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Abstract

Variational problems on Riemannian manifolds have been playing a significant role
in geometry and analysis. In this thesis, we give a research on a variational problem
from a viewpoint of pullback metrics.

Let M and N be Riemannian manifolds without boundary, and let g and h be
Riemannian metrics of M and N respectively. Let f be a smooth map from M into
N and df be its differential map.

We consider a metric pulled back by the map f. We call it a pullback metric and
denote it by f*h. The pullback metric f*h is defined by

(f*R)(X, Y) = h(df (X), df(Y)),

where X and Y are vector fields on M. The pullback metric f*h is a (0, 2)-type
tensor and it is natural to take its trace and norm.
The trace of the pullback metric f*h is given by

Tr,(f*h) = Zh(df(ei)’df(ei))
= |ldfl”*,

where {e;} is a local orthonormal frame on M. A critical point of the energy func-
tional

B(f) = /M df 2o,

is called a harmonic map, where dv, is the volume form on M. The research on
harmonic maps originated with Eells and Sampson. The theory of harmonic maps has
been making tremendous progress in the last fifty years. Many researches on harmonic
maps have brought interesting results, not only of the properties of harmonic maps
themselves but also of the applications of them. Well-known important examples of
harmonic maps are geodesics, minimal surfaces, harmonic functions, and so on.

We pay attention to the norm of the pullback metric

IF*RI? = h(df (e:), df(e;))”,
1]
and consider the functional

3(f) = /M 1£h2 dv,



Generally speaking, the norm contains more information than the trace does. This
doctoral thesis deals with variational problems for the functional .

We give a summary of the contents of this thesis.

In Chapter 0, we give a brief review of background materials for this thesis with
some notations. To describe our results, we need some basic notions in differential
geometry, analysis and global analysis. We also give a lemma which is used in our
argument. We define a (0, 1)-type tensor oy by

o1(X) = D h(df(X), df (e:))df (es)
The tensor o plays an important role in our arguments.

In Chapter 1, we give a first variation formula for the functional ® and introduce
the notion of stationary maps. By the first variation formula, we get the Euler-
Lagrange equation

divgo; = 0,

where divyo; denotes the divergence of o;. For any smooth map f, we call f a
stationary map if its first variation vanishes, that is, it satisfies the Euler-Lagrange
equation. The notion of stationary maps is a central theme in this thesis.

In Chapter 2, we give some examples of stationary maps. Geodesics, 4-harmonic
functions and isometric harmonic maps are stationary maps. They illustrate the class
of stationary maps, and show that this class contains many important examples.

In Chapter 3, we give a second variation formula. The second variation formula
contains the term of curvature tensor of N. This formula is used in the argument of
the stability of stationary maps.

In Chapter 4, we prove the existence of minimizers of the functional ® in each
3-homotopy class of the Sobolev space LL:4(M, N). We say that two maps in
LY4(M, N) are 3-homotopic if they are homotopic on the three dimensional skele-
tons of a triangulation of M. By the results of White, we see that the 3-homotopy
is well-defined on LY*(M, N) . We give a proof of this existence theorem by using
this fact.

In Chapter 5, we give a monotonicity formula for stationary map. We prove
this formula under a weaker condition. Monotonicity formulas are utilized in the

regularity theory of solutions of variational problems.
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In Chapter 6, we give a Bochner type formula. The Bochner type formula contains
the Ricci curvature of M and the curvature tensor of N. Bochner type formulas play
an important role in the Bochner technique.

In Chapter 7, in the case that the target manifold is a Lie group with bi-invariant
metric, we describe the Euler-Lagrange equation through the Maurer-Cartan form.
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Basic notations

Throughout this thesis, we use the following notations:
M, N : Riemannian manifolds

g, h : Riemannian metrics of M and N respectively

f : a smooth map from M into N

{e;} : alocal orthonormal frame on M

X,Y, Z : vector fields on M

U, V, W : vector fields on N



Introduction

In this thesis, we consider the functional

a(f) = /M |Fh|2 do,

where dv, is the volume form on a Riemannian manifold M.

First of all, we give the definition of this functional & more precisely. Let M
and N be Riemannian manifolds without boundary, and let g and h be Riemannian
metrics of M and N respectively. Let f be a smooth map from M into N and df be
its differential map. The pullback metric f*h is a (0, 2)-type tensor defined by

(f*h)(X, Y) = h(df(X), df (¥))

for any smooth vector fields X and Y on M. We take the norm of the pullback
metric

1F*hI? = 3" h(df (e:), df(e;))”,

%]

where {e;} is a local orthonormal frame on M. The functional ® defined by integrat-
ing || f*h||*> on M is the very functional which we consider.

We introduce the notion of harmonic maps, including the historical aspect. The
notion of harmonic maps originated with Eells and Sampson. In their paper published
in 1964, they proved that there exists a harmonic map between compact Riemannian
manifolds if the sectional curvature of the target manifold is non-positive, by the
heat equation method.

Many researchers have been researching on harmonic maps and reporting various
results such as the existence, the uniqueness and the stability. Well-known important
examples of harmonic maps are geodesics, minimal surfaces, harmonic functions, and
so on. The research on minimal surfaces has made progress independently of that on
harmonic maps. As the research on harmonic maps developed, the relation between
harmonic maps and minimal surfaces became clear. If M is two-dimensional, under
the assumption that f is conformal, f is harmonic if and only if it is minimal.

The application of harmonic maps is researched in various regions of research.
Rigidity is known as an example of applications. An object is rigid, if the object is
not deformed with keeping its properties. The rigidity theory has made remarkable
progress by strong rigidity theorems by Siu. For further results on harmonic maps,
see Eells-Lemaire [2] and [3].



A harmonic map is a critical point of

B(f) = /M | 2dv,,
where

laf(* = > hldf (es), df (e:))

and dv, denotes the volume form on M. The functional E is called an energy func-
tional in the theory of harmonic maps. Let f; denote a compactly supported defor-
mation of f. We get the first variation formula

BB = o[ hepv) iy,
dt |, M

where V' denotes the variation vector field, and 7 is the tension field of f.

We see the energy functional E from a different viewpoint. The energy functional
E is the integral of

ldf(I* = > h(df (es), df ),

which is the norm of the differential map df. From the viewpoint of the pullback, we
regard ||df||? as the trace of the pullback metric f*h.

Generally speaking, the norm contains more information than the trace does.
This doctoral thesis deals with variational problems for the functional ®, which is an
integral of the norm.

We introduce the notion of stationary maps. We define a (0, 1)-type tensor oy by
o5(X) = Y h(df(X), df (e:)df (es)

The tensor o plays an important role in our arguments. For the functional ®, we
get a first variation formula

d®(f:)

T —4/Alh(dngO'f, V) d’Ug
for any compactly supported deformation f;, where div,o; denotes the divergence of
os. We call f a stationary map if its first variation vanishes. By the first variation
formula, a smooth map f is a stationary map if and only if

t=0

divjoy = 0,
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which is called the Euler-Lagrange equation for the functional . The notion of
stationary maps is a central theme in this thesis. Geodesics, 4-harmonic functions
and isometric harmonic maps are stationary maps. The class of stationary maps
contains important examples.

We give a second variation formula for the functional ®. Let f; ; be a compactly
supported deformation of f. Then we have

82(1)(f$,t)

1 .
| | (Hessy (%, £), divooy)do,

b [ SMTY, V) e, e

+ [ 5 H(T4 T, de) BT, ()
+ [ D (Tats dle) b (e, T ) o
-/ S HCR(e), VYW, )@ (), (),
where V and W denote the variation vector fields, and Hess; is the Hessian of f.

We prove that there exist minimizers in any 3-homotopy class. By Nash’s iso-
metric embedding, we may assume that IV is a submanifold of a Euclidean space RY.
Let

LY4(M, N) = { f e LY(M, RY) | f(z) € N ae. },

where Lb4(M, R?) denotes the Sobolev space of R?%-valued L-functions on M whose
weak derivatives are in L*. By Theorem 3.4 in White [11], we see the following
properties.

(1) The 3-homotopy is well-defined for any map f € LV4(M, N).
(2) If f; converges weakly to f, in LU'4(M, N), then f; and f., are 3-homotopic for
sufficiently large 7.

The functional ® is defined on L*4(M, N), in which the 3-homotopy is well-defined.
Then we want to minimize the functional ® in each 3-homotopy class, i.e., in the



following class:
Fi, = { feL"(M, N) | f is 3-homotopic to f; }

for any given continuous map fy from M into N. Under the assumption that M and
N are compact, we conclude that there exists a minimizer of the functional ® in Fj,.

We give a monotonicity formula for stationary maps. We prove this formula
holds under the weaker condition that f is a stationary map with respect to diffeo-
morphisms on M, i.e., f satisfies

d
E‘I’(fo%) T 0

for any compactly supported 1-parameter family ¢, of difftomorphisms on M. Under
this weaker condition, we give the following monotonicity formula.

Fix o € M and let p > 0. Let f be a stationary map with respect to diffeomor-
phisms on M. Then it satisfies

d ) cpa / 2
— e PprTm f*h||*dv, p > 0,
dp{ 5o I1f*hl[*dv,

where C is a constant and B,(z) is the ball of radius p centered at z.

Let f be a smooth map from M into N. Then the Bochner type formula is as
follows:

TALFHE = diveay — h(ry, diveos) + 2 [V(F AP
+ Y h(Vdf(er, e5), Vdf (ex, €;))h(df (e:), df (e;))

5k

+ Z h(df (MR(ei, ;) €;), os(e:))
— D h("R(df (e, df(e)df (es), o5(e)

4,7

where
ap(X) = h(os(X), 7).

5



Bochner type formulas play an important role in the Bochner technique. The Bochner
technique is useful to research on properties of manifolds.

In the case that the target manifold is a Lie group with bi-invariant metric, we
describe the Euler-Lagrange equation through the Maurer-Cartan form.
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0 Preliminaries

0.1 Riemannian geometry

A Riemannian manifold is a smooth manifold M with a Riemannian metric g. A
Riemannian metric g is an inner product on the tangent space T, M at any point
z € M. That means that g is bilinear, symmetry and positive definite.

Throughout this thesis, M and N are Riemannian manifolds without boundary.
Let g and h denote the Riemannian metrics on M and N respectively.

Let X(M) be the set of vector fields on M. We define a connection V on M by
amap V: X(M) x X(M) — X(M) with the following properties
(1) VxivZ =VxZ+VyZ,
(2) VyxZ = fVxZ,
B)Vx(Y+2)=VxY +VxZ,
(4) Vx(fY) = (X[)Y + fVxY
for X,Y, Z € X(M) and f € C®°(M). We define a torsion T" by T(X,Y) = VxY —
VyX — [X,Y], where [X,Y] = XY — YX. A connection V is called torsion free
if T =0. A Levi-Civita connection is a torsion free connection defined by Vg = 0,
ie., V(g(X,Y)) = 9g(VX,Y) + g(X,VY). We know the fact that there exists a
Levi-Civita connection uniquely on any Riemannian manifold.

Let M be an m-dimensional Riemannian manifold and V be a Levi-Civita con-
nection. A curvature tensor R is defined by

R(X,Y)Z =VxVyZ - VyVxZ — VixyZ

for X, Y, Z € X(M). By the curvature tensor R, we define a sectional curvature K
by
9(R(X, Y)Y, X)

IXAY2Z
where | X A Y| denotes the area of the plane spanned by X and Y, ie., [X AY|? =
9(X, X)g(Y,Y) — g(X, Y)2. We see that the sectional curvature determines the
curvature tensor from the definition. The curvature of M is called positive if K is
positive definite, and negative if K is negative definite. The trace of the curvature
tensor is the Ricci curvature

K(X,Y) =

Ric(X,Y) = Zg (X, ei)ei, Y),

where {e;} denotes a local orthonormal frame. In this thesis, we use this notation
for a local orthonormal frame. Furthermore the trace of the Ricci curvature is the
scalar curvature

Scal = ZRic(ei, ei) .

i=1

11



Let X be a vector field associated with a 1-parameter family ¢; of diffeomorphisms
on M. For any differential form w on M, the Lie derivative of w is defined by

d, .
Lxw = %(Qotw) o ’
where ¢jw denotes the pullback of w by ¢;.

Let f be a smooth map from M into N and df be its differential map. The
pullback metric f*h is a (0, 2)-type tensor defined by

(FR)(X, Y) = h(df (X), df (Y))

for X, Y € X(M).
A map f is an isometric embedding if it is an embedding with the condition of
f*h=g.

0.2 Lie groups
We call G a Lie group if it is a smooth manifold with a smooth group structure, i.e.,

G xG>(g,h)— g-h7! € G is smooth.

Let V be a vector space. We call [, | a Lie bracket if a bilinear map [, ] : VxV —
V satisfies
(1) (linearity) (X, aY +bZ] = o[X, Y]+ b[X, Z],
(2) (skew-symmetry) [X,Y]=-[Y, X],
(3) (Jacobi identity) [[X, Y], Z]1+[[Y, 2], X]+[[Z, X], Y] =0
for X,Y,Z eV and a, b€ R.

Let g denote the Lie algebra associated with the Lie group G. A 1-form 8 of G is
called a Maurer-Cartan form if 6,(X;) = X, where z € G, X, € T,G, X € g.

0.3 Sobolev spaces
The set of maps of class C*® from M into R? is denoted by C*®°(M, R?). The norm

|| ||1,p is defined by
p p /e
£ = ([ \rPdsy+ [ farp v,
M M

for 1 < p < co. The Banach space L1?(M, RY) is defined by taking the completion
of C*(M, R?) with respect to the norm || ||1,,.
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Let X be a Banach space and X* be the dual space of X. Let (, ) be the pairing
of X and X*. A sequence {z;}32; in X converges weakly to z € X if
(@i,y) = {z,y) (i 00)

for y € X*.

0.4 Homotopy

Let X be a topological space and A be a subspace of X. We call (X, A) a topological
pair. We define a map f : (X, A) —» (Y',B) by f : X — Y such that f(4) C B. Let
fi, f2: (X, A) —» (Y, B) and I = [0, 1]. We call f; and f, homotopic if a continuous
map H : (X, A) x I — (Y, B) satisfies

(1) H(=, 0) = f1(=),

(2) H(z, 1) = fala),

(38) H(A,t) c B foranytel.

Then we write f; ~ f. If A= B = (), we say that f; and f, are (freely) homotopic.
If X =I™ A=0I™ and B = {z0}, f1 and f, are homotopic based at z,. We define
a homotopy group by mm(Y; 7o) = { : (I, OI™) — (¥, {zo})}/ ~.

0.5 Harmonic maps

Let M and N be Riemannian manifolds without boundary, and let f be a smooth
map from M into N. A harmonic map is a critical point of the energy functional

B(f) = /M 1df P,

where

ldfI1* = h(df (e:), df (e:)) ,
i=1
and dv, denotes the volume form on M. The tensor

(1) 1= (Ved)()

7

is called a tension field of f. Then f is a harmonic map if and only if 74 = 0.

0.6 A preliminary lemma

We give a preliminary lemma, which we use in our argument. Let M and N be Rie-
mannian manifolds without boundary with Riemannian metrics g and h respectively.

13



Let f be a smooth map from M into N. We take the norm of the pullback metric

I1£°h1 = 3" (df (es), df (e))”,

6]

and consider the functional

a(f) = /M 1Fh2 do,

We define the tensor o, which plays an important role in our arguments, as
follows:

2) o7(X) = D_ hdf (X), df (e:))df (e:)

for any vector field X on M. We give the following lemma:

a N\
Lemma 0.1 Let X be a vector field on M and U be a vector field on N. Then

we have

3) S h(U, dF(e) h(dF(X), dF(e) = (U, ox(X)).
In particular,

(4) > h(U, df(e:)) h(df (X), df (e:)) = h(U, 05(X))

(5) 7Rl = D h(df(es), op(es))
N l J

Proof. The equality (3) easily follows from the definition of or. Indeed, since
h(A, B)h(C, D) = h(A, h(C, D)B), we have

>_ WU, dF(e)) h(dF(X), dF(e:)) = h(U, 3 h(dF(X), dF(e:))dF (e:))
= h(U, or(X)).

Furthermore let U = df(e;) and let X = ¢; in (4), and sum with respect to j, and
then we have (5). 0O
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1 First variation formula

In this chapter we give a first variation formula for the functional ®. Let M and N
be Riemannian manifolds without boundary and f be a smooth map from M into
N.

1.1 First variation formula

Take any smooth deformation F' of f, i.e., any smooth map
F : (-, e)xM — N st. F(0, z) = f(z),

where ¢ is a positive constant. Suppose that the deformation F' is compactly sup-
ported, i.e., F(t,z) = f(z) for any ¢ outside a fixed compact set. Let fi(z) = F(¢t, z),
and then fo(z) = f(z). We often say a deformation f;(z) instead of a deformation
F(t, z). Let V = dF(§)|,_, denote the variation vector field of the deformation F
(see Urakawa [8] for notations). Then we have

4 )
Theorem 1.1 (first variation formula)

do(f:)
dt

—4/ h (divyoy, V) do,,
t=0 M

where dv, denotes the volume form on M and divyo; is the divergence of oy, i.e.,
divgos = 3 (Veioy) ).
- J

Proof. We calculate 2 || f¥h|* at any fixed point zop € M. The connection V is
trivially extended to a connection on (—¢, €) x M. We use the same notation V for
this connection. The frame e; is also trivially extended to a frame on (—¢, €) x (the

domain of the frame), and we use the same notation e;. Then we see Ve.-gz =V s€;
t

=0 on (—¢, €) x M. Use a normal coordinate at zo, and we can assume V,e; =0
at zo for any 4, j. Since (dF)(,2)((€:)t,2)) = (df:)s((€:)(t,z)), We denote it by dF (e;)
simply. Note that

Vs (IF(e) = (v 2 dF)(e:) = (VedF) () = Ve (dF(Z))

15



since[2, ;] = 0. Then we have

© jalin? = atzh dfu(e), dfule;)) h(dfi(er), dfile;)
= 4at2h (dF(es), dF (e;)) h(dF (e;), dF(e;))
_ Zh va (dF(e;)), dF(e;)) h(dF(e;), dF(e;))
- Zh (dF (L)), dF(e;)) h(dF(e:), dF (e;))

Lemm;0.1(3) Zh vei dF(ba—t))’ O'F(ei)) .
¥

The last equality follows from Lemma 0.1 (3) for U = V., (dF(2)) and for X =e;.
Integrate the both sides of (6) over M and use integration by parts

0
bl ds, = 4 [ STh(V.. (@P(8), ore)) du
- 4 /M S h(dF(2), Ve (or(es) du,.
Then let t = 0, and we obtain the first variation formula. [

1.2 Stationary maps

We give here the notion of stationary maps for the functional ®.

ﬁ
Definition 1.1 We call a smooth map f a stationary map if the first variation

of F (at f) identically vanishes, i.e.,

d®(f,)
dt

t=0

for any smooth deformation f; of f.
- 4

By the first variation formula (Theorem 1.1), we have
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—
Proposition 1.1 A smooth map f is a stationary map if and only if it satisfies

the equation
(7) diveoy = 0,

which is called the Euler-Lagrange equation for the functional ®, where o is the
covariant tensor defined by (2).

\_ _J

1.3 Euler-Lagrange equation in the case of surfaces

We consider the case of immersed surfaces in R3. Let D be a domain of R? with the
standard metric. Let f be a smooth map from D into R®. We write (, ) for the
inner product with respect to the standard metric. Put e; = £ and e, = 5%. In this
case, (7) is represented by the following form.

Theorem 1.2 In the case of surfaces, the Euler-Lagrange equation is represented
as
0% f o%f o f
E— +2F
O0x? + 0zdy +G oy?
L OBOf OF0f OF0f 9GOf _
Or 0x  Ox Oy Oy Or Oy Oy

where E, F, G are the first fundamental quantities, i.e.,

of of of of of of

= (e ae) 7= (5 ) = (5 3)-

17



Proof. We calculate

divgoy = (Ve05)(e1) + (Ve,07)(e2)
Ve1 (07(e1)) + Ve, (07(e2))

Ve, (h (df(el) df (e1)) df (e1) + h(df (e1), df (e2)) df (e2))
+Ve, (h(df (e2), df (e1)) df (e1) + h(df (e2), df (e2)) df (e2))

- ss{o4(2) () () o2} (2))o(3)
() #(2) +(u(2).0(3) #(8)
_ %((557 2) %; (é,(sé) ) +§”) (& %)%+ (% %) %)

_ J8E 8F oF 9?2 8G ?f
0$5£+E%§+3z55+F%‘%+3y5£+F%8%+8y5£+G :

Qo \_/

I

D

This proves the theorem. [

2 Examples

In this chapter we give some examples of stationary maps.

2.1 4-harmonic functions

We first give the definition of a p-harmonic map. Let f be a map from M into N.
We call f p-harmonic if f is a weak solution of

Try (V(lldf|IP~*df)) = 0.

Here we consider the case that the target manifold is the one-dimensional Eu-
clidean space.

Lemma 2.1 Let f be a function from M into R with the standard metric. Then
f is a stationary map if and only if it is 4-harmonic.

Proof. This result is given by Kawai-Nakauchi [4] without proof. We give a full
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proof for reader’s convenience. Since
divyo; = ;V&.(h(df(ei),df(ej))df(ej))
_ ivei((dﬂei)df(e,-f)
_ ivei(de(ej)zdf(ei>)
_ Zve,.(nd;uwf(ei))
— T, (V).

we see that f is a stationary map if and only if it is 4-harmonic. [

2.2 Geodesics

We discuss the case of curves. In this case, we see that all stationary curves are
geodesics by an arclength parameter.

Lemma 2.2 When f is parameterized by the arclength parameter, it is a sta-
tionary map if and only if it is geodesic.

Proof. Let s be an arclength parameter, i.e., || f'(s)||> = 1, where f’ is the differential
by s. Exchange the parameter ¢ for the arc length parameter s. Since

oi(#) = wa (%) 4(£))(2)
= (%),
we have
diver; = (Vodf)(2)
= V) (@ (2))-

Then, when f is parameterized by the arclength parameter, it is a stationary map if
and only if it is geodesic. [
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2.3 Radially symmetric maps with singularities

e )
Lemma 2.3 (See Kawai-Nakauchi [4].)
Let f() : B™ —» Sm1

w w

z |—E—|=f0(x),

where B™ is an m-dimensional ball and S™! is an (m — 1)-dimensional sphere.
Then the map f; is a stationary map.

I\ J

The above map f, is well-known in the theory of harmonic maps. This map gives
a structure of singularities of harmonic maps.

2.4 Other examples

4 N
Lemma 2.4 Let M and N be Riemannian manifolds and f : M — N. The
following two maps are stationary maps:

(1) f : isometric harmonic.

(2) f : totally geodesic.

Proof. We give a proof of (1). If f is isometric, i.e., f*h = g, then we see
diveoy = D Ve (h(df (), df (e))df e5)
i’j
- Z Ve, (g(ei, ej)df(ej))

4hJ

= Tr,(Vdf).

Hence, when f is isometric, it is a stationary map if and only if it is a harmonic one.
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We give a proof of (2). We have
diveoy = Zv h(df (e:), df (e}))df (e;)

_ Zh (Vesdf)(es), df (e5))df (e5)

%]

+ D hldf (e:), (Veudf) (e3)df (e5)
+ D hldf (e0),df (e)) (Veudf) (e5)

= 0,

since f is totally geodesic, i.e., Vdf =0. O

3 Second variation formula

In this chapter we give a second variation formula for the functional ®. Let M and
N be Riemannian manifolds without boundary and f be a smooth map from M into
N.

3.1 Second variation formula

Take any smooth deformation F' of f with two parameters, i.e., any smooth map
F : (- ¢e)x(=4,0)xM — N st. F(0,0,z)= f(z).

Suppose that the deformation F' is compactly supported, i.e., F'(s, t, ) = f(z) for
any s and t outside a fixed compact set. Let f; () = F(s, t, =), and then fo o(z) =
f(z). We often say a deformation fs:(z) instead of a deformation F(s, t, z). Let

V = dF (2

£)|s,t:0’

W = dF(3)|

t/1s,t=0

denote the variation vector fields of the deformation F'. Then we have
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Theorem 3.1 (second variation formula)

lazq)(fs,t)
4 0s0t |, .,

i /Mzh(v“v’ Ve, W) h(df (e:), df (e;))dv,

= —/ h(Hessf(%, ;%),divgo*f)dvg
M

n /M Y- h(VeV, df(e;)) h(VeW, df(e;))de
i /Mzh (Ve:V; df(e5)) b (df (€5), Ve, W) dog
- /M >_R("R(df(e:), V)W, df (e5)) h(df(e:), df(ej)) do

where Hess; denotes the Hessian of f, ie., Hessp(X,Y) = (Vxdf)(Y) =
(Vydf)(X).
\ J

Proof. The connection V is trivially extended to a connection on (—¢, ) X (—4, 9)
M. We use the same notation V for this connection. The frame e; is also trivially
extended to a frame on (—¢, €) x (-6, §)x (the domain of the frame), denoted by

the same notation e;. Then we see
Vgei =V
s
ot
Vel =V
2 ot
(—e, €) x M. Take and fix any point zo € M, and we calculate %Hf;,thllz at
(0, 0, o). Using a normal coordinate we can assume V,.e; = 0 at o for

(5, t, z) =
any 4, j. Then we see
Vs (aF(e) = (v%dp)(e,.) = (V.dF) (2) = V., (dF(2))
5 (AF(e) = (V%dF) (&) = (VedF)(2) = V., (dF(2)) .
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Then we have

® 1O imal = L S e, dhaeles))?
10950t 5t _4838t” 51.6i)s U118

1 62 2
= 1950 Zh (dF (e;), dF (e;))

= Y h(VaV 2 (dF (&), dF(e;)) h(dF (e:), dF (e;))

5 Os

+ ) A va (dF (es)), va (dF(e;))) h(dF (e;), dF (e;))

i,

+ Zh va (dF (e;)), dF (e;)) h(Vag(dF(ei)), dF (e;))
¢
+ Zh  (dF(€:)), dF (e)) h(AF (), V 2. (4F (7)) -
ot
We calculate the first term in the right hand side. Since

VgV%(dF(ei)) = (VaiV%dF)(e') = (VaiveidF) (%)
= (V. .VadF) (2) — "R(dF(e;), dF (

t

Flo
~—
o

) dF (5)

=V, HeSSF( , 2) — VR(dF(e;), dF (L)) dF (L),

we have
Zh (V.2V 2 (dF(e)), dF(e;)) h(dF (e:), dF (e;))
= Zh VeiHessF(—a%, %), dF(e;)) h(dF(e;), dF (e;))
= S h("R(dF(e), dF(§)) dF(§), dF(e;)) h(dF(e:), dF(e;))

On the other hand by Lemma 0.1 (3) for U = V,, Hessp (5‘95, —(%) and for X = e;, we
have

(10) > M(VeHessr (8, &), dF(e;)) h(dF (e:), dF (e;))

2%}

= Y h(VeHessp (2, 2), or(es)) -

Integrate (8) over M and use (9) and (10). Let s = ¢ = 0, and then we have the
second variation formula. [
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3.2 Some remarks

We give two remarks for the second variation formula.

Remark 3.1 Note that the first term in the right hand side in Theorem 3.1 vanishes
if f is a stationary map.

Remark 3.2 The last term of the right hand side is equal to
- /MZh(NR (df (es), V)W, oy(es))dv, -

Indeed we have this equality by Lemma 0.1 (4) for U = MR (df (e;), V) W and X =e; .

4 Minimizers in 3-homotopy classes

In this chapter we utilize the notion of 3-homotopy in a Sobolev space, which is given
by White, and construct a minimizer of the functional ® in each 3-homotopy class
of the Sobolev space.

4.1 Weak homotopy in Sobolev spaces

We assume, by Nash’s isometric embedding, that N is a submanifold of a Euclidean
space R?. Let

LY?(M, N) = { f € L'?(M, RY) | f(z) € N ae. },

where L1P(M, RY) denotes the Sobolev space of R?-valued LP-functions on M whose
weak derivatives are in L?. Then White proved that the notion of the [p — 1]-
homotopy is compatible with the Sobolev space L*»?(M, N), where [ ] denotes the
Gauss symbol, i.e., [r] is the integer greater than or equal to . Maps f; and f, are
[p — 1]-homotopic if they are homotopic on the [p — 1]-dimensional skeletons of a
triangulation of M.

Theorem W (Theorem 3.4 in White [11]. See also [10] and [1].)

(1) The [p — 1]-homotopy is well-defined for any map f € LY?(M, N).

(2) If f; converges weakly to fo in L»?(M, N), then f; and f., are [p — 1]-
homotopic for sufficiently large <.
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4.2 Minimizers in 3-homotopy classes

In this section, we assume that the Riemannian manifolds M and N are compact.
The functional ® is defined on L14(M, N), in which the 3-homotopy is well-defined.
Then we want to minimize the functional ® in each 3-homotopy class, i.e., in the
following class:

Fy, = { f€L"*(M, N) | f is 3-homotopic to fo }

for any given continuous map f, from M into N.

[Theorem 4.1 There exists a minimizer of the functional ® in Fy,. ]

Remark 4.1 When M is 4-dimensional and m4(N) = 0, any continuous minimizer
in Fy minimizes @ in its ordinary (free) homotopy class of fj.

Proof of Theorem 4.1. Take a minimizing sequence f; for @, i.e., ®(f;) converges
to the infimum of ®. Passing to a subsequence if necessary, we may assume that
f; converges weakly to a map f., in L»*(M, N). The map f. is 3-homotopic to
fo, since the weak convergence in L*(M, N) preserves 3-homotopy. Then by the
semi-continuity of @,

O(fro) < le)rglod)(fz) = infimum.

Hence we get ®(fy) = infimum, i.e., fy is a minimizer. [0

5 Monotonicity formula

In this chapter we give a monotonicity formula for stationary maps. We prove this
formula under a weaker condition.

5.1 Stationary maps with respect to diffeomorphisms

We assume the following weak notion of stationary maps.
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Definition 5.1 We call f a stationary map with respect to diffeomorphisms on
M if

d
aq’(fowt) o 0

for any 1-parameter family ¢; of diffeomorphisms on M.

J

Note that the notion of stationary maps in Definition 5.1 is weaker than that of
stationary ones in Definition 1.1, since fi(z) = f o ¢i(x) is a deformation in Theorem
1.1.

5.2 Another first variation formula

To prove the monotonicity formula, we give a first variation formula in the following
form for variations by 1-parameter families of diffeomorphisms. Let V be a compactly
supported smooth vector field on M, and let ¢; (—e < t < €) be a 1-parameter family
of diffeomorphisms on M for this vector field V. Then we have

Theorem 5.1 (first variation formula)

d®(f o ¢;)
dt

_ /M {_ £ h|2div, V + 4i:;h(df(ve,-7), Uf(ei))} dvg .

t=0

Proof. This formula follows from the general form of the first variation formula
(Theorem 1.1). Let V be the vector field for the deformation f; and set f; = f o .
Then we have

VeV = (Vedf)(V) +df (Ve,
(Vvdf)(e:) + df (Ve

V)
V),
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and hence
43 h(os(e), Vo)
| = 42”(%(60, (Vvdf)(e:) + 4Zh(0f(6i), df (Ve,V))
et @ 4§;h((vvdf>(ei), df(ej))h(df(ei;’ df(e;)) + 42ijh(of<ei), df(Ve.V))
= ﬁ%ZZ h(df (e, df(e))’) + 4§z_jh(af(e@-), df (Ve V)
= ﬁvn;fhuz + 4;h(af(ei), df(Ve.V)),
where £ denotes the Lie derivative. By Theorem 1.1,

d@(f,)
t=0 dt

d
E@(f ° )

t=0

— [ teollsnlp + 43 hlos(e), (V7))

_ /M IFh Codu, + 4 /M 3o h(os(ed, (V7)) do,

_ -./M||f*h||2dingdvg + 4/MZh(of(ei), df (Ve,V)) dvg
and then we have the formula. O
5.3 Monotonicity formula

Under the weaker condition in Definition 5.1, we give the following monotonicity
formula.
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/
Theorem 5.2 (monotonicity formula) Fix zo € M and let p > 0. Let r = r(x)

denote the distance function between zy and z. Let f be a stationary map with
respect to diffeomorphisms on M. Then it satisfies

d ) cpa- / 2
— q e Ppm f*h||“dv
dp{ oo | A{[*dv,

d
> aconptnt / Ih(df (gradr), df)|[? dv, > 0,
14 By (o)

where m is the dimension of M and C is a constant, and

|h(df (gradr), dF)I* = D h(df (gradr), df(€))* .
\ , _/

Proof. We use the argument by Price [7] (see also Xin [12], p.43). Let V be a smooth
vector field on M, which is supported compactly in B,(z,). Take a 1-parameter family
of diffeomorphisms ¢; (—¢ < t < €) of M for this vector field V. Then by the first
variation formula (Theorem 5.1), we have

(11) /M {— 1£*R|2div, V + 4Zh(df(ve,.7), af(ez-))} dv, = 0.

Let r = r(x) denote the distance function between z, and z, and let % be the gradient
vector field of the distance function r. We can take a local orthonormal frame {e;}
such that e, = 2. We adopt here a smooth vector field

Vi) = &r)ra: = E(r@)r(o)5

in a coordinate neighborhood of xy, and vanishes outside the neighborhood. The
function £(r) is defined later. We see, for 1 <i <m — 1,

(12) ZHess (e, €5)e;,
i=

where Hess(r)(X, Y) = (Vdr)(X, Y) denotes the Hessian of the function r. Indeed,

(12) holds: Since dr(e;) = g(&,€) =0( =1, - —1)and g(£, Z2) =1, we
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have

m—1 m—1
Vei‘aa—'r = Zg(vei%7 e]) 6.7 + g( 3137'7 ar> 67’ - Zg 67-7 Veze]

- —Zdr(vete] Z(Vdr €, €j) €

Here we used

0 = Ve{o(Z &)} = 9(Vas &) + (5 Vees).-
Thus (12) is proved. Then we have
(13 VoV = Va(etrg) = €ong,
or i

and for 1 <i<m-—1,
14 V.V = &(r)rVel = r)r Hess )(es, e;
1 or .7

By the comparison theorem of Hessian, we know

(15)  ~gles e)(1—cr) < Hess(r)(es ) < —gles e)(1+e7),

where ¢ is a constant which depends on the upper and lower bounds of the sectional
m

curvature of M. We calculate div, V and Z h(df (V.. V), o4(e;)) . We have
=1

m—1

(16) divyV = > g(VeV, &) + 9(VaV, £)

LD g(r)r 3 Hoss(r) (o6 e)ales, &) + (EC)7)
(m~ €)1 = er) + (€
€(r)r +me(r) = (m — Deg(r)r-

A
I IVE
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(17) 4§h(df(v V), o4(e:))
- 4§h(df(vei),of(ei)) + 4h(df(V 2 V), 05(5))

(12) & (1) 45(7’)1*:2;11Hess(r)(ei, e;)h(df (e;), oy(es)) + 4(E(r)r)'h(df (&), o5(%))
< a1 ter) 2 h(df(e), o5(e:)) + 4(E(r)r +E€(r)) h(df (£), 05(2))

— A€ (r)rh(df (L), o5(Z))

-Mg{XﬁWQUMM+hW%MM$ﬁ

+ 4ct(r)r Z h(df (es), os(e:))

-1

= 48(r)rh(df(Z), o5(Z)) + 4E()||f*h|* + 4det(r rZh (df (e:), o4(es)) -

=1

By Lemma 0.1 (4) for U = df (ai) and X = 5‘9—, we see

r

(18) A(d(2) = Y Oh(Af(), df(e)))” = ||h(df(), df)”
j=1
and
m—1 m—1 m
(19) Y h(df(e:), of(es)) 3" h(df(e:), df(e;))” < [I£*RII2.
=1 =1 j=1

We have, by (17), (18) and (19),

(20) 4 Z h(df (Ve V), 04(e:))
< 48(r)r ||h(df (L), df)|* + 4€C)IF Rl + dck(r)r|| R
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Therefore by (11), (16) and (20), we get
—/ g (r)r |IF*hl|* dvg + (4—m)/ E(r) |.f*hlI* dv,
v [ gorirnlay = —4 [ €0 IHa@), d)lf v,

where C' = (m + 3)c.
Take and fix a positive number ¢, and let ¢ be a smooth function on [0, co) such
that

1 fo<r<l1
‘P(T):%(T):{ 0 if I+e<r and () <0.

We define

and we can verify
(22) e = = pgt(r).

Then (21) and (22) imply, since || f*h|? is independent of p,
d . *
v /M £(r) I1f*hlPdv, + (4—m) /M E)|IFRI? do,
, d
e /M P, > 4o /M B (df(2), df)|>£(r)dv,

Let € tend to zero, and then, since £(r) converges to the characteristic function for
the ball B,(z,), we have

d . \
a1 ) [
Zo

B, (wo0)

+p [ ( )||f*h||2dvg>4p— | (df (L), )| dv, .
p\Z0

By (zo)

Multiply e€?p*~™ to the both sides of this inequality, and we have

d Cp 4—m/ * 7112

— h||°d

= { . o 7l }

> syt [ ), )"
wo

Thus we obtain the monotonicity formula. O
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6 Bochner type formula

In this chapter we give a Bochner type formula.

6.1 Bochner type formula

In the following Bochner type formula, we assume that f is a smooth map.

Theorem 6.1 (Bochner type formula)

(3)  ZAIFRIP = diveay — h(ry, divey) + SIV(RIP
+ > h(Vdf(ex, €5), Vdf(ex, €;))h(df(es), df (e;))
i, J,k

+ Z h(df (MR(e;, €;) €;), o5(es))
— ST R(YR(df (&), df(e;))df (ey), 04(e:))

i,

where 7; is the tension field (1) of f and a;(X) = h(os(X), 7).

.

Proof. We calculate

08) AIfHP = 1Zvekvek(2h<df<ei>, @(e)
= QZvek(Zh df (), df (e5)) Ve, hl(df (e2), di (e5)) )

- {ZZ Ve h(df (e:), df(e;))”
n szekvekhwﬂez) (e A(df (), df(e;))}

%]

= §||Vf*h||2
+ 3B VaVadf(e), df(e;)) h(df(e), df(e;)
1,] k
+ Z h(vekdf(ei), Vekdf(ej)) h(df(ez)7 df(e])) .

Lok
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Note

Y Ve Vedf(e:) = > Ve, Vedf(ex)
k k
= Y Ve Vedf(er) + df (Z YR(e;, 6k)ek) — > "R(df(es), df (ex))df (ex) -
k k

k

Then we obtain

Zh(z Ve Vadf(e), df(e)) h(df (@), df (ey)
Zh(ZV Veudf(er), df (e5)) h(df (es), df (e5))
+ Z h(df(z R(ei, ex)er) df (e5) ) h(df (e:), df (e;))
— " h(df(es), df(e;))h(VR(df (es), df (ex))df (ex), df (e5)) -

5,k

Using the tension field 7; , we see by Lemma 0.1 (4) for U = V., 7; and for X = ¢;
(26) Zh(; VeiVeudf(er), df(e))) h(df (es), ()
" S (Tars, dfe) e e dfe)
Lame 0 Z B(Vers, 05(e5))
- Z(veiaf><ei) = A7, Y (Veos)(er)

) )

= dngOlf - h(Tf, dngO'f) .

By (24), (25) and (26), we have the equality. O

6.2 Some remarks

We give two remarks for the Bochner type formula.

Remark 6.1 The second term in the right hand side of (23) vanishes if f is a sta-
tionary map, i.e., divgoy = 0.
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Remark 6.2 The last two terms in the right hand side of (23) is

(27) + h(df (MR(e;, ex) ex), df (e;)) h(df (es), df (e;))
4,5,k
— Y " h("R(df (e:), df (ex))df (ex), df (e;)) h(df (es), df (e;)) -

9,k

The first term in (27) is non-negative if the Ricci curvature of M is non-negative.
Furthermore the second term in (27) is non-negative if the curvature of N is non-
positive.

7 The case of Lie groups

In this chapter we give the Euler-Lagrange equation in the case that the target
manifold is a Lie group. Let f be a smooth map from a Riemannian manifold M
into a compact Lie group G with bi-invariant metric. Let § be the Maurer-Cartan
form on G.

7.1 The case of harmonic maps

In this section, to compare with our case in the next section, we give the following
known fact for harmonic maps into Lie groups.

Theorem 7.1 A smooth map f is harmonic if and only if divgo; = 0, where
o = f*0

For reader’s convenience, we give a proof of Theorem 7.1. To prove the theorem,
we use the following lemma which is applied also in the proof of Theorem 7.2 later.

4 N

Lemma 7.1 (See Urakawa [9], for example.)

oVxV) = X(OV))+ glor(X), V)],

where X € X(M) and V is the variation vector field. )
-
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Proof of Theorem 7.1. We have

o) = (3 (Vedi)(er))

= ZG(Ve,- (df (es)))
= Z {ei (0(df (es))) + %[Olf(ei)70(df(ei))]}

)

= Y {elarte) + Slasted,asie)

i

= > eilog(e))

1

= Y (Vaar)(e)

2
= divgoy,

since af(X) = (f*0)(X) = 0(df (X)) . This proves the theorem. [

7.2 The case of stationary maps

As we saw in Chapter 1, f is a stationary map if and only if divyoy = 0, where
o5(X) = D hldf(X), df (e:)df (&) -

We calculate the Euler-Lagrange equation in our case and we have

Theorem 7.2 A smooth map f is stationary if and only if divy8; = 0, where
Bf=0o00y.

Proof. The main idea of the proof is similar to Theorem 7.1. For simplicity, we use
the notation o instead of ay. By Lemma 7.1, we get

0(divgoy) = 9(Z(V6iaf)(ei)>
- o(Z_ve,.(of(e»))
= Y elblos(en) + 3 glaten, (0(os(en)].
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We calculate the second term of the right hand side. Note that

(B(os(es))) = 0 (Zh(df(ei),df(ej))df(ej))
= Zh(df(ei),df(ej))e(df(ej))
— Zh(df(ei)>df(ej))a(ej)-

We have
Z[a e:), (8(o(e)] = Z[a(ez Zh(df (e), df (e))le;)]
= ZZh df (€3), df (e5))[e(es), e(e;)]

- (Z+Z+Z) (df (e), df (e5) lo(es), oes)]

1< 1=3 ©>7

= > hl(df(e:), df (e)))[ex(es), aley)]

i<y

- Zh(df(ez-),df(ej))[a(ei),a(ej)]
= 0.

Therefore

B(diveoy) = Y _ei(6(os(e:)))

This completes the proof. O
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Further developments and open problems

In this thesis we discuss several results under general assumptions. For further de-
velopments, more precise arguments are necessary. We give some open problems:

(1) Find other examples of stationary maps.

(2) Classify stationary maps in some special cases, for example, the case that the
source manifold M is a surface, or the case that the target manifold N is a Lie
group. '

(3) Find minimizers in each homotopy class of smooth maps from M into N.
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