しらすの再液状化特性に及ぼす初期相対密度と 初期有効拘束圧の影響

山本哲朗(社会建設工学科) 鈴木素之(社会建設工学科) 千田隆行(社会建設工学専攻)

Influence of initial relative density and initial effective confining pressure on reliquefaction characteristics of Shirasu

Tetsuro YAMAMOTO (Department of civil engineering) Motoyuki SUZUKI (Department of civil engineering) Takayuki SENDA (Department of civil engineering)

In order to investigate the influence of the initial relative density and initial effective confining pressure on reliquefaction characteristics of disturbed Shirasu, cyclic triaxial tests were performed on soil samples prepared with different initial relative densities and effective confining pressures. It was found from these tests that the reliquefaction strength was higher than the first liquefaction strength. Furthemore, the reliquefaction strength increased with increases in initial relative density, and was affected by the initial effective confining pressure of above 98 kPa.

Key Words : Liquefaction, Reliquefaction, Shirasu, Initial relative density, Initial effective confining pressure

1. はじめに

南九州等に広く分布するしらすは粒子破砕性のある 特殊土として知られている.しらす地盤の1997年の鹿 児島県北西部地震(M6.5)では,液状化が発生し,同 年の同第二北西部地震(M6.3)では再液状化が発生し たことが報告されている¹⁾. Finn 6²⁾は,再液状化強度は 再圧密による密度増加にもかかわらず土粒子構造の固 結がはずれるために初回の液状化強度よりも小さくな ることを実験的に明らかにしている.一方,大原ら³⁾ は,一度液状化が発生した砂でもその後の再圧密に伴 う密度増加により再液状化強度は初回の液状化強度よ りも増加することを実験によって明らかにしている. 液状化のみならず再液状化強度は構造物の耐震設計に 大きく関係するので,それに及ぼす影響因子を把握す ることは非常に重要である.

本研究では、乱したしらすを対象にして繰返し三軸 試験結果より、液状化後の再圧密に伴う密度変化に着 目して再液状化特性に及ぼす初期相対密度と有効拘束 圧の影響について検討した.

2. 試験概要

(1) しらすの物理的性質

土試料には鹿児島県薩摩郡宮之城町平川で採取した しらすを用いた. Table1 にしらすの物理定数, Fig.1 に粒径加積曲線を示す. 試料は現場で採取したものを 4.75mm ふるいを通過させ,根茎等を取り除いたもので ある. また,各試験に用いる試料の粒度にばらつきが 生じないように分取器を用いて実験試料を準備した.

(2) 繰返し三軸試験機

応力制御式繰返し三軸試験機を用いて液状化試験を 実施した.試験の詳細は文献4)を参照されたい.初期 状態における供試体の寸法は直径5cm,高さ10.5cmで ある.間隙水圧はペデスタルに接続された間隙水圧計 で,軸変位量はセル室上部に固定されたダイヤルゲー ジ式変位計で,体積変化量はビューレットにより測定 している.

(3) 試験手順

試験手順の概略を以下に示す.

14 (106)

 Table1
 Physical properties of soil sample

Density of solid particles	$\rho_s(g/cm^3)$	2.448
Maximum grain size	D_{max} (mm)	4.750
Average grain size	$D_{50}({ m mm})$	0.134
Uniformity coefficient	U_c	
Maximum void ratio	e_{max}	1.902
Minimum void ratio	<i>e</i> _{min}	0.981
Fines content	F_{c} (%)	37.4

- 自然乾燥させたしらすを漏斗によりできるだけ落 下高さを低くしてモールド内に3層に分けて投入し、 モールドを打撃して所定の相対密度を持つ供試体を 作製する.
- (共試体内に CO₂ ガスを 4.9kPa の圧力差で 20 分間流 して間隙空気を CO₂に置換する.その後,脱気水を 通水し,98kPa の背圧を1時間与える.
- 3) B 値が 0.95 以上あることを確認する.
- 新定の等方応力で圧密を開始する. 圧密時間は24時 間とした.
- 5) 圧密終了後,両面非排水条件下で周期10秒で繰返し せん断を行った.
- 6)初回の液状化試験で発生した過剰間隙水圧を両面排水条件下で消散させ、30分間再圧密した.その後、再液状化試験を行った.

なお,初回の液状化および再液状化ともに破壊の定 義は軸ひずみ両振幅 DA=5%と定義した.本研究では初 期相対密度 60%,90%の 2 通り,初期有効拘束圧 σ'30=49kPa,98kPa,147kPaの3通りで実施した.**Table2** に初期相対密度と有効拘束圧を変化させた試験ケース とその結果を示す.

3. しらすの液状化特性

Fig. 2は初期相対密度 D_{r0} を変化させた場合のしらす の液状化強度曲線を示したものである.縦軸は繰返し せん断応力比 $\sigma_d/2 \sigma'_{30}$ (σ_d :軸差応力, σ'_{30} :初期有 効拘束圧)を、横軸は破壊時の繰返し回数 n_L をとって いる.初期有効拘束圧はいずれの試験ケースでも σ'_{30} =98kPa である.図中の記号〇は D_{r0} =90%のデータ を示し、圧密後の相対密度 D_{r1} は D_{r1} =92.2%~97.4%(平 均値 $\overline{D_{r1}}$ =94.9%)となっている.また、◇は D_{r0} =60%の データを示し、 D_{r1} は D_{r1} =71.3%~75.3%(平均値 $\overline{D_{r1}}$ =73.3%)となっている.D_{r0}=90%の液状化強度曲線 は D_{r0} =60%のそれよりも上方にあり、 D_{r0} が高いほど 液状化強度は大きくなる.図中に岡林%による鹿児島県 隼人町で採取されたしらすに対して実施した繰返し三 軸試験のデータ(D_{r0} =50%,90%)を示している.この

Fig. 1 Grain size distribution curve of soil sample

場合も同様な傾向を示しているが,著者らと岡林 9 の $D_{r0}=90\%$ のデータを比較すると,液状化強度曲線の形状 が大きく異なる. 試料の物理特性,粒子形状および鉱 物組成の差異もこのことに影響していると考えられる.

Fig.3 は初期有効拘束圧 σ'_{30} を変化させた場合のし らすの液状化強度曲線を示したものである.初期相対 密度はいずれの試験ケースでも D_{r0}=60%である.図中 の記号△, ◇, ▽はそれぞれ σ'_{30} =49kPa, 98kPa, 147kPa のデータを示している. σ'_{30} =49kPa, 98kPaの液状化強 度曲線はほぼ同じ位置にある.一方, σ'_{30} =147kPaの場 合の液状化強度曲線はこれらよりも上方に位置してお り,有効拘束圧の影響を受けている.図中には岡林⁹ のデータ(D_{r0}=50%, σ'_{30} =50kPa, 100kPa, 300kPa)を 示している.この場合も同様に σ'_{30} =300kPa と σ'_{30} =50kPa, 100kPaの液状化強度曲線が大きく異なる. 豊浦標準砂の場合には,有効拘束圧の大きさによらず 液状化強度曲線は1つの曲線で表すことができるが 6,7 , しらすの場合には通常の応力域でも有効拘束圧の大き さにより液状化強度曲線が異なることに注意を要する.

4. しらすの再液状化特性 (1)記録波形

Fig. 4(a) および(**b**) にそれぞれしらすの液状化試験 および再液状化試験で得られた代表的な記録波形を示 す.**Fig. 4(a)** は D_{rl} =66.2%の液状化試験時の記録波形で あり,図は上から順に軸ひずみ ϵ_1 ,繰返しせん断応力 比 $\sigma_d/2\sigma'_{30}$ および過剰間隙水圧比 $\Delta u/\sigma'_{30}$ の時刻歴を 表している.図中には破壊時の繰返し回数 n_L を示して おり,この場合には n_L =14 が得られた.過剰間隙水圧 比は繰返し回数の増加とともに徐々に増加している. 軸ひずみは過剰間隙水圧比が 1.0 に近づくあたりから 伸張側に急増している.**Fig. 4(b)** は上述の液状化試験 に引き続く再液状化試験時の記録波形である.再圧密 後の相対密度 D_{r2} は過剰間隙水圧の消散すなわち再圧 密に伴って 66.2%から 74.9%にまで増加している.再液 状化試験においても初回の液状化試験と同様な傾向が みられる.初回の液状化試験時と再液状化試験時の繰

Table2	Test cases and test results of Shirasu
--------	--

		Initial condition		Liquefaction			Reliquefaction				
Test No.	D _{r0} (%)	σ ' ₃₀ (kPa)	B値	D _{rl} (%)	$\sigma_{d}/2 \sigma'_{30}$	Δ u/ σ ' ₃₀	nL	D _{r2} (%)	$\sigma_{d}/2 \sigma'_{30}$	Δ u/ σ ' ₃₀	n _L
1	88.7	98	0.95	92.2	0.081	0.99	331	96.2	0.092	0.99	149
2	88.3	98	0.99	92.5	0.092	0.98	122	95.8	0.105	0.97	77
3	92.8	98	0.95	97.4	0.193	0.93	11			_	_
4	90.4	98	0.95	94.7	0.210	0.96	8	95.8	0.207	0.97	8
5	92.0	98	0.96	96.2	0.256	0.96	4	97.8	0.315	0.96	3
6	91.3	98	0.94	97.8	0.361	0.97	3	99.4	0.438	0.91	2
7	91.4	98	0.98	99.4	0.315	0.96	2	_	_	_	_
8	67.7	98	0.99	74.5	0.075	0.98	123	79.6	0.086	0.97	42
9	63.1	98	1.00	71.3	0.061	1.00	52	75.0	0.066	0.99	46
10	65.9	98	1.00	73.7	0.070	0.97	20	77.0	0.074	0.98	122
11	65.5	98	1.00	75.3	0.095	1.00	12	76.8	0.096	0.99	20
12	64.2	98	1.00	71.8	0.103	1.00	10	74.4	0.099	1.00	16
13	64.5	98	0.98	72.1	0.102	1.00	8	74.6	0.119	0.98	8
14	62.2	98	1.00	69.8	0.120	0.97	4	70.9	0.142	0.96	3
15	58.3	147	0.96	68.2	0.123	0.99	193	69.3	0.119	0.99	112
16	62.0	147	0.95	72.2	0.125	0.98	92	_	_	_	_
17	55.8	147	0.97	60.7	0.151	0.99	41	62.1	0.135	0.99	20
18	63.0	147	0.97	70.0	0.144	0.97	18	70.7	0.132	0.96	52
19	59.5	147	0.95	69.5	0.156	0.99	9	_	_	_	_
20	60.4	147	0.95	70.7	0.184	0.98	8	71.3	0.183	0.99	8
21	58.4	147	0.95	69.0	0.207	0.97	4	70.2	0.193	0.98	6
22	57.5	49	0.99	62.3	0.078	1.00	113	72.1	0.095	1.00	94
23	62.0	49	0.95	66.3	0.083	0.98	27	75.0	0.103	0.99	30
24	59.1	49	0.99	62.7	0.090	0.99	18	70.8	0.110	1.00	16
25	62.8	49	0.98	66.2	0.101	0.98	14	74.9	0.118	1.00	16
26	57.2	49	0.97	62.6	0.091	0.97	7	69.5	0.123	0.98	6
27	58.8	49	0.97	63.1	0.127	0.96	6	66.2	0.148	0.97	4

Fig. 2 Relationships between n_L and $\sigma_d/2 \sigma'_{30}$

Fig. 3 Relationships between n_L and $\sigma_d/2 \sigma'_{30}$

山口大学工学部研究報告

Fig. 4(a) Typical test result of liquefaction (D_{rl} =66.2%, $\sigma_d/2 \sigma'_{30}$ =0.101, n_L =14)

Fig. 4(b) Typical test result of reliquefaction ($D_{r2}=74.9\%$, $\sigma_d/2\sigma'_{30}=0.118$, $n_L=16$)

返しせん断応力比は同じではないが、破壊に至るまでの繰返し回数は14から16へと増加している.

(2) 液状化強度と再液状化強度の大小関係

Fig.5 は D_{r0}=60%, σ'₃₀=98kPa の液状化強度曲線お よび再液状化強度曲線を示したものである. 図中の記 号◇はFig.2 で用いたデータと同じであり, ◆は再液 状化試験から得られたデータである. この場合に限れ ば,再液状化強度曲線は初回の液状化強度曲線よりも 上方に位置しており,再液状化強度は初回の液状化強 度よりも増加している. なお,これまで再液状強度は 初回の液状化強度よりも減少する試験結果が Finn ら²⁾ により報告されている.

Fig. 5 Relationships between n_L and $\sigma_d/2 \sigma_{30}$

(3) 液状化後の再圧密に伴う間隙比の変化

Fig.6 は初回の液状化試験時の繰返しせん断応力比 $\sigma_{d}/2 \sigma'_{30}$ と再圧密に伴う間隙比変化量 Δe の関係を示 している. 試験条件は $D_{r0}=60\%$, $\sigma'_{30}=98$ kPa である. $\Delta e=0.01$ は相対密度の変化量 $\Delta D_{r}=1\%$ に相当する. $\sigma_{d}/2 \sigma'_{30}$ の増加に伴って Δe が減少している. すなわ ち,繰返しせん断応力比が大きいほど,再圧密時の体 積変化量は小さい. **Fig.7** に初回の液状化時に発生し た過剰間隙水圧比 $\Delta u/\sigma'_{30}$ と Δe との関係を示す. $\Delta u/\sigma'_{30}$ が大きいほど, Δe は大きくなる. ただし,過 剰間隙水圧比のわずかな差で液状化時の土粒子の浮遊 状態が大きく変わるとは考えにくいので,液状化後の 間隙比変化は供試体の排水条件のみならず土粒子の比 重,形状,大きさなどが支配的な因子として挙げられ る.

(4) 初期相対密度と初期有効拘束圧の影響

Fig. 8は D_{r0} を変化させた場合のしらすの再液状化強 度曲線である. 図中の記号●は再圧密後の相対密度 D_{r2} が D_{r2} =95.8% ~ 99.4% (平均値 $\overline{D_{r2}}$ =97.0%), ◆は D_{r2} =74.4% ~ 79.6% (平均値 $\overline{D_{r2}}$ =76.6%) のデータを示し ている. D_{r0} =90%の再液状化強度曲線が D_{r0} =60%のそれ よりも上方に位置しているため, 再液状化強度は相対 密度が高いほど大きい. このことは初回の液状化強度 と相対密度の関係でみられた傾向とほぼ同様である. **Fig. 9**は σ'_{30} を変化させた場合のしらすの再液状化強 度曲線である. 図中の記号▲, ◆, ▼はそれぞれ σ'_{30} =49kPa, 98kPa, 147kPa のデータを示している. σ'_{30} =49kPa および 98kPa の場合の液状化強度曲線は拘 東圧依存性はみられないが, σ'_{30} =147kPa の場合の再

Fig. 8 Relationships between n_L and $\sigma_d/2 \sigma_{30}$

Fig. 6 Relationships between $\sigma_d/2 \sigma_{30}$ and Δe

Fig. 7 Relationships between $\Delta u / \sigma_{30}^{2}$ and Δe

山口大学工学部研究報告

Photo.1 Microstructure of Shirasu (σ'_{30} =49kPa)

Photo.2 Microstructure of Shirasu ($\sigma'_{30}=98$ kPa)

Photo.3 Microstructure of Shirasu ($\sigma'_{30}=147$ kPa)

液状化強度曲線はこれらよりも上方に位置しており, 有効拘束圧の影響を受けている.

(5) 液状化前後における粒度特性の変化

Fig. 10(a) および(b) にそれぞれ圧密後および液状化 試験後の粒径加積曲線を示す. Fig. 10(a) では図中の記 号○は原粒度, △, ◇, ▽は σ '30=49kPa, 98kPa, 147kPa で等方圧密後の粒度を示している. 圧密後の粒径加積 曲線は等方圧密応力の大きさによらず原粒度のそれと ほとんど変わらない. Fig. 10(b) では図中の記号〇は原 粒度, ▲, ◆, ▼は σ '30=49kPa, 98kPa, 147kPa で液状 化試験後の粒度を示している. σ'30=98kPa および 147kPaの場合の粒径加積曲線は原粒度のそれよりも細 粒分が増加している. σ'30=49kPa は原粒度のそれと比 べて粒子破砕を示す粒径加積曲線の変化は認められな い. Photos. 1~3 にそれぞれ σ'₃₀=49kPa, 98kPa, 147kPa の下での液状化試験後の試料の走査型電子顕微鏡写真 を示している.写真の倍率は2種類とし、(a)は350倍、 (b) は 5000 倍のものである. 本試料は表面が角張った 火山ガラスと多孔質で粗い軽石で構成されていること がわかる. **Photos. 1~3** から, 初期有効拘束圧が大き いほど、しらすの粒子破砕が顕著にみられる.

5. 結論

乱したしらすに対して初期相対密度と初期有効拘束 圧を変化させた繰返し三軸試験を実施した.試験結果 に基づく考察の結果,得られた結論は以下のとおりで ある.

- 1)今回の試験結果において、再液状化強度は初回の液 状化強度よりも増加しており、その理由は液状化後 の再圧密に伴って間隙比が減少したためである。
- 2) 再液状化強度は、初回の液状化強度と同様に、初期 相対密度の増加に対して増加する.
- 3) 再液状化強度は、初回の液状化強度と同様に、初期 有効拘束圧の影響を受ける.
- 4) 初期有効拘束E 98kPa 以上の領域での液状化試験で は粒子破砕を示す粒度特性の変化が認められた.

謝辞

鹿児島工業高等専門学校岡林 巧先生には本論文を 作成する上で有益なご助言をいただいた.山口大学大 学院生松下英次氏および川島洋史氏(現在,㈱ウエス コ)には実験でご助力をいただいた.これらの方々に 厚く感謝の意を表す次第である.

参考文献

 山本哲朗,岡林 巧,松本 直,郷 健一:1997年 鹿児島県北西部地震,同第二北西部地震における地 震災害, 地震工学振興会ニュース, No.157, pp.31-41, 1997.

(111) 19

- 2) Finn, W.D.L., P.L.Bransby and D.J.Pickering : Effect of Strain History on Liquefaction of Sand, J.SMFD, ASCE, Vol.96, No.SM6, pp.1917-1934. 1970.
- 大原資生、山本哲朗:振動台による飽和砂の再液状 化特性に関する実験的研究、土質工学会論文報告集、 Vol.22, No.2, pp.123-132, 1982.
- 4)川島洋史:安定処理土の強度・変形特性に及ぼす影響因子,山口大学大学院理工学研究科修士論文,2000.
- 5) 岡林 巧:しらす地盤の不飽和浸透特性と非排水せん断挙動に関する研究,山口大学学位請求論文, pp.66-70, 1999.
- 6) 柚木祐二,石原研而,関 元治,米田吉博:密な砂の繰返し三軸せん断挙動に与える初期有効拘束圧の影響,第17回土質工学研究発表会講演概要集, pp.1649-1652,1982.
- 7) 石原研而, 菊池喜昭, 堤 康一:低拘束圧下におけ る砂の繰返し変形挙動, 第18回土質工学会研究発表 会講演概要集, pp.353-354, 1983.

(平成 12 年 12 月 27 日受理)