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ABSTRACT. We axiomatically characterize the Tsallis entropy of a finite quantum system. In

addition, we derive a continuity property of Tsallis entropy. This gives a generalization of the
Fannes’ inequality.
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1. INTRODUCTION WITH UNIQUENESS THEOREM OF TSALLIS ENTROPY

Three or four decades ago, a number of researchers investigated some extensions of the Shan-
non entropy![1]. In statistical physics, the Tsallis entropy, defined in [10] by

Hq(X) = Za: (p<x>q B p(x)) _ an (p(x))

1—gq
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with one parametey € R* as an extension of Shannon entrdgy(X ) = — > p(z) log p(x),
for any probability distributiorp(x) = p(X = z) of a given random variabl&’, whereg-
entropy function is defined by,(z) = —29In, z = “f%; and theg-logarithmic functionn, » =
==L is defined fory > 0, ¢ # 1 andz > 0.

The Tsallis entropyd,(X') converges to the Shannon entropy | p(x) log p(x) asq — 1.
See|[5] for fundamental properties of the Tsallis entropy and the Tsallis relative entropy. In the
previous paper [6], we gave the uniqueness theorem for the Tsallis entropy for a classical sys-
tem, introducing the generalized Faddeev’s axiom. We briefly review the uniqueness theorem
for the Tsallis entropy below.

The function/,(z4, . .., z,) is assumed to be defined ertuple (z4, . .., z,) belonging to

i=1

A, = {(ph.._,pn)

and to take values iR = [0,00). Then we adopted the following generalized Faddeev’s
axiom.

Axiom 1. (Generalized Faddeev’s axiom)

(F1) Continuity: The functiory,(z) = I,(z,1 — x) with parameter; > 0 is continuous on
the closed intervalo, 1] and f,(x) > 0 for somer, € [0, 1].
(F2) Symmetry: For arbitrary permutatiofw} } € A, of {z;} € A,

(1.2) Iy, ..., xn) = I(2), ..., 2)).
(F3) Generalized additivity: For, =y + z,y > 0andz > 0,
z
(1.2) I(x, .. 2p1,y, 2) = 1y(20, ..o ) + 22, (%, a:_) )

Theorem 1.1([6]). The conditions (F1), (F2) and (F3) uniquely give the form of the function
I, : A, — R* such that

(1.3) I(xq, ... 2n) = poHy(x1, ..., 20),
wherey, is a positive constant that depends on the paramgter0.

If we further impose the normalized condition on Theofenj 1.1, it determines the entropy of
type S (the structurak-entropy), (se€ [1, p. 189]).

Definition 1.1. For a density operatgs on a finite dimensional Hilbert spadé, the Tsallis

entropy is defined by
Trlp?

Se(p) = T_qp] = Trlng(p)],

with a nonnegative real number

Note that the Tsallis entropy is a particular case @ntropy [11]. See als¢[9] for a quasi-
entropy which is a quantum version gfdivergence![3].
Let 7, be a mapping on the s8(H) of all density operators tR*.
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Axiom 2. We give the postulates which the Tsallis entropy should satisfy.

(T1) Continuity: Forp € S(H), T,(p) is a continuous function with respect to theorm

-1l
(T2) Invariance: For unitary transformatiot, T,,(U*pU) = T,(p).
(T3) Generalized mixing condition: Fgr = @ ?_, \vpr ONH = @), H, where);, > 0,
k=1 k=1
Y1 A = 1, pr € S(Hy), we have the additivity:

Tq(/)) = Z )‘ZTq(pk> + Tq<)\17 ceey >\n>7
k=1

where(Aq, ..., \,) represents the diagonal matriX;ox; )k j=1.....n-

Theorem 1.2.1f T, satisfies Axiorfi|2, thefj, is uniquely given by the following form

Ty(p) = 114S4(p),

with a positive constant numbegy, depending on the parameter> 0.

Proof. Although the proofis quite similar to that of Theorem 2.1 in [8], we present it for readers’
convenience. From (T2) and (T3), we have

Tq()\la )\2) == /\({Tq(1> + )\gTq(l) + Tq(/\l, /\2),
which impliesT,(1) = 0. Moreover, by (T2) and (T3), whem, # 1, we have
Tq (pla «v oy DPn—1, Apna (1 - )‘)pn)

p Prn—
=piT, (A1 =X+ (1—p,)'T, (1—1]? ,...,1_; )—i—Tq(pn,l—pn)

and

p DPn—
Ty oo = T () (=) Ty (2 22 ) T (1 = ).

From these equations, we have

(14) Tq (pla «e vy Pn—1, Apna (1 - )‘) pn) = Tq (pla s 7pn—17pn) _I'p?quq ()\7 1— )\) .
If we set\p, = y and(1 — \)p,, = z in (1.4), then fop,, = y + z # 0 we have

n n

Yy z
(15) Tq (pb s 7pn717y72> = Tq (p17 s 7pn717pn) +ngTq <_7 _> .

Then for anyz,y,z € Rsuchthat < z,y < 1,0 < z < landz +y + z = 1, we have

Tq($>y,2)=Tq(:p,y+2)+(y+z)qTq< Yy 2 )

y+z2 y+z

T z
=T,(y,x + 2) + (x + 2)T, (x+z’x+z>'

If we sett,(z) = T,(x,1 — x), then we have

to(z) + (1 — 2)7%, (1 Y ) = t,(y) + (1 — y)%, (L) .

—x 11—y
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Takingz = 0 and somey > 0, we havel,(0,1) = ¢,(0) = 0 for ¢ # 0. Again settingh = 0 in
(1.4) and using (T2), we have the reducing condition

Tq(ph s ,pn,O) = Tq<p1’ v 7pn)‘

ThusT, satisfies all conditions of the generalized Faddeev’s axiom (F1), (F2) and (F3). There-
fore we can apply Theore.l so that we obf8it\, ..., \,) = uH (A1, ..., A\). Thuswe
haveT,(p) = pyS,(p), for density operatop. O

Remark 1.3. For the special casg= 0 in the above theorem, we need the reducing condition
as an additional axiom.
2. A CONTINUITY OF TSALLIS ENTROPY

We give a continuity property of the Tsallis entrofy(p). To do so, we state a few lemmas.

Lemma 2.1. For a density operatop on the finite dimensional Hilbert spad#, we have
Sq(p) < 1Ingd,

whered = dimH < oo.

Proof. Since we havén, z < » — 1 for ¢ > 0 andz > 0, we haveﬂ%?{;_q > —yforz >0,
y > 0,q > 0andq # 1, Therefore the Tsallis relative entropy [5]:

Trlp — plo' 1]
Dq(plo) = T
for two commuting density operatopsando, ¢ > 0 andq # 1, is nonnegative. Then we have
0 < Dy(p|5I) = —d"* (S4(p) — Ing d). Thus we have the present lemma. O

Lemma 2.2.If f is a concave function anfl(0) = f(1) = 0, then we have

[f(t+s) = f())] < max{f(s), f(1—s)}
foranys € [0,1/2] andt € [0, 1] satisfyingd < s +1¢ < 1.

Proof.

(1) Consider the function(t) = f(s) — f(t + s) + f(t). Thenr’(t) > 0 since f’ is
a monotone decreasing function. Thus we hai¢ > 0 by »(0) = 0. Therefore
ft+s) = f(t) < f(s).

(2) Consider the function of(t) = f(t + s) — f(t) + f(1 — s). Thenl’(t) < 0. Thus we
havel(t) > 0 by (1 —s) = 0. Therefore—f(1 —s) < f(t+s) — f(¢).

Thus we have the present lemma. O

Lemma 2.3. For any real numbew,v € [0,1] andg € [0,2], if |[u — v] < 3, then|n,(u) —
(V)] < 1q (|10 = ).

J. Inequal. Pure and Appl. Mat}8(1) (2007), Art. 5, 6 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A GENERALIZED FANNES' | NEQUALITY 5

Proof. Sincer, is a concave function with,(0) = 7,(1) = 0, we have

1g(t + s) — (1) < max {n,(s),ne(1 — 5)}
for s € [0,1/2] andt € [0, 1] satisfyingd < ¢ + s < 1, by Lemmd 2.p. Here we set

hy(s) =mny(s) —ng(1—s), s€][0,1/2], ¢ €]0,2].
Then we haven, (0) = he(1/2) = 0 andhj(s) < 0for s € [0,1/2]. Therefore we have
hy(s) > 0, which implies
max {1, (s), 7g(1 — 5)} = n4(s).
Thus we have the present lemma by letting: ¢t + s andv = t. O

Theorem 2.4. For two density operatorg; and p; on the finite dimensional Hilbert spad#
with dim H = d andgq € [0, 2], if [|p1 — pal|, < ¢*/*9, then

1Sq(p1) = Sg(p2)| < [lp1 — p2lli Ing d + ny([lpr — p2ll,),
where we denotgAl|, = Tr [(A*A)'/2] for a bounded linear operatad.

Proof. Let A\{") > AV > ... > Al andA® > AP > ... > A?) be eigenvalues of two density
operatorsp; andp,, respectively. (The degenerate eigenvalues are repeated according to their

multiplicity.) We sete = 7 ¢; ands; = (A" — Agz)‘. Then we have

g; <e<|lpi—pall, < g/ <

DN | —

by Lemma 1.7 of([B]. Applying Lemma 2.3, we have

1S4(p1) = Salp2)]| < Z me (W) = (W) < an ).

By the formulaln,(zy) = In, x + ' ~?In, y, we have

d d
E E £; lnq £j
Jj=1 Jj=

d _q
19
{ >, ()]
prllc 5
_ iggl £j 253(€j)1‘q1
= £ s - nq - - - - Hq€

< ellngd + ny(e).
In the above inequality, Lemnja 2.1 was usedfet (¢, /¢, ..., eq4/¢). Therefore we have

|Sq(/01> - Sq(pZ)‘ <e’ln,d+ 77q(€)-
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Now 7, () is @ monotone increasing function ore [0, ¢*/(~9]. In addition,z¢ is a monotone
increasing function fog € [0, 2]. Thus we have the present theorem. O

By taking the limit as; — 1, we have the following Fannes’ inequality (see pp.512 of [7],
also [4]2[8]) as a corollary, sinden,_.; ¢/~ = 1,

e

Corollary 2.5. For two density operatorg; and p, on the finite dimensional Hilbert spadé
with dimH = d < oo, if [|p1 — ps; < 1, then

1S1(p1) = S1(p2)l < llpr = p2lly Ind +m([lpr = p2lly),

whereS; represents the von Neumann entrdfiyp) = Trn:(p)] andn, (z) = —zInz.
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