)

$$\frac{N}{\partial t} + \frac{\partial uN}{\partial x} + \frac{\partial vN}{\partial y} = -gh\frac{\partial(h+z_b)}{\partial y} + \frac{\partial\tau_{xy}}{\partial x} + \frac{\partial\tau_{yy}}{\partial y} - \frac{\tau_{by}}{\rho}$$
(3)

$$\tau_{xx} = v_e \left(\frac{\partial M}{\partial x} + \frac{\partial M}{\partial x} \right), \quad \tau_{yy} = v_e \left(\frac{\partial N}{\partial y} + \frac{\partial N}{\partial y} \right)$$

山口大学工学部研究報告

Fig. 1 Locations of the seismic and monitoring points

$$\tau_{xy} = \tau_{yx} = v_e \left(\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} \right)$$

$$au_{bx} = rac{\gamma^2 M \sqrt{M^2 + N^2}}{h^{7/3}}, \quad au_{by} = rac{\gamma^2 N \sqrt{M^2 + N^2}}{h^{7/3}}$$

ここでhは水深, uはx方向流速, vはy方向流 速, M(=uh)はx方向の線流量, N(=vh)はy方向の 線流量, gは重力加速度, z_b は基準面から海底面 までの高さ, τ_{xx} , τ_{yx} , τ_{xy} , τ_{yy} は水平方向のせん断 応力, τ_{bx} はx方向底面せん断応, τ_{by} はy方向底面 せん断応, ρ は流体密度, v_e は水平方向渦動粘性 係数, γ^2 は海底摩擦係数である.

基礎方程式は有限体積法を用いて離散化された.運動方程式の移流項は3次精度TVD-MUSCL scheme を採用し,時間積分には2次精度 Adams-Bashforth method を用いた.連続の式と運動方程式の水面勾配項をカップリングする半陰的な手法で基礎方程式を解いた.

2.2 断層モデル

津波の数値計算の初期条件としては、地震断層 モデルを用いて計算される海底地殻変動の鉛直 成分を海面上に与える方法を用いる.断層運動の モデルは、矩形の断層面が平均的すべり量(slip) だけ互いにずれるものと考える.断層の幾何学的 特性は、すべり角(rake)、断層の走向(strike)、

Table 1Fault parameters of west Fukuoka prefecture
earthquake

location of the seismic	33.68° N
	130.3° E
strike	303°
dip	81°
rake	4°
depth	0km
length	30km
width	20km
slip	0.56m

傾き (dip) によって表せる. この断層パラメータ ーを用いて, 弾性論を基礎とした Mansinha and Smylie³⁾の方法により計算を行う.

2.3 計算条件

計算領域は北緯 33°32′~北緯 34°04′, 東 経 130°~東経 130°32′の範囲で, 60km×60km の面積を持つ. Fig.1 に断層走向線と後述のモニタ リング位置を示す. 図中の青線が断層走向線であ る. モニタリング位置(a)は前原市, (b)は玄海島, (c)は百道, (d)は天神である.本研究で用いた福岡 県西方沖地震の断層パラメーター⁴⁾を Table 1 に示 す. Table 1 の断層位置 (location of the seismic) は 断層の南側端点の位置を示している. また, Fig.2

Vol.57 No.1 (2006)

Fig. 2 Distribution of averaged water depth for the computational domain

は計算領域内の平均水深の分布を示したもので ある.博多湾内の航路近傍には防波堤が存在する が、本研究においては防波堤の存在を考慮した.

計算領域内における津波現象を現象開始から 8000 秒後までをシミュレートした.水平方向の格 子間隔は $\Delta x=\Delta y=100m$,時間刻みは $\Delta t=0.1sec$ で一 定値である.海底摩擦係数は $y^2=0.0026$ とした. 水平方向の渦動粘性係数は $v_e=40m^2/s$ とした.

本研究ではすべり角以外の断層パラメーター は固定し、すべり角を4度、30度、60度、90度 に変化させた.

upper block under block

3. 計算結果と考察

3.1 初期波形

初期波形の平面分布を Fig.4 に示す. 断層モデ ルでは上下のブロックで断層はモデル化される. 今回の断層は逆断層であった. つまり Fig.3 に示 すように上部のブロックが上方向にずれるもの である.本研究で用いる断層パラメーターでは初 期水位は断層走向線に関して右側の領域の水位 が高くなり,左側の水位が低くなる.すべてのす べり角でこのような傾向が見られる.また,すべ り角が大きくなるにつれ,初期波形の規模も大き くなることが分かる.

3.2 モニタリング点における津波の時系列

Fig.5 はモニタリング地点におけるすべり角 4 度と 90 度の津波の時系列である.

玄海島では第一波が最大津波であることが分かる.この時間は約6.3分程度である.前原市では1450秒(24分)付近で一旦ピークを取り,再び1600秒(26分)でピークを取る.すべり角4度では二番目のピーク値が大きく,すべり角90度では一番目のピーク値が大きい.このためすべり角4度と90度では最大津波の到達時間が若干異なる.すべり角4度の最大津波の到達時間は約26分であり,それ以外のすべり角では約24分であった.

博多湾内の百道と天神の時系列から周期的な 成分が存在することが分かる.これは湾内で静振 的な現象が発生したためと思われる.百道と天神 を比較すれば,百道の周期は短い.

すべり角4度の場合,最大津波波高の到達時刻 は百道で約19分,天神で約28分である.これは 博多湾に伝搬した津波の第一波である.一方,す べり角4度以外では百道で約52分,天神で約72 分であった.静振的な現象による波群が生じるが, その二波目が最大波高を与えている.

Fig.6 および Fig.7 はそれぞれ,モニタリング点におけるすべり角と最大津波波高およびその到達時刻の関係を示したグラフである.

すべり角が大きくなるにつれ,最大波高の単調 に増大していく.すべり角が4度の場合,玄海島 では約5cm,前原市では約7cmの最大津波波高で ある. すべり角が大きくなるにつれ,最大波高の 単調に増大していく. すべり角 90 度では,前原 市では約 72cm,玄海島では約 62cmの最大津波波 高となった.

一方,博多湾内の百道と天神では、すべり角が
4度の場合ともに約2cmであった.また、すべり
角90度ではともに約10cmとなった.

最大津波波高の到達時間についてはすでに述 べているが、もう一度説明する. 玄海島では最大 津波の到達時刻すべり角に依存せず約 6.3 分程度 である.

前原市では津波の一波目のピーク値近傍が分 裂しているため、すべり角4度とそれ以外では若 干の相違が見られる.しかしながら、前原市にお いてもすべり角の依存性は小さいと考えて良い.

内湾に位置する百道と天神では、すべり角4度

Vol.57 No.1 (2006)

Fig.5 Time series of Tsunami wave height

以外では津波の第一波の侵入後の波動の静振的 挙動により波高が大きくなる. すべり角4度以外 ではすべり角の影響はない. Fig.8 に津波の最大波高分布を示す. すべり角が 大きくなるにつれて,最大波高の規模が全体的に 大きくなることが分かる.特に前原市や玄海島付 近の波高が高いことが分かる.一方,津波の進行 方向に博多湾の湾口が向いていないために,博多

3.3 最大津波波高分布

12 (12)

Fig. 6 Relationship between the maximum wave height and the rake

Fig. 7 Relationship between the maximum wave arrival time and the rake

湾内は比較的静穏になっている.しかしながら, 湾奥の多々良川は津波が遡上し,波高が高くなっ ている.また,博多湾内では能古島から東側の水 域よりも西側の水域で波高は大きい.

4. 結論

本研究は平成17年3月20日に発生した福岡西 方沖地震の断層パラメーターのうち、すべり角を パラメーターとして地震津波のシミュレーショ ンを試みたものである.得られた結果を以下に要 約する.

- (1) すべり角 4 度では,津波の最大波高は前原市 近傍で 7cm 程度であり,数値計算上も津波の 規模は小さいことが分かった.
- (2) すべり角が大きくなるにつれて、津波の規模 も大きくなる. すべり角 90 度の場合,津波最 大波高は前原市で約 72cm, 玄海島で約 62cm であった.
- (3) 博多湾内では天神, 百道で 10cm 程度の最大 波高となる.
- (4) 湾奥の多々良川では津波が遡上し, 波高が大 きくなる.
- (5) 博多湾内では、能古島に対して東側の水域よ

りも西側の水域で波高は大きくなる.

(6) 博多湾外の玄海島や前原市などでは、津波の 第一波が最大波高をもたらす.一方、博多湾 内ではすべり角 4 度を除き、静振的現象によ る波群が生じ、その二波目が最大波高を与え ている.

謝辞:

Mansinha and Smylie のモデルについて鹿児島 大学・浅野敏之先生,宮崎大学・村上啓介先生か ら御教示を頂いた.また本研究の具体的遂行にあ たり当時卒論生の田中一平君(東急建設)の献身 的な協力を得た.ここに記して謝意を表します.

参考文献

- 1) http://www.bousai.go.jp/jishin/chubou/
- http://www.seisvol.kishou.go.jp/eq/gaikyo/kaisets u200503201230.pdf
- Mansinha L. and Smylie D.E. (1971), "The Displacement Fields of Inclined Faults", Bulletin of Seismic Society of America, Vol.61, No.5, pp.1433-1440
- http://www.gsi.go.jp/WNEW/PRESS-RELEASE/ 2005/0320-4.jpg

(平成 18 年 8 月 31 日受理)

Vol.57 No.1 (2006)

(b) rake 30°

Fig.8 Maximum wave height wave distribution