ON THE cd-INDEX AND ~+-VECTOR OF
S*-SHELLABLE CW-SPHERES

SATOSHI MURAI AND ERAN NEVO

ABSTRACT. We show that the vy-vector of the order complex of any polytope is the
f-vector of a balanced simplicial complex. This is done by proving this statement
for a subclass of Stanley’s S-shellable CW-spheres which includes all polytopes.
The proof shows that certain parts of the cd-index, when specializing ¢ = 1
and considering the resulted polynomial in d, are the f-polynomials of simplicial
complexes that can be colored with “few” colors. We conjecture that the cd-index
of a regular CW-sphere is itself the flag f-vector of a colored simplicial complex
in a certain sense.

1. INTRODUCTION

Let P be an (n—1)-dimensional regular CW-sphere (that is, a regular CW-complex
which is homeomorphic to an (n — 1)-dimensional sphere). In face enumeration, one
of the most important combinatorial invariants of P is the cd-index. The cd-index
®p(c,d) of P is a non-commutative polynomial in the variables ¢ and d that encodes
the flag f-vector of P. By the result of Stanley [St1] and Karu [Ka], it is known that
the cd-index ®p(c,d) has non-negative integer coefficients. On the other hand, a
characterization of the possible cd-indices for regular CW-spheres, or other related
families, e.g. Gorenstien™ posets, is still beyond reach. In this paper we take a step
in this direction and establish some non-trivial upper bounds, as we detail now.

If we substitute 1 for ¢ in ®p(c,d), we obtain a polynomial of the form

®p(1,d) =g+ G1d + - + 0z dL2],

where %] is the integer part of ¥, such that each §; is a non-negative integer. In
other words, ¢; is the sum of coefficients of monomials in ®p(c,d) for which d
appears ¢ times.

Let A be a (finite abstract) simplicial complex on the vertex set V. We say that
A is k-colored if there is a map ¢: V — [k] = {1,2,...,k}, called a k-coloring map
of A, such that if {z,y} is an edge of A then c(x) # c(y). Let f;(A) denote the
number of elements F' € A having cardinality ¢ + 1, where f_1(A) = 1. The main

result of this paper is the following.

n

Theorem 1.1. Let P be an (n—1)-dimensional S*-shellable reqular CW-sphere, and
let p(l,d) =d0g+d+---+ 5L%JdL§J. Then there exists an |5 ]-colored simplicial
complex A such that

n
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The precise definition of S*-shellability is given in Section 2. The most important
class of S*-shellable CW-spheres is the class of the boundary complexes of poly-
topes. By the Kruskal-Katona Theorem (see e.g. [St2, II, Theorem 2.1]), the above
theorem gives a certain upper bound on ¢; in terms of §;,_;. Better upper bounds are
given by Frankl-Fiiredi-Kalai theorem which characterizes the f-vectors of k-colored
complexes [FFK].

The numbers dg, 01, 0o, . .. relate to the y-vector (see Section 4 for the definition)
of the barycentric subdivision (order complex) of P, namely the simplicial complex
whose elements are the chains of nonempty cells in P ordered by inclusion. Indeed,
as an application of Theorem 1.1 we prove the following.

Theorem 1.2. Let P be an (n — 1)-dimensional S*-shellable reqular CW-sphere
and let sd(P) be the barycentric subdivision of P. Then there exists an |5 |-colored
simplicial complex I" such that

n

vi(sd(P)) = fioi (D) fori=0,1,..., ng

Recall that an (n — 1)-dimensional simplicial complex is said to be balanced if it
is n-colored. If P is the boundary complex of an arbitrary convex n-dimensional
polytope, then 5L% | > 0 and we conclude the following.

Corollary 1.3. Let P be the boundary complex of an n-dimensional polytope. Then
the vy-vector of sd(P) is the f-vector of a balanced simplicial complez.

The above corollary supports the conjecture of Nevo and Petersen [NP, Conjecture
6.3] which states that the ~-vector of a flag homology sphere is the f-vector of
a balanced simplicial complex. This conjecture was verified for the barycentric
subdivision of simplicial homology spheres (in this case all the cells are simplices)
in [NPT].

It would be natural to ask if the above theorems hold for all regular CW-spheres
(or more generally, Gorenstein™ posets). We conjecture a stronger statement on the
cd-index, see Conjecture 4.3.

This paper is organized as follows: in Section 2 we recall some known results
on the cd-index and define S*-shellability, in Section 3 we prove our main theo-
rem, Theorem 1.1, in Section 4 we derive consequences for v-vectors and present a
conjecture on the cd-index, Conjecture 4.3.

2. ¢d-INDEX OF S*-SHELLABLE CW-SPHERES

In this section we recall some known results on the cd-index.

Let P be a graded poset of rank n+1 with the minimal element 0 and the maximal
element 1. Let p denote the rank function of P. For S C [n] = {1,2,...,n}, a chain
0=00< 0, <0y<- <01 = 1of Pis called an S-flag if {p(c1), ..., p(or)} = S.
Let fs(P) be the number of S-flags of P. Define hg(P) by

hs(P) = Z(—l)‘5|_|T|fT(P)>

where | X| denotes the cardinality of a finite set X. The vectors (fs(P) : S C [n])
and (hg(P) : S C [n]) are called the flag f-vector and flag h-vector of P respectively.
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Now we recall the definition of the cd-index. For S C [n], we define a non-
commutative monomial ug = ujus - - - u, in variables a and b by u; = a if i ¢ S and
u; =bifieS. Let

Up(a,b) = > hg(P)us.

SC[n]
For a graded poset P, let sd(P) be the order complex of P — {0,1}. Thus
sd(P) = {{o1,09,..., 00} CP={0,1} 1 01 < 09 < --- < 0}, }.

We say that P is Gorenstein™ if the simplicial complex sd(P) is a homology sphere.
It is known that if P is Gorenstein® then ¥p(a,b) can be written as a polynomial
®p(c,d) in c = a+b and d = ab+ ba [BK], and this non-commutative polynomial
®p(c,d) is called the cd-index of P. Moreover, by the celebrated results due to
Stanley [St1] (for convex polytopes) and Karu [Ka] (for Gorenstein™ posets), the
coefficients of ®p(c,d) are non-negative integers.

Next, we define S*-shellability of regular CW-spheres by slightly modifying the
definition of S-shellability introduced by Stanley [St1, Definition 2.1].

Let P be a regular CW-sphere (a regular CW-complex which is homeomorphic to
a sphere) and F(P) its face poset. Then the order complex of F(P) is a triangulation
of a sphere, so the poset F(P)U {0, 1} is Gorenstein*. We define the cd-index of P
by @p(c,d) = @ p)q9,4y(c,d). For any cell o of P, we write & for the closure of o.
For an (n — 1)-dimensional regular CW-sphere P, let ¥ P be the suspension of P,
namely, 2P is the n-dimensional regular CW-sphere obtained from P by attaching
two n-dimensional cells 71 and 7, such that 07 = 07, = P. Also, for an (n — 1)-
dimensional regular CW-ball P (a regular CW-complex which is homeomorphic to
an (n — 1)-dimensional ball), let P’ be the (n — 1)-dimensional regular CW-sphere
which is obtained from P by adding an (n — 1)-dimensional cell 7 so that 07 = OP.

Definition 2.1. Let P be an (n — 1)-dimensional regular CW-sphere. We say that
P is S*-shellable if either P = {()} or there is an order oy, 09, ..., 0, of the facets of
P such that the following conditions hold.

(a) day is S*-shellable.
(b) For 1 <i<r—1, let

OV =01UdU---Ug;
and for 2 <i<r —1 let
I; = [05;\ (85, N Qi—1)].

Then both €2; and I'; are regular CW-balls of dimension (n — 1) and (n — 2)
respectively, and 17 is S*-shellable with the first facet of the shelling being
the facet which is not in I';.

Remark 2.2. The difference between the above definition and Stanley’s S-shellability
is that S-shellability only assume that P and I'; are Eulerian and assume no con-
ditions on ;. However, S*-shellable regular CW-spheres are S-shellable, and the
boundary complex of convex polytopes are S*-shellable by the line shelling [BM].
We leave the verification of this fact to the readers.

The next recursive formula is due to Stanley [St1].
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Lemma 2.3 (Stanley). With the same notation as in Definition 2.1, for i =
1,2,...,7— 2, one has

Doy, (¢, d) = Ooyfe,d) + {@r,_ (c,d) = Pspor,,(c,d) f ¢ + Por, ., (¢, d)d.

Since €2, _; = P the above formula gives a way to compute the cd-index of P
recursively.

Next, we recall a result of Ehrenborg and Karu proving that the cd-index increases
by taking subdivisions. Let P and @ be regular CW-complexes, and let ¢ : F(P) —
F(Q) be a poset map. For a subcomplex Q' = o1 U---Uoy C Q, where each o; is a
cell of Q, we write ¢~ 1(Q') = ¢ (o) U--- U (0,).

Following [EK, Definition 2.6}, for (n —1)-dimensional regular CW-spheres P and
P, we say that P is a subdivision of P if there is an order preserving surjective poset
map ¢ : }"(f’) — F(P), satisfying that for any cell o of P, $~!(5) is a homology
ball having the same dimension as o and ¢~1(95) = (¢~ (7)).

The following result was proved in [EK, Theorem 1.5].

Lemma 2.4 (Ehrenborg-Karu). Let P and P be (n — 1)-dimensional regular CW-

spheres. pr is a subdivision of P then one has a coefficientwise inequality @ 5(c, d) >
(PP(Cv d)

Back to S*-shellable regular CW-spheres, with the same notation as in Definition
2.1, 2 is a subdivision of 3(0;) and 0€; is a subdivision of ¥(9l';11). Indeed, for
the first statement, if 7 and 7, are the facets of ¥(0€;) then define ¢ : F(Q2) —
F(2(08%)) by

o, if o€ o€,
¢(o0) =4 7, if oisan interior face of €,
T2, if o € Qz

Similarly, for the second statement, if 71 and 7 are the facets of 3(0I';11) then define
g, if o € 3Fi+1,
¢(O’) == 71, if o € 6i+1\8Fi+1,
Ty, otherwise.

Since $yp(c,d) = Pp(c,d)c for any regular CW-sphere P (see [Stl, Lemma 1.1]),
Lemma 2.4 shows

Lemma 2.5. With the same notation as in Definition 2.1, fori =2,3,...,r — 2,
one has ®or(c,d) > ®or,,, (c,d)c?.
3. PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 1.1.
For a homogeneous cd-polynomial ® (i.e., a homogeneous polynomial of Z({c, d)
with degc = 1 and degd = 2) of degree n, we define @y, ®o, ..., P, by

P = By + Podc™ 2+ Pydc™ 2+ -+ + &,,_;dc + D,d

where &y = ac” for some a € Z and each @y is a cd-polynomial of degree k — 2 for
k > 2. Also, we write @< = ®g + Podc™ 2 + -+ - + &, dc" .



ON THE cd-INDEX AND ~+-VECTOR OF S*-SHELLABLE CW-SPHERES 5

Definition 3.1.

e A vector (8g,01,...,05) € Z5T! is said to be k-FFK if there is a k-colored
simplicial complex A such that ¢; = f; 1(A) for i = 0,1,...,s. ({0} is a
0O-colored simplicial complex.) A homogeneous cd-polynomial & = ®(c,d)
is said to be k-FFK if, when we write ®(1,d) = dp + 91d + - - - + 9,d®, the
vector (dg, 1, ...,0s) is k-FFK.

e A homogeneous cd-polynomial ® of degree n is said to be primitive if the
coefficient of ¢™ in ® is 1.

e Let & be a homogeneous cd-polynomial. A primitive homogeneous cd-
polynomial W is said to be k-good for ® if ¥ is k-FFK and ®(1,d) > ¥(1,d).
Also, we say that a homogeneous cd-polynomial ¥ is k-good for & if it is
the sum of primitive homogeneous cd-polynomials that are k-good for ®.

Next, we recall Frankl-Fiiredi-Kalai theorem [FFK], which characterizes all possi-
ble f-vectors of colored complexes. Let Ngk) ={i+jk:j€lLso}fori=12,....k
and

CW ={FcN:|[FNN¥®|<1fori=1,2 ..k}

where N is the set of positive integers. Let >, be the reverse lexicographic order
induced by 1 >y 2 >y ---. Thus, for finite subsets F' C N and G C N with
|F| = |G|, one has F >, G if the largest integer in the symmetric difference
(F\G)U(G\ F) is contained in G. A k-colored compressed complez is a simplicial
complex A such that A C C* and that, for every F € A and G € C® with
|G| = |F| and G >, F, one has G € A. Since >, is a total order on the set
of finite subsets of N having the same cardinality, k-colored compressed complex is
uniquely determined by its f-vector.

Theorem 3.2 (Frankl-Fiiredi-Kalai). A vector (8o,01,...,0s) € Z*T' is k-FFK if
and only if there is a k-colored compressed complex A such that f;_1(A) = §; for
i=0,1,...,s.

We will use the following observation, which follows from [NPT, Lemma 3.1]:

Lemma 3.3. If ® is a k-FFK homogeneous cd-polynomial of degree n, and if
U and " are homogeneous cd-polynomials of degree n’ and n” respectively, where
n',n"” <n — 2, which are k-good for ® then

®+Vde" " 2% and &+ Wdc" "2+ W/de " 2
are (k+1)-FFK.

Proof. For a simplicial complex T, we write f(I',d) = 1+ fo(I')d + fi(I')d?* + - --
There are k-colored complexes A, A ... A0 ... Al guch that f(A,d) =
CI)(L d)v 21<i<m f(A(i)a d) = \I//(l’ d), Zm+l<i<s f(A(i)7 d) = \IIII(L d) and CI)(l, d) =
f(AD d) for all 1 < i < s. By Frankl-Fiiredi-Kalai theorem, we may assume that
all these complexes are k-colored compressed. Then, since ®(1,d) > ¥'(1,d) and
®(1,d) > U”(1,d), each A® is a subcomplex of A. Fori=1,2,...,s, let

7

e — AU{U{Fu{Uj} - F e A(j)}}’

j=
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where vy, ..., v, are new vertices. Since each AU is a subcomplex of A, T'® ig
a simplicial complex. Also, f(I'™ d) = (& + ¥'de" ™ ~?)(1,d) and f(I'®,d) =
(® 4+ U'de” ™2 4 ¥"dc" " ~?)(1,d). We claim that each '™ is (k + 1)-colored.
Let V' be the vertex set of A and ¢: V — [k] a k-coloring map of A. Then the map
¢:VU{vy,...,u;} — [k+ 1] defined by é(z) = ¢(z) if z € V and é(z) = k4 1 if
x € Visa (k+ 1)-coloring map of '™, O

Let P be an (n— 1)-dimensional S*-shellable regular CW-sphere with the shelling
o1,...,0.. Keeping the notation in Definition 2.1, to simplify notations, we use the
following symbols.

o0 = @W(c,d) = Do (c,d)
b — (I)P(Ca d) — (I)(rfl)
g — P, (c,d) — Pyory,y)(c,d)

r—2
v 3
=1
= &— oW,

Thus Stanley’s recursive formula, Lemma 2.3, says

o) = 0 + ¥We + dyp.  (c,d)d
and
r—2
Il = Ve + Z (I)aFHl <C’ d>d
=1

The last part of the following proposition is a restatement of Theorem 1.1.

Proposition 3.4. With notation as above, the following holds.
(1) For2 <k <mn, \If,(j) is | & — 1]-good for @2272 + \1126720
(2) For2 <k <n, Iy is |% — 1]-good for (I)%LQ + epo.
(3) For2 <k <n, O is | £ —1]-good for ®_».
(4) ??:KO < k <n, O is |X|-FFK. In particular, the cd-index of P is |%]-

Proof. The proof is by induction on dimension, where all statements clearly hold for
n = 0,1. Suppose that all statements are true up to dimension n — 2. To simplify
notations, for a regular CW-sphere @), we write & = ®g(c,d).

Proof of (1). By applying the induction hypothesis to I'j,; (use statement(2)),
each \If,(f) is [£ —1J-good for (q)g(al"i_,'_l))(;;g_Q + \1126_2. Thus, \IJ,(;) is [£ —1]-good for

<®E(3Fi+1))23€_gc + \If%_?c. By Lemma 25,
Psor;,1)C = q)(‘)l“i+lc2 < (I)Q; — o)

k

Since (Yc); = T, for any homogeneous cd-polynomial T, \I/,(j) is |5 —

®(§272 + \112672&

1]-good for
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Proof of (2). By the definition of II,
r—2

I1; :Z\I/,(f) for k<n
i=1

and
r—2
II,, = E Por,, ;-
i=1

By (1), each \Ifg) is Lg — 1]-good for @2272 + \112672& Then since

‘I’g_z + \Ijgc—2c < Pepn = q)(gllz—z + H<pa,

IT; is [ £ —1]-good for CID(SIZ_Q +<g—p for k <n. Also, each ®pr,,, is |5 —1]-FFK by
the induction hypothesis (use (4)), and ®yr,,,c* < @@ by Lemma 2.5. The latter

condition clearly says
Dor,,,c* < <I>Z)n,2 < Peyy = B8, + eys

Hence 11, is [§ — 1]-good for @2_2 + <.

Proof of (3). Observe that since @) = &y;,c,
O, = 0 4 Wy for k <n

and

We already proved that ®, = II, is [§ — 1]-good for ®<,_» in the proof of (2).

Suppose k < n. Since ®) = ®,, ¢, by the induction hypothesis (use (3)), q)](:) is
Lg — 1]-good for CD(SI;_Q. Since Cbgll_Q < $-;_5 and since we already proved that
W, = I} is Lg —1]-good for ®<;_5 in the proof of (2), Py is Lg —1]-good for ®<4_s.

Proof of (4). This statement easily follows from (3). For k£ = 0, 1, the statement
is obvious (as @<y = P<; = c”). Suppose that P<y,,41 is m-FFK, where m € Z,.
Then both @y, 19 and Py,,43 are m-good for <o,,11 by (3), and therefore P<oyy40
and ® <y, 3 are (m + 1)-FFK by Lemma 3.3. O

4. 7-VECTORS OF POLYTOPES AND A CONJECTURE ON THE cd-INDEX

v-vectors and the cd-index. Let A be an (n—1)-dimensional simplicial complex.
Then the h-vector h(A) = (ho, h1, ..., h,) of A is defined by the relation

D ha" =" fia(A) (@ — 1)
i=0 i=0
If A is a simplicial sphere (that is, a triangulation of a sphere), or more generally a

homology sphere, then h; = h,,_; for all ¢ by the Dehn-Sommerville equations, and
in this case the ~-vector (7,71, - . . 77L%J) of A is defined by the relation

n 13]
Z hix' = 22: Yz (14 x)" 2.
i=0 =0
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It was conjectured by Gal [Ga] that if A is a flag homology sphere then its v-vector
is non-negative. Recently Nevo and Peterson [NP] further conjectured that the
~v-vector of a flag homology sphere is the f-vector of a balanced simplicial com-
plex. These conjectures are open in general, the latter conjecture was verified for
barycentric subdivisions of simplicial homology spheres [NPT], and Gal’s conjecture
is known to be true for barycentric subdivisions of regular CW-spheres by the fol-
lowing fact, combined with Karu’s result on the nonnegativity of the cd-index for
Gorenstien* posets:

Let P be an (n — 1)-dimensional regular CW-sphere. The barycentric subdivision
sd(P) of P is the order complex of F(P). Let (ho, hi,...,hy) and (0,71, -+, 7 2))
be the h-vector and ~y-vector of sd(P), respectively. Then it is easy to see that
hi = Y gciml, si=i s(P). Thus if ®p(1,d) = + 61d + dod® + - - + § 2 d'2), then
for all 1 > 0,

Since ¢; is non-negative, we conclude that ; is also non-negative.
The next simple statement, combined with Theorem 1.1, proves Theorem 1.2.

Lemma 4.1. With the same notation as above, if (3o, 61,...,02) is k-FFK then
(Yo, 71, -+ Y(2)) 48 also k-FFK.

Proof. Let A be a k-colored simplicial complex on the vertex set V with f;_1(A) = ;
for all i > 0 and let ¢ : V' — [k] be a k-coloring map of A. Consider a collection of
subsets of W = {z, :v € V}U{y, : v eV}

A:{ngyF\GtFEA, GCF},

where 2 = {x, :v € HY and yy = {y, : v € H} for any H C V. Then A is a
simplicial complex with f; 1(A) = 2/f;_1(A) = v; for all i. The map ¢: W — [k],
¢(xy) = ¢(yy) = c¢(v), shows that A is k-colored. O

Proof of Corollary 1.3. By Theorem 1.2, in order to prove Corollary 1.3 it is enough
to show that 5L%J(P) > 0 where P is the boundary complex of an n-polytope.
Billera and Ehrenborg showed that the cd-index of n-polytopes is minimized (co-
efficientwise) by the n-simplex, denoted ¢™ [BE]. Thus, it is enough to verify that
djzy(0™) > 0. It is known that all the cd-coefficients of o™ are positive (e.g., by
using the Ehrenborg-Readdy formula for the cd-index of a pyramid over a polytope
[ER, Theorem 5.2]). O

A conjecture on the cd-index. It would be natural to ask if Theorems 1.1 and 1.2
hold for all regular CW-spheres (or all Gorenstein* posets). We phrase a conjecture
on the cd-index, that, if true, immediately implies Theorem 1.1, as well as the entire
Proposition 3.4(4).

For an arbitrary cd-monomial w = c¢®dc®'d - - - dc®* of degree n (where 0 < s; for
all i and so + -+ - + s + 2k = n), let F,, be the following subset of [n — 1]:

Fo={so+1,s0+s1+3,80+s1+82+5,...,8+ - +sp1+2k—1}.

Note that F, contains no two consecutive numbers. For example, Fon = (), Fyr =
{1,3,...,2k—1} and F qr = {2,4,...,2k}. Let A be the set of subsets of [n—1] that
have no two consecutive numbers, and let B be the set of cd-monomials of degree n.
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Then w +— F, is a bijection from B to A (as k = |F,| and s, = n—2k—s,_1—---—5p
we see that the inverse map exists).

Let A be a k-colored simplicial complex with the vertex set V' and a k-coloring
map ¢ : V — [k]. For any subset S C [k], let fo(A) = |{F € A: ¢(F) = S}|. The
vector (fs(A) : S C [k]) is called the flag f-vector of A. Note that the flag f-vector
of a poset P is equal to the flag f-vector of sd(P) by the coloring map defined by
the rank function.

Definition 4.2. Let ® = ) a,w be a homogeneous cd-polynomial of degree n
with w the cd-monomials and a,, € Z. For S C [n — 1], we define

(®) = ay, if S =F, for some w € B
@t =Y 0, ifS¢A

Conjecture 4.3. Let P be an (n — 1)-dimensional regular CW-sphere (or more
generally, Gorenstein® poset of rank n + 1). Then there exists an (n — 1)-colored
simplicial complex A such that fs(A) = ag(Pp) for all S C [n — 1].

Thus the above conjecture states that the cd-index is itself the flag f-vector of
a colored complex. If the above conjecture is true then ®p(1,d) = 1+ fo(A)d +
st fL%J_l(A)dL%J. Although A is (n — 1)-colored, this fact implies Theorem 1.1.
Indeed, since fs(A) = ag(®p) = 0if S has consecutive numbers, if ¢ : V' — [n—1] is
an (n — 1)-coloring map of A then the map ¢ : V' — [[ §]] defined by ¢(v) = L%J
is an |4 |-coloring map of A.

The next result supports the conjecture in low dimension.

Proposition 4.4. Let P be a Gorenstein™ poset of rankn+1. For alli,j € [n—1],
agy(Pp)agy(Pp) 2 agig(Pp).

Proof. Let (hg(P) : S C [n]) be the flag h-vector of P. Let {i,i+ j} C [n — 1] with
J > 2. What we must prove is ag (®p)agpirn(Pp) > agivn (Pp).
Observe that

haogitj+1,..np(P) = iivy (Pp) + app(Pp) + agiry (Pr) + ap(Pp),
hig(P) = aguy(®p) + ag(Pp),
Riivirt,.nt(P) = apyn(Pp) + ap(Pp)

.....

It follows from [St2, ITI, Theorem 4.6] that there is an n-colored simplicial complex
A with a coloring map ¢ : V' — [n] such that fs(A) = hg(P) for all S C [n], where
V is the vertex set of A. Let

As={FeA:¢(F)=5}
for S C [n]. Then it is clear that

..........

which implies the desired inequality. O

It is straightforward that the above proposition proves the next statement.
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Corollary 4.5. Conjecture 4.3 holds for n <5.

Non-existence of d-polynomials. For a Gorenstein* poset P, we call ®p(1,d) the
d-polynomial of P. It is a challenging problem to classify all possible d-polynomials
of Gorenstein® posets, which give a complete characterization of all possible face
vectors of Gorenstein* order complexes since knowing d-polynomials is equivalent
to knowing v-vectors. The problem is open even for the 3-dimensional case. To
study this problem, by virtue of Theorem 1.1, it is natural to ask which FFK vector
is realizable as the d-polynomial of a Gorenstein® poset. We show that not all
| 5]-FFK vectors are realizable as the d-polynomial of a Gorenstein™ poset of rank
n+1.

First recall that the ordinal sum @)1 + Q2 of two disjoint posets ()7 and ()5 is the
poset whose elements are the union of elements in (Q; and () and whose relations
are those in ()1 union those in ()» union all ¢; < ¢ where ¢; € Q1 and ¢ € Q.
For Gorenstein* posets Q1 and Qs, the poset Q1 * Q; = (Q1 — {1}) + (Q2 — {0}) is
called the join of (); and ()2, and X(Q); = Q) * By, where B; is a Boolean algebra
of rank 2, is called the suspension of @);. By [Stl, Lemma 1.1], ®p,.q,(c,d) =
®q, (Cv d) - g, (Cv d)

Proposition 4.6. Let P be a Gorenstein™ poset of rank 5, and let
q)p(C, d) = C4 =+ a{l}dCQ + a{Q}CdC =+ a{3}02d + O{{Lg}d2

be its cd-index. Suppose aqay = 0. Then there are Gorenstein™ posets Py and P of
rank 3 such that P = Py x P,. In particular, oy 3y = aqiyoysy.

Proof. Let r denote the rank function 7 : P — {0,1,...,5} (r(0)
P :={FeP: r(F)<2}and P,:={FeP: r(F) >3}

As P is Gorenstien*, to show that P = P, + P, it is enough to show that P, U {0}
is Gorenstien* (as a Gorenstien® poset contains no proper subposet which is Goren-
stien* of the same rank, and each interval [F, 1] with r(F) = 2 in P is Gorenstien*).
For this, it is enough to show that any rank 4 element in P covers exactly two rank
3 elements in P. Indeed, this guarantees that the dual poset to P, denoted Py, is
the face poset of a union of CW 1-spheres, and as P is Gorenstien® so is its dual P*,
hence Py is Cohen-Macaulay since Py is a rank selected poset [St2, III, Theorem
4.5], which implies that Py is the face poset of one CW 1-sphere, i.e. P, U {0} is
Gorenstien™.

Let F be a rank 4 element of P. Then P is a subdivision of ([0, F]) (Recalling
[EK, Definition 2.6], this is shown by the map ¢ : P — %([0, F]), ¢(0) = o if 0 < F,
¢(0) = oy if 0 and F are incomparable, and ¢(F') = 09, where 01, 09 are the rank 4
elements in ¥([0, F])). Thus, by Lemma 2.4, the coefficient of cdc in the cd-index
of X([0, F]) is zero, hence the coefficient of the monomial cd in the cd-index of [0, F]
1s zero.

This fact implies, when expanding the cd-index of [@, F] in terms of a, b, that
h3([0, F]) equals the coefficient of ¢®, namely hyz ([0, F]) = 1. Switching to the
flag f-vector of [0, F] we get fizy([0, F]) = hy([0, F]) + hyz ([0, F]) = 1+ 1 = 2.
Thus, F' covers exactly two rank 3 elements in P. 0

Example 4.7. Consider the 2-FFK vector (1,6,7). We claim that ®p(1,d) #
1+6d-+7d? for all Gorenstein* poset P of rank 5. Indeed, if ®p(1,d) = 1+6d+7d?,

0,7(1) = 5). Let
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then ayg 3y = 7. Then ayy + aq3p = 6 and agey = 0 by Proposition 4.4, which
contradicts Proposition 4.6.

A similar argument shows that (1,2a,a® — 2), where a > 3, is 2-FFK, but not
realizable as the d-polynomial of a Gorenstein™ poset of rank 5.
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