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ABSTRACT. We axiomatically characterize the Tsallis entropy of a finite quantum system. In
addition, we derive a continuity property of Tsallis entropy. This gives a generalization of the
Fannes’ inequality.
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1. I NTRODUCTION WITH UNIQUENESS THEOREM OF TSALLIS ENTROPY

Three or four decades ago, a number of researchers investigated some extensions of the Shan-

non entropy [1]. In statistical physics, the Tsallis entropy, defined in [10] by

Hq(X) ≡
∑

x (p(x)q − p(x))

1− q
=

∑
x

ηq (p(x))
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with one parameterq ∈ R+ as an extension of Shannon entropyH1(X) = −
∑

x p(x) log p(x),

for any probability distributionp(x) ≡ p(X = x) of a given random variableX, whereq-

entropy function is defined byηq(x) ≡ −xq lnq x = xq−x
1−q

and theq-logarithmic functionlnq x ≡
x1−q−1

1−q
is defined forq ≥ 0, q 6= 1 andx ≥ 0.

The Tsallis entropyHq(X) converges to the Shannon entropy−
∑

x p(x) log p(x) asq → 1.

See [5] for fundamental properties of the Tsallis entropy and the Tsallis relative entropy. In the

previous paper [6], we gave the uniqueness theorem for the Tsallis entropy for a classical sys-

tem, introducing the generalized Faddeev’s axiom. We briefly review the uniqueness theorem

for the Tsallis entropy below.

The functionIq(x1, . . . , xn) is assumed to be defined onn-tuple(x1, . . . , xn) belonging to

∆n ≡

{
(p1, . . . , pn)

∣∣∣∣∣
n∑

i=1

pi = 1 , pi ≥ 0 (i = 1, 2, . . . , n)

}
and to take values inR+ ≡ [0,∞). Then we adopted the following generalized Faddeev’s

axiom.

Axiom 1. (Generalized Faddeev’s axiom)

(F1) Continuity: The functionfq(x) ≡ Iq(x, 1 − x) with parameterq ≥ 0 is continuous on

the closed interval[0, 1] andfq(x0) > 0 for somex0 ∈ [0, 1].

(F2) Symmetry: For arbitrary permutation{x′k} ∈ ∆n of {xk} ∈ ∆n,

(1.1) Iq(x1, . . . , xn) = Iq(x
′
1, . . . , x

′
n).

(F3) Generalized additivity: Forxn = y + z, y ≥ 0 andz > 0,

(1.2) Iq(x1, . . . , xn−1, y, z) = Iq(x1, . . . , xn) + xq
nIq

(
y

xn

,
z

xn

)
.

Theorem 1.1([6]). The conditions (F1), (F2) and (F3) uniquely give the form of the function

Iq : ∆n → R+ such that

(1.3) Iq(x1, . . . , xn) = µqHq(x1, . . . , xn),

whereµq is a positive constant that depends on the parameterq > 0.

If we further impose the normalized condition on Theorem 1.1, it determines the entropy of

typeβ (the structurala-entropy), (see [1, p. 189]).

Definition 1.1. For a density operatorρ on a finite dimensional Hilbert spaceH, the Tsallis

entropy is defined by

Sq(ρ) ≡ Tr[ρq − ρ]

1− q
= Tr[ηq(ρ)],

with a nonnegative real numberq.

Note that the Tsallis entropy is a particular case off -entropy [11]. See also [9] for a quasi-

entropy which is a quantum version off -divergence [3].

Let Tq be a mapping on the setS(H) of all density operators toR+.
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Axiom 2. We give the postulates which the Tsallis entropy should satisfy.

(T1) Continuity: Forρ ∈ S(H), Tq(ρ) is a continuous function with respect to the1-norm

‖·‖1.

(T2) Invariance: For unitary transformationU , Tq(U
∗ρU) = Tq(ρ).

(T3) Generalized mixing condition: Forρ =
⊕

n
k=1λkρk onH =

⊕n
k=1 Hk, whereλk ≥ 0,∑n

k=1 λk = 1, ρk ∈ S(Hk), we have the additivity:

Tq(ρ) =
n∑

k=1

λq
kTq(ρk) + Tq(λ1, . . . , λn),

where(λ1, . . . , λn) represents the diagonal matrix(λkδkj)k,j=1,...,n.

Theorem 1.2. If Tq satisfies Axiom 2, thenTq is uniquely given by the following form

Tq(ρ) = µqSq(ρ),

with a positive constant numberµq depending on the parameterq > 0.

Proof. Although the proof is quite similar to that of Theorem 2.1 in [8], we present it for readers’

convenience. From (T2) and (T3), we have

Tq(λ1, λ2) = λq
1Tq(1) + λq

2Tq(1) + Tq(λ1, λ2),

which impliesTq(1) = 0. Moreover, by (T2) and (T3), whenpn 6= 1, we have

Tq (p1, . . . , pn−1, λpn, (1− λ) pn)

= pq
nTq (λ, 1− λ) + (1− pn)q Tq

(
p1

1− pn

, . . . ,
pn−1

1− pn

)
+ Tq (pn, 1− pn)

and

Tq (p1, . . . , pn−1, pn) = pq
nTq (1) + (1− pn)q Tq

(
p1

1− pn

, . . . ,
pn−1

1− pn

)
+ Tq (pn, 1− pn) .

From these equations, we have

(1.4) Tq (p1, . . . , pn−1, λpn, (1− λ) pn) = Tq (p1, . . . , pn−1, pn) + pq
nTq (λ, 1− λ) .

If we setλpn = y and(1− λ)pn = z in (1.4), then forpn = y + z 6= 0 we have

(1.5) Tq (p1, . . . , pn−1, y, z) = Tq (p1, . . . , pn−1, pn) + pq
nTq

(
y

pn

,
z

pn

)
.

Then for anyx, y, z ∈ R such that0 ≤ x, y < 1, 0 < z ≤ 1 andx + y + z = 1, we have

Tq(x, y, z) = Tq(x, y + z) + (y + z)qTq

(
y

y + z
,

z

y + z

)
= Tq(y, x + z) + (x + z)qTq

(
x

x + z
,

z

x + z

)
.

If we settq(x) ≡ Tq(x, 1− x), then we have

tq(x) + (1− x)qtq

(
y

1− x

)
= tq(y) + (1− y)qtq

(
x

1− y

)
.
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Takingx = 0 and somey > 0, we haveTq(0, 1) = tq(0) = 0 for q 6= 0. Again settingλ = 0 in

(1.4) and using (T2), we have the reducing condition

Tq(p1, . . . , pn, 0) = Tq(p1, . . . , pn).

ThusTq satisfies all conditions of the generalized Faddeev’s axiom (F1), (F2) and (F3). There-

fore we can apply Theorem 1.1 so that we obtainTq(λ1, . . . , λn) = µqHq(λ1, . . . , λn). Thus we

haveTq(ρ) = µqSq(ρ), for density operatorρ. �

Remark 1.3. For the special caseq = 0 in the above theorem, we need the reducing condition

as an additional axiom.

2. A CONTINUITY OF TSALLIS ENTROPY

We give a continuity property of the Tsallis entropySq(ρ). To do so, we state a few lemmas.

Lemma 2.1. For a density operatorρ on the finite dimensional Hilbert spaceH, we have

Sq(ρ) ≤ lnq d,

whered = dimH < ∞.

Proof. Since we havelnq z ≤ z − 1 for q ≥ 0 andz ≥ 0, we havex−xqy1−q

1−q
≥ x− y for x ≥ 0,

y ≥ 0, q ≥ 0 andq 6= 1, Therefore the Tsallis relative entropy [5]:

Dq(ρ|σ) ≡ Tr[ρ− ρqσ1−q]

1− q

for two commuting density operatorsρ andσ, q ≥ 0 andq 6= 1, is nonnegative. Then we have

0 ≤ Dq(ρ|1dI) = −dq−1 (Sq(ρ)− lnq d). Thus we have the present lemma. �

Lemma 2.2. If f is a concave function andf(0) = f(1) = 0, then we have

|f(t + s)− f(t)| ≤ max {f(s), f(1− s)}

for anys ∈ [0, 1/2] andt ∈ [0, 1] satisfying0 ≤ s + t ≤ 1.

Proof.

(1) Consider the functionr(t) = f(s) − f(t + s) + f(t). Thenr′(t) ≥ 0 sincef ′ is

a monotone decreasing function. Thus we haver(t) ≥ 0 by r(0) = 0. Therefore

f(t + s)− f(t) ≤ f(s).

(2) Consider the function ofl(t) = f(t + s) − f(t) + f(1 − s). Thenl′(t) ≤ 0. Thus we

havel(t) ≥ 0 by l(1− s) = 0. Therefore−f(1− s) ≤ f(t + s)− f(t).

Thus we have the present lemma. �

Lemma 2.3. For any real numberu, v ∈ [0, 1] and q ∈ [0, 2], if |u − v| ≤ 1
2
, then|ηq(u) −

ηq(v)| ≤ ηq(|u− v|).
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Proof. Sinceηq is a concave function withηq(0) = ηq(1) = 0, we have

|ηq(t + s)− ηq(t)| ≤ max {ηq(s), ηq(1− s)}

for s ∈ [0, 1/2] andt ∈ [0, 1] satisfying0 ≤ t + s ≤ 1, by Lemma 2.2. Here we set

hq(s) ≡ ηq(s)− ηq(1− s), s ∈ [0, 1/2], q ∈ [0, 2].

Then we havehq(0) = hq(1/2) = 0 andh′′q(s) ≤ 0 for s ∈ [0, 1/2]. Therefore we have

hq(s) ≥ 0, which implies

max {ηq(s), ηq(1− s)} = ηq(s).

Thus we have the present lemma by lettingu = t + s andv = t. �

Theorem 2.4. For two density operatorsρ1 andρ2 on the finite dimensional Hilbert spaceH

with dimH = d andq ∈ [0, 2], if ‖ρ1 − ρ2‖1 ≤ q1/(1−q), then

|Sq(ρ1)− Sq(ρ2)| ≤ ‖ρ1 − ρ2‖q
1 lnq d + ηq(‖ρ1 − ρ2‖1),

where we denote‖A‖1 ≡ Tr
[
(A∗A)1/2

]
for a bounded linear operatorA.

Proof. Let λ(1)
1 ≥ λ

(1)
2 ≥ · · · ≥ λ

(1)
d andλ

(2)
1 ≥ λ

(2)
2 ≥ · · · ≥ λ

(2)
d be eigenvalues of two density

operatorsρ1 andρ2, respectively. (The degenerate eigenvalues are repeated according to their

multiplicity.) We setε ≡
∑d

j=1 εj andεj ≡
∣∣∣λ(1)

j − λ
(2)
j

∣∣∣. Then we have

εj ≤ ε ≤ ‖ρ1 − ρ2‖1 ≤ q1/(1−q) ≤ 1

2

by Lemma 1.7 of [8]. Applying Lemma 2.3, we have

|Sq(ρ1)− Sq(ρ2)| ≤
d∑

j=1

∣∣∣ηq

(
λ

(1)
j

)
− ηq

(
λ

(2)
j

)∣∣∣ ≤ d∑
j=1

ηq(εj).

By the formulalnq(xy) = lnq x + x1−q lnq y, we have

d∑
j=1

ηq(εj) = −
d∑

j=1

εq
j lnq εj

= ε

{
−

d∑
j=1

εq
j

ε
lnq

(εj

ε
ε
)}

= ε

{
−

d∑
j=1

εq
j

ε
lnq

εj

ε
−

d∑
j=1

εq
j

ε

(εj

ε

)1−q

lnq ε

}

= εq

d∑
j=1

ηq

(εj

ε

)
+ ηq(ε)

≤ εq lnq d + ηq(ε).

In the above inequality, Lemma 2.1 was used forρ = (ε1/ε, . . . , εd/ε). Therefore we have

|Sq(ρ1)− Sq(ρ2)| ≤ εq lnq d + ηq(ε).
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Now ηq(x) is a monotone increasing function onx ∈ [0, q1/(1−q)]. In addition,xq is a monotone

increasing function forq ∈ [0, 2]. Thus we have the present theorem. �

By taking the limit asq → 1, we have the following Fannes’ inequality (see pp.512 of [7],

also [4, 2, 8]) as a corollary, sincelimq→1 q1/(1−q) = 1
e
.

Corollary 2.5. For two density operatorsρ1 andρ2 on the finite dimensional Hilbert spaceH

with dimH = d < ∞, if ‖ρ1 − ρ2‖1 ≤
1
e
, then

|S1(ρ1)− S1(ρ2)| ≤ ‖ρ1 − ρ2‖1 ln d + η1(‖ρ1 − ρ2‖1),

whereS1 represents the von Neumann entropyS1(ρ) = Tr[η1(ρ)] andη1(x) = −x ln x.
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