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ABSTRACT  1 

Heat stress (HS) causes hyperthermia, and at its most severe form, can lead to death. 2 

More commonly, HS reduces feed intake, milk yield, growth rate and reproductive 3 

function in many mammals and birds, including the important cattle breeds in Japan. 4 

Rectal temperatures greater than 39.0°C and respiration rates greater than 60 per 5 

minute indicate cows are undergoing HS sufficient to affect milk yield and fertility. 6 

Heat stress compromises oocyte quality and embryonic development, reduces expression 7 

of estrus and changes secretion of several reproductive hormones. One of the most 8 

effective ways to reduce the magnitude of HS is embryo transfer, which bypasses the 9 

inhibitory effects of HS on the oocyte and early embryo. It may also be possible to select 10 

for genetic resistance to HS. Cooling can also improve reproductive performance in cows 11 

and heifers, and probably, the most effective cooling systems currently in use are those 12 

that couple evaporative cooling with tunnel ventilation or cross ventilation. Its effect to 13 

improve reproductive performance in Japan remains to be evaluated. 14 

 15 
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INTRODUCTION 1 

Heat stress (HS) can be defined as the forces external to the animal that act to 2 

displace body temperature from set-point temperature (Hansen 2009). Body 3 

temperature is closely regulated by matching heat production with heat loss to the 4 

environment via conduction, convection, radiation and evaporation. At its most severe, 5 

HS induces heat stroke and death in domestic animals. It also reduces feed intake, 6 

productivity and reproduction (Collier et al. 2006; Hansen 2009). An example of a cow 7 

exposed to HS is shown in Figure 1. 8 

Japan has experienced unusual summer weather in the past two decades, most 9 

notably in 1994 and 2010. In 1994, 4,258 dairy cows were killed by HS, and financial 10 

losses totaled 127 million yen. The Ministry of Agriculture, Forestry and Fisheries 11 

reported that the 2010 summer heat wave of 1 July to 15 August killed 959 dairy cows, 12 

235 beef cattle, 657 pigs, and 425,000 chickens. A particularly serious loss occurred in 13 

Tohoku region located in the northeastern portion of Honshu island. The climate of 14 

Tohoku is cooler than in other parts of Honshu and the severity of the HS problem might 15 

have been due to a failure of animals to be sufficiently adapted to HS or by failure of 16 

farmers to take effective countermeasures. The importance of HS for dairy production 17 

can be recognized by not only considering deaths caused by HS but by the loss of milk 18 

production and reproduction (Kadokawa 2011). 19 

Heat stress is not confined to dairy cows in hot climates. Indeed, hyperthermia 20 

occurs in lactating dairy cows at temperatures as low as 25 to 28°C (Berman et al. 1985; 21 

Sartori et al. 2002) and decreased reproductive function during the summer has been 22 

reported in regions with temperate climates (Udomprasert & Williamson 1987; Sartori 23 

et al. 2002; Ambrose et al. 2006). The summer suppression of production and 24 

reproduction in Holsteins occurs even in Hokkaido (Kadokawa 2007), which is cool and 25 

one of the most important dairy farming area in Japan. Lactating cows are more 26 
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sensitive to HS than non-lactating heifers (Badinga et al. 1985; Sartori et al. 2002) 1 

because lactating cows consume more feed and produce more heat than nonlactating 2 

heifers (Berman 2005). Nonetheless, HS can affect non-lactating cows. Recently, 3 

Sakatani et al. (2011) reported that summer heat affects estrous behavior and 4 

reproductive function in Japanese Black beef cattle. 5 

The inhibitory effects of HS on production and fertility are likely to increase 6 

(Hansen 2007), given that increased heat generation due to improvements in milk 7 

production can make it more difficult to regulate body temperature during HS (Berman 8 

et al. 1985; Berman 2005). Global climate change will also exacerbate the problem of HS. 9 

Therefore, strategies that mitigate the negative effects of HS on reproductive function 10 

are likely to become essential for continued improvement in reproductive efficiency of 11 

dairy and beef cows. 12 

This review aims to briefly describe mechanisms by which HS compromises 13 

reproduction and describe countermeasures that can be taken at the animal and facility 14 

level to reduce the impact of HS. 15 

 16 

EVALUATION INDICES OF THE MAGNITUDE OF HS IN SUMMER 17 

The magnitude of HS is caused by the combined effects of dry bulb temperature 18 

(Tdb), humidity, solar radiation, and wind speed. Japan has four distinct seasons, 19 

autumn, winter, spring, and summer but a variety of climates because of the wide range 20 

of latitude (from 25 degN to 45 degN) and longitude (from 122 degE to 145 degE) 21 

encompassing the country. Two primary factors influence Japan's climate: its location 22 

near the Asian continent and the existence of major oceanic currents. 23 

In general, Japan is a rainy country and the climate from June to September is 24 

marked by hot, wet weather brought by tropical airflows from the Pacific Ocean and 25 

Southeast Asia. There is a marked rainy season, Tsuyu, that begins in early June and 26 
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continues for about a month. It is followed by a hot and sticky summer, with Tdb as high 1 

as 40°C and relative humidity as high as 92 %. Five or six typhoons pass over or near 2 

Japan every year from early August to early September. About 70 to 80 percent of the 3 

100-200 cm annual precipitation falls in the period between June and September. 4 

Given the wide variety of climates in Japan, it would be useful to have an index 5 

estimating the magnitude of HS to aid farmers. Many temperature-humidity indices 6 

(THI) have been developed but these are only slightly better than Tdb alone in predicting 7 

rectal temperature during HS (Dikman & Hansen 2009). In Florida USA, a Tdb of 29.7°C 8 

was associated with an average rectal temperature of 39°C (mild hyperthermia), and a 9 

Tdb of 31.4°C was associated with an average rectal temperature of 39.5°C (Dikmen & 10 

Hansen 2009). Using dairy cows in south-western Japan (Kumamoto prefecture), Tani et 11 

al. (2010) reported that pregnant cows had lower rectal temperature than non-pregnant 12 

cow at Day 7 (38.7°C vs. 39.4°C, P<0.05) or 8 (38.8°C vs. 39.1°C, P<0.05) after artificial 13 

insemination (AI). Probably the best method for assessing HS is to measure rectal 14 

temperatures and respiration rates during the afternoon in a few sentinel cows. Rectal 15 

temperatures greater than 39.0°C, and respiration rates greater than 60 per minute 16 

indicate cows are undergoing HS sufficient to affect milk yield and fertility. This 17 

recommendation is based on the observation that milk yield declined when rectal 18 

temperatures reached (39oC) (Zimbelman et al. 2009) and that conception rate declined 19 

6.9-12.8% for each 0.5oC increase in uterine temperature above the mean temperature of 20 

38.3-38.6oC (Gwazdauskas et al. 1973). Note that rectal temperature is about 0.2oC 21 

lower than uterine temperature (Gwazdauskas et al. 1973). 22 

 23 

EFFECTS OF HEAT STRESS ON CONCEPTION RATES  24 

In many areas of the world, conception rates decrease dramatically in dairy cows 25 

in the summer compared with other seasons (Zeron et al. 2001; Sartori et al. 2002; 26 
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Garcia-Ispierto et al. 2007; Huang et al. 2008; Flamenbaum & Galon 2010). Summer HS 1 

can also decrease the conception rates of beef cows (Azzam et al. 1989) including 2 

Japanese Black cows in southern part of Japan (Ogawa et al. 1978). 3 

There are many causes for low conception rate during the summer including 4 

reduced oocyte quality (Gendelman et al. 2010; Sherab-El-Deen et al. 2010), failure of 5 

fertilization (Sartori et al. 2002), reduced embryonic development (Ealy et al. 1993; 6 

Sartori et al. 2002), and altered secretion of various hormones. 7 

Oocytes collected from Holstein cows during summer possess decreased ability to 8 

develop to the blastocyst stage after in vitro fertilization (IVF) when compared with 9 

oocytes collected during winter (Rocha et al. 1998; Al-Katanani et al. 2002a, Gendelman 10 

et al. 2010). Lower fertility of repeat-breeder Holstein cows is associated with poor oocyte 11 

quality and this negative effect is enhanced during HS (Ferreira et al. 2011). The 12 

mechanism by which HS during oogenesis compromises oocyte function is likely to 13 

involve alterations in follicular function. Heat stress causes deviations in follicular 14 

growth by increasing numbers of small and medium follicles (Roth et al. 2000) and 15 

reducing the ability of the dominant follicle to exert dominance (Wolfenson et al. 1995). 16 

Heat stress can alter steroid secretion in goat and dairy cows (Ozawa et al. 2005; 17 

Wilson et al. 1988). Plasma concentrations of progesterone and LH can decrease during 18 

the summer in dairy cows (Wolfenson et al. 2000). In the goat, HS decreases ovarian LH 19 

receptors (Ozawa et al. 2005), and HS reduces follicular responsiveness to LH (Kanai et 20 

al. 1995). Heat stress reduces circulating concentrations of inhibin and increases FSH 21 

secretion (Roth et al. 2000). Hyperthermia also affects cellular function in various tissues 22 

of the female reproductive tract including the follicle, oocyte and the embryo (Wolfenson 23 

et al. 2000; Hansen 2009). 24 

 25 

EFFECTS OF HEAT STRESS ON ESTRUS DETECTION 26 
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Detection of estrus becomes difficult under HS, because dairy cows have reduced 1 

signs and duration of estrus during summer compared to winter (Monty & Wolff 1974; 2 

Wolff & Monty 1974; Piccione et al. 2003). Recently, Sakatani et al. (2011) reported that 3 

walking activity during estrus was less in the summer compared to the winter in 4 

Japanese Black cattle. Sakatani et al. (2011) also reported that duration of the estrous 5 

cycle was longer in summer (23.4 days, P<0.05) than winter (21.5 days) in this breed. 6 

One possible reason for the reduced estrous behavior and extended estrous cycle 7 

in summer is a reduction in concentrations of estradiol-17β (Wilson et al. 1998). Pulsatile 8 

LH secretion, which is important to stimulate estradiol-17β secretion, is suppressed in 9 

dairy cows during summer (Gilad et al. 1993). Female goats under HS have a 10 

suppressed LH surge response to gonadotropin-releasing hormone (GnRH) (Kanai et al. 11 

1995). A reduction in the LH preovulatory surge could conceivably lead to delayed 12 

ovulation (Siddiqui et al. 2010). 13 

Recently, suppression of pulsatile LH release and the preovulatory LH surge 14 

reported previously in hot climates (Wise et al. 1988; Gilad et al. 1993; Chebel et al. 15 

2004) has been also reported to occur in Hokkaido in northern Japan (Kadokawa 2007). 16 

Prepubertal heifers received a GnRH injection in May, July or November, and serial 17 

blood samples were collected to analyze the LH response curve. There were no 18 

significant differences in basal or peak LH concentrations or the area under the LH 19 

response curve among the three groups. However, the July group experienced the LH 20 

peak sooner (P < 0.05) than the May group. Therefore, HS may change facets of the 21 

mechanism controlling LH release in response to GnRH. 22 

One effective way to bypass effects of HS on detection of estrus is to implement 23 

timed artificial insemination programs in which various drugs such as GnRH, 24 

prostaglandin F2 and progesterone are used to program ovulation (Hansen & Arechiga 25 

1999). 26 
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 1 

EMBRYO TRANSFER TO OVERCOME HEAT STRESS 2 

Reductions in estrus detection may be overcome by the use of ovulation 3 

synchronization protocols like OvSynch, but preventing infertility caused by HS has 4 

been more difficult. The reproductive performance of Holstein cows compromised by HS 5 

can be improved by embryo transfer (ET). Early stage embryos are more susceptible to 6 

HS than the later stage embryos (blastocysts) (Hansen 2009). Embryo transfer improves 7 

pregnancy rates in summer because embryos are transferred after the time at which 8 

they are most sensitive to HS. Compared to AI, pregnancy rate for cows exposed to HS 9 

has been improved by transfer of either unfrozen embryos produced by superovulation 10 

(Ambrose et al. 1999; Demetrio et al. 2006) or in vitro production (IVP) (Al-Katanani et 11 

al. 2002b; Stewart et al. 2011) or by transfer of cryopreserved embryos produced by 12 

superovulation (Ambrose et al. 1999). In Kumamoto Prefecture where is very hot in 13 

summer, transfer of an IVP Japanese Black embryo following AI of Holstein semen in 14 

dairy cows resulted in greater pregnancy rate than for pregnancy rate after conventional 15 

AI (Tani et al. 2010). On the other hand, embryo transfer has not improved pregnancy 16 

rate when cryopreserved embryos produced by in vitro were transferred (Al-Katanani et 17 

al. 2002b; Stewart et al. 2011). The problem of poor estrus detection during HS has been 18 

overcome by the development of timed ET procedures based on the use of ovulation 19 

synchronization regimens such as OvSynch developed for timed AI (Al-Katanani et al. 20 

2002b; Stewart et al. 2011). 21 

In a recent study, transfer of fresh IVP embryos using sex-sorted semen to 22 

lactating dairy cows during summer increased the percentage of cows that established 23 

pregnancy and that gave birth to a live heifer compared with cows bred by AI with 24 

conventional semen (Stewart et al. 2011). 25 
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Despite the effectiveness of ET during the summer, use of this approach 1 

commercially has been limited. The high costs of embryo production by superovulation 2 

and transvaginal ovum pickup may be overcome through the use of abattoir-derived 3 

oocytes in conjunction with IVP. However, decreased survival following cryopreservation 4 

(Al-Katanani et al. 2002b; Stewart et al. 2011) limits the widespread application of IVP 5 

embryos in the commercial dairy industry. Improvements in the culture media to 6 

produce embryos offers opportunities for producing embryos in vitro with high potential 7 

for surviving cryopreservation and for establishment of pregnancy, although IVP 8 

systems are still not optimal (Block et al. 2010; Stewart et al. 2011). 9 

Insulin-like growth factor-1 (IGF1) can improve resistance of day 5 10 

preimplantation embryos to heat shock but not two-cell embryos (Jousan & Hansen 11 

2007; Bonilla et al. 2011). Treatment of cultured embryos with IGF1 improves embryo 12 

survival after transfer into heat-stressed recipients but not after transfer into recipients 13 

not exposed to HS (Block & Hansen 2007; Loureiro et al. 2009). 14 

 15 

NUTRITIONAL MANAGEMENT  16 

An effective nutritional strategy for reducing effects of HS on reproduction has not 17 

yet been developed. One approach has been to administer antioxidants predicated on the 18 

idea that free radicals generated as a result of hyperthermia contribute to increased 19 

embryonic mortality (Hansen 2007). However, fertility of heat-stressed cows have not 20 

been improved by antioxidant treatments, including vitamin E (Paula-Lopes et al. 2003), 21 

selenium (Paula-Lopes et al. 2003), and short-term treatment with -carotene (Arechiga 22 

et al. 1998a). However, long-term feeding of -carotene (at least 90 days) did improve the 23 

proportion of cows pregnant by 120 days postpartum (Arechiga et al. 1998b). Other 24 

nutritional approaches, such as feeding polyunsaturated fatty acids (Bilby et al. 2006) 25 

and yeast cultures (Bruno et al. 2009), did not cause a significant effect on fertility in 26 
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dairy cows. 1 

Feeding encapsulated niacin increased evaporative heat loss during peak thermal 2 

load and was associated with a small but detectable reduction in rectal and vaginal 3 

temperatures in lactating dairy cows experiencing mild HS (Zimbelman et al. 2010). 4 

Effects of feeding encapsulated niacin on fertility under HS remains to be evaluated. 5 

 6 

GENETIC IMPROVEMENT  7 

There is sufficient diversity among beef breeds in thermotolerance to allow 8 

utilization of tropically-adapted breeds in some countries (Hansen 2009). However, such 9 

a strategy is not feasible for Japan, because Japanese Black cattle have advantages in 10 

terms of meat quality that cannot be found in other breeds. In dairy cattle, the 11 

differences in milk yield between tropically-adapted breeds and breeds from Northern 12 

Europe that have been selected for milk yield are so great that it is not economically 13 

feasible to make extensive use of tropically-adapted breeds in many situations including 14 

those in Japan and the United States. 15 

While introduction of tropically-adapted breeds is not always feasible, it is likely 16 

that selection for thermotolerance within a breed is possible. Estimates of the 17 

heritability of rectal temperature ranged from 0.25 to 0.66 (Finch 1986). Advances in 18 

molecular genetics may simplify selection for thermotolerance. Genetic markers for 19 

thermotolerance have been identified (Hayes et al. 2009) as well as single nucleotide 20 

polymorphisms in specific genes such as ATP1A1 (Liu et al. 2011) that affect body 21 

temperature regulation during HS. The importance of genotype for a single gene has 22 

been shown by Dikmen et al. (2008) who studied the effect of introduction of the slick 23 

gene affecting hair length into Holsteins. Slick-haired Holstein cows regulated body 24 

temperature more effectively than wild-type cows under high ambient temperature. 25 

 26 
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FACILITIES FOR REDUCING HEAT STRESS 1 

Increased uterine temperature both on the day of insemination and the day after 2 

had the greatest negative effect on conception (Thatcher 1974). In Florida (Ealy et al. 3 

1994), pregnancy rates were higher in cows cooled by both sprinklers and forced 4 

ventilation during final maturation of oocytes and early embryonic development (from 2 5 

to 3 days before until 5 to 6 days after AI) compared with those cows exposed to shade 6 

only. In Iran (Moghaddam et al. 2009), dairy heifers cooled with sprinkler and fan from 2 7 

h before until 2 h after AI experienced lower rectal temperature (38.7C) than those of 8 

cows with sprinklers alone (39.2C) or without cooling (39.3C) at the time of AI and had 9 

higher pregnancy rate during heat stress, compared with heifers cooled with sprinkler 10 

only and heifers without cooling. Although seasonal variation in reproductive function 11 

can persist after altering environment through methods such as shade, fans, and 12 

sprinklers (Hansen & Arechiga 1999), the magnitude of seasonal effects is reduced. 13 

Therefore, cooling during the summer heat season is very important to reduce body 14 

temperature and improve reproductive performance in cows and, in some circumstances, 15 

heifers. 16 

Cooling can be of reduced effectiveness when air temperatures are very high, 17 

because of reduced conductive and convective cooling, or when humidity is high, because 18 

of reduced evaporative heat loss. Evaporative cooling may also not be desirable when 19 

straw bedding is used because of the possibility that increased humidity can increase the 20 

number of bacteria in the straw (Ward et al. 2002). 21 

Probably, the most effective cooling systems currently in use are those that couple 22 

evaporative cooling with tunnel ventilation or cross ventilation. In these systems, fans 23 

draw air through the end (tunnel ventilation) or side wall (cross ventilation) and the air 24 

is humidified by high pressure misters over feed bunks and free stalls. Smith et al. 25 

(2006a, b) reported that evaporative tunnel ventilation caused increased feed intake 26 
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(12% over cows housed outside) and milk yield (2.6 kg/cow per day). In Utsunomiya 1 

University located in east Japan, a tunnel ventilation system in a small scale stanchion 2 

shed (10 lactating dairy cows) improved body condition and lactation performance in the 3 

summer heat (Nagao et al. 2009). Moreover, further studies are warranted to evaluate 4 

the effects of evaporative tunnel and cross ventilation on reproductive performance in 5 

cows and heifers in Japan and to evaluate its cost-effectiveness under Japanese 6 

conditions.  7 

 8 

CONCLUSIONS 9 

Heat stress can have severe effects on productivity of livestock in Japan as well 10 

as many other areas of the world. Rectal temperatures greater than 39.0°C and 11 

respiration rates greater than 60 per minute indicate cows are undergoing HS sufficient 12 

to affect milk yield and fertility. Methods to alleviate effects of HS include ET to improve 13 

fertility. Given the growing importance of HS, development of new approaches to combat 14 

HS is justified. Advances in genetic technologies make it likely that cattle can be made 15 

more resistant to HS without compromising production. It may be beneficial to introduce 16 

evaporative tunnel or cross ventilation systems into Japan to cool cows body and reduce 17 

body temperature, although study to determine effectiveness of these housing systems is 18 

warranted. More research into this question and others will be required to overcome HS. 19 

 20 
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Figure 1 Panting and drooling of a dairy cow exposed to heat stress in Florida (Photo 4 

courtesy of J.E. P. Santos). 5 
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