詳細なX線構造解析による {N(CH₃)₄}₂MnCl₄の 相転移機構の研究

Study on Phase Transition Mechanism of {N(CH₃)₄}₂MnCl₄ by X-ray Crystal Structure Refinement

平成23年6月

越地 尚宏

山口大学大学院理工学研究科 自然科学基盤系専攻

要 旨

{N(CH₃)₄}₂MnCl₄(以下 TMATC-Mn)は硫安系不整合結晶の中でも,圧力 -温度相図上に不整合構造並びに多数の高次整合構造を持つことで高い関 心を持たれてきた.この物質は層状に配列した分子団が *c* 軸方向に積み上げ られた基本的構造をとる.すなわち, MnCl₄四面体基とこれと擬六員環を 構成する N(CH₃)₄四面体基(以下 TMA 四面体基)とが1つの層をなす.そ して,その層間にもう一種の TMA 四面体基が位置しており,あわせて3種 類の四面体基の重心位置の変位や回転により,多彩な整合相が実現すると考 えられている.

この物質の逐次相転移系列を理解する上で,各相の構造を明らかにすることが第一歩と考え,我々は山口大機器分析センターのAFC-5Rおよび九大中 央分析センターのCAD-4の2つの機器を用いて単結晶X線回折実験をおこ ない,常圧下でI相(normal相),Ⅲ相(*c*=2*c*₀相),Ⅳ相(*c*=3*c*₀相),Ⅴ相 (normal相)の構造と相転移に伴う変化を調べた.

通常の誘電体結晶では高対称相から低対称相への相転移機構として, Order-Disorder(無秩序-秩序)型と Displacive(変位)型があげられている. この物質のI-田相転移の機構がどうであるかを調べるため,我々はさらに 転移点直下および直上の数点の温度で結晶構造解析を試みた.ところで,こ の物質系では長時間のX線照射による放射線損傷が知られている.すなわち, 多くの温度点でカウンターを用いた回折計で構造解析用データを収集する ことには制約がある.そこで,山口大機器分析センターの IP を装備した迅 速型X線回折装置 DIP3000を用いてデータ収集を行った.

I相の解析にあたっては、上述の Disorder (無秩序)型と Displacive 型の 2つのモデルで解析を行い、R 因子の程度からは Disorder 型が優位との結論 を得た.実際、回折データを元に電子密度分布を計算したところ、TMA 四 面体基の disorder は明瞭に見いだせた.しなしながら、MnCl4 四面体基につ いては確定的なことはいえなかった.さらに、Displacive 型のモデルを仮定 した解析では、相転移点に向かって温度因子の異常な増加傾向が見いだされ、 これをどう解釈するのかなどの課題が残った.

次に, I相の構造から原子・分子座標が変位して出現するⅢ相では, 超格 子構造を反映した衛星反射強度が温度降下に伴い,Ⅲ相の温度域に渡って連 続的な増加を示す.これはⅢ相内において,温度降下に伴う連続的な構造変 化や秩序化の進行を示唆するものである.我々はⅢ相内の9点の温度での単 結晶構造解析をおこない,構造変化を調べ,I相からの変化を知り,秩序化 過程の詳細な解析を試みた.

Ⅲ相の構造解析では,まず全ての四面体基が完全な秩序状態にあるという

i

モデル(Fully-Ordered モデル,以下 FOM と呼ぶ)で解析を行い, R=8%前後で収束をみた.その結果,温度降下に伴い各四面体基の重心位置や c 軸に関する回転が連続的に増加するということが分かった.この FOM 結果から観測された構造因子の位相を推定し,フーリエ合成法で各四面体基に関する電子密度分布を詳細に検討した結果,I相において a 軸に垂直な鏡映対称の関係にある2つの disorder 位置に,Ⅲ相でミラー対称消失後も原子が依然として部分的に存在し,温度降下に伴って一方は成長し他方は消失していき,それが見かけの上の重心位置の変位や四面体基の回転として観察される可能性が示唆された.

そこで2つの位置の存在確率を構造解析のパラメータとしたモデル (Partially-Ordered モデル;以下 POM と呼ぶ)での解析を行った.解析の結 果,POM が優位であることが示され、この存在確率が構造の秩序化を示す 「秩序変数」であることが判明した.また POM により前述の相転移前後で の温度因子の挙動も無理のない説明が可能になり、I-皿相転移は MnCl₄ に ついても order-disorder 的であることを確定できた.従前は split atom method (原子分割法)の成否のみに依存した議論が行われていたが、それだけでは 不十分であり、原子密度の期待値や空間的分布の様子、温度因子の挙動の検 討等、多面的考察が重要である事が明らかになった.

また前述の電子密度計算は強弾性ドメインを考慮せず実施されたが,実際 は一対の強弾性ドメインからの反射の寄与が重複したものを観測している. そこで CCD カメラを備えた X 線回折装置 (Mercury-CCD)で新たにデータ収 集を行い,そのデータに関しては強弾性ドメインを考慮した解析結果から計 算された構造因子 F_cを利用し,単分域から得られるであろう構造因子 F_oを 見積った.これを用いて最大エントロピー法(MEM)解析を行ったところ,重 い原子よりなる MnCl₄ 四面体基においてはドメインの混在したデータより 計算した電子密度分布とほぼ変わらないものが得られた.さらに比較的軽い 原子よりなる TMA 四面体基については,単分域データは秩序化の過程がよ り鮮明に見える電子密度分布図をあたえるものであった.

最後に、同族の TMATC-Zn の結晶構造との比較検討を行い、TMATC-Mn との構造的類似性を確認した.

ii

Abstract

 ${N(CH_3)_4}_2MnCl_4$ (TMATC-Mn) is well known to have various modulated incommensurate and commensurate phases in a pressure-temperature phase diagram. The crystal structure of this substance consists of two layers stacked alternately along the *c*-axis. One layer is composed of the network of MnCl₄ (TCM) tetrahedrons and ${N(CH_3)_4}$ (TMA) tetrahedrons. Another layer is formed another type of TMA.

It is considered that various modulated structures are induced by the combination of the shifts of center of mass and rotations of each tetrahedron.

We determined the crystal structures of phase I (normal), $III(c = 2c_0)$, $VI(c = 3c_0)$ and V (normal) by single-crystal diffractometry with the use of AFC-5R at Yamaguchi Univ. and CAD-4 at Kyushu Univ., respectively.

A phase transition to the commensurate phase from normal phase has been classified into two groups; one is an order-disorder type and another is a displacive one. To understand the mechanism of I-III phase transition of TMATC-Mn, we performed X-ray structure analyses at many temperature points especially just above and below I-III transition temperature T_c .

The disordered and the displacive models were analyzed for phase I. It is concluded that the disordered model is more appropriate than the displacive one. Although the disorderness of TMA was clearly confirmed by double peaks in a Fourier synthesis map, TCM could be well represented by both the models. Moreover the displacive model exhibited an abnormal increase of the thermal parameters near the transition temperature T_c .

To understand the mechanism of the phase transition, we have made X-ray structural analyses at nine temperatures in phase III especially in detail near T_c . With decreasing temperature, a continuous increase of superlattice intensity is found within all region of phase III. That result indicates the continuous structure change and ordering of constituent molecules within the whole region of phase III.

Firstly, FOM (Fully Ordered Model) is employed for the displacive type phase transition and least-squares calculations have converged at about R=0.08. The results of FOM indicate that the centers of mass of tetrahedral molecules shift, and the molecules rotate continuously and they behaved as if they behaved as the order parameters.

On first glance, obtained Fourier synthesis map for phase III seems to support FOM. But in detail analysis, two equivalent positions related by the mirror symmetry in phase I still remain in phase III, and the major peak glows and minor part shrinks with decreasing temperature. The total shape seems to shift continuously.

Thus The POM (Partially Ordered Model) for the occupation probability is employed in least-squares calculations. Moreover, a mixed model (TCM is assumed as FOM, and TMA is assumed as POM) is employed, too. The results of calculation suggest that POM is most adequate. By taking a partial order into account, the anomaly of thermal parameters near T_c disappears reasonably. Thus it is concluded that both TCM and TMA behave as order-disorder units and their occupation probability is the representative of the order parameter which changes monotonically with decreasing temperature.

Up to now, in discussion of mechanism of phase transition, a special attention has been paid mainly to the difference of R factors for structural models. However, it has become clear that the discussions based on various points of view, i.e. about expectation values of electron distribution, behavior of thermal parameters, and so on are important.

Although the observed Fourier maps are affected somehow by coexistence of monoclinic twins, Fourier synthesis maps were calculated directly from observed structure factors. In order to eliminate such effect of twins, we have recollected the X-ray data of the phase III by using a CCD camera (Mercury-CCD), and we have estimated the intensities from a single domain.

MEM (maximum entropy method) calculations are performed by the use of both single- and multi-domain intensities. Concerning to obtained electron density maps around TCM, we can recognize no significant difference in the results between using single- and multi-domain intensities. On the other hand, the ordering process of TMA is clearly demonstrated for the single-domain intensities. Thus a new analysis technique for MEM is established under the situation of the coexistence of monoclinic twins.

Finally, the crystal structure of TMATC-Zn is also discussed. The structural similarity between TMATC-Mn and -Zn is reconfirmed.

目 次

第1章 序論

- 1.1 強誘電体とは
- 1.2 強弾性体とは
- 1.3 強誘電体(強弾性体)の相転移とその機構
- 1.4 強誘電体(強弾性体)の物性と応用
- 1.5 硫安系強誘電体
- 1.6 TMATC-M 族物質群
- 1.7 TMATC-Mnの相転移系列と相図
- 1.8 TMATC-Mn に関する研究
 - 1.8.1 比熱測定
 - 1.8.2 誘電率測定
 - 1.8.3 相転移の現象論
 - 1.8.4 イージングモデル
- 1.9 本研究の目的と構成 参考文献

第2章 TMATC-Mnの逐次相転移と構造の決定

- 2.1 結晶作成と試料の準備
- 2.2 X 線回折実験
- 2.3 各相の構造の決定
 - 2.3.1 原型相(I相)の構造解析
 - 2.3.2 ドメイン構造とそれに対応した解析方法
 - 2.3.3 強弾性相(Ⅲ相)の構造解析
 - 2.3.4 Ⅳ相の構造解析
 - 2.3.5 V相の構造解析
- 2.4 まとめ
 参考文献

第3章 原型相(|相)の構造の精密化

- 3.1 実験方法
- 3.2 I 相の構造の変位型モデル (Displacive Model)
- 3.3 I相の構造の無秩序型モデル(Disorderd Model)
- 3.4 まとめ

参考文献

第4章 強弾性相(|||相)の構造の精密化

- 4.1 超格子反射強度の温度依存性
- 4.2 格子定数の温度変化
- 4.3 変位型モデル(Fully-Ordered Model)
- 4.4 変位型モデルを用いての電子密度計算
- 4.5 秩序-無秩序型モデル(Partially-Ordered Model)
- 4.6 混合モデル (Mixed Model)
- 4.7 まとめ 参考文献

第5章 最大エントロピー法による強弾性相(Ⅲ相)の電子密度分布の推定

- 5.1 目的
- 5.2 実験および解析
- 5.3 まとめ 参考文献

第6章 TMATC-Znの結晶構造

- 6.1 相転移系列
- 6.2 原型相(I相)
- 6.3 強誘電相(Ⅲ相)
- 6.4 IV相
- 6.5 V相
- 6.6 まとめと Mn 塩との比較参考文献

第7章 結論

謝辞

付録

- A1. 原子に部分的無秩序がある場合の温度因子の計算
- A2. Hamilton 検定

発表論文リスト

.

第1章 序論

第1章ではまず,強誘電体および強弾性体の定義とはどのようなものかに ついて述べている.そしてその相転移機構が大別して変位型(Displacive 型) と秩序-無秩序型(Order-Disorder 型)の2つに大別されることを述べ,そ れぞれの型の特色を説明している.そのなかで本研究の{N(CH₃)₄}₂MnCl₄ (TMATC-Mn)が属している硫安系強誘電体と呼ばれている物質群の特色 をその研究の歴史的背景を含めて説明する.また TMATC-*M* 族がその硫安 系強誘電体の中でどのような特色を持ち,その中で TMATC-Mn がどのよう に位置づけられて興味を持たれているかについて論じ,本研究の目的と意 義について説明している.

1.1 強誘電体とは

金属に外部電場を印可すると Fig. 1.1.1(a)のように金属内の自由電子が,電場と逆方 向に移動し,金属表面に誘導電荷が生じる.このような現象を静電誘導という.金属 の場合は,自由電子の分布が表面で変わるだけで,物質内部では電場はかからず,従 って,金属イオンの変位は起こらないと考えられる.

それでは自由電子を持たない絶縁体に電場を印可したら自由電子がないので何も 起こらないであろうか. 絶縁体内部も+の電気を持った陽イオンと-の電気を持った 陰イオンが配置されて,全体として電荷が中和されているので,外部電場の印可によ りそれぞれのイオンは静電気力を受けてわずかであるが陽イオンは電場の方向に,陰 イオンは電場と反対の方向にわずかに変位する. その結果,絶縁体表面に電荷(分極 電荷)を生じることになる (Fig. 1.1.1(b)). この現象を誘電分極と言い,図のように 微視的に絶縁体内部で+の電荷を持つ部分と-の電荷を持つ部分に分かれることを 電気分極という.

このように誘電体は外部電場の印可により電気分極を生じるが,外部電場下でなく とも,自然に分極(自発分極)している物質も存在している.

これは結晶内にはじめから Fig. 1.1.1(b)に示したような電気分極が存在しているこ とがその理由である. さらにこの自発分極を持つ物質の中に,印可する外部電場の向 きに従って,分極の向き(極性)が反転する物質が存在する. このような物質を強誘 電体という. 強誘電体においてはこの+の電気部分と-の電気部分のずれの程度が微 少であることが大切である. なぜならこのずれが大きくなると印可する外部電場の向 きを変えても分極の極性が変化しないからである.

典型的な強誘電体は、分極反転を DE ループとして観測できる. そして DE ループ

の残留分極値から自発分極を決定できる.しかし,強誘電相の全温度域で観測できる とは限らない.低温になると分極反転するに必要な抗電場が大きくなって,絶縁破壊 の限界を越えることがある.このような場合は高温相で電場をかけた後に結晶を冷却 して,加熱しながら焦電流を測定し,流れた電流を積分することで自発分極が測定で きる.電場の向きを反転させることで焦電流の向きが反転すれば,自発分極が反転し たと考えられるので,強誘電体ということが出来る.

Fig.1.1.1 金属の静電誘導(a)と誘電体の誘電分極(b).

次に相転移現象について説明する.水は水蒸気-水-氷という気相-液相-固相間の相 転移がある.さらに、氷にも温度-圧力により異なる結晶状態があり、それぞれの相 の間の相転移が知られている.

固相-固相間の相転移について,例えば Fig. 1.1.2 に示したような単位包の中心に1 つの原子が存在するような簡単なモデルを考える.この場合,中心の原子のわずかな 変位でも結晶の対称性が変化し,新たな相が出現する.

そしてこの固相-固相間の相転移において高対称相に自発分極がなく(このような 相を常誘電相という),低対称相において自発分極,すなわち強誘電性が出現すると きこのような相転移を強誘電性相転移という.このような相転移は水の相転移が温度 の変化で誘起されるように,外部変数としての温度や圧力の変化によって生じる.

Fig.1.1.2 原子の変位による対称性の変化を伴った固相-固相間の相転移

1.2 強弾性体とは

物体に応力を印可すると(程度の差こそあれ)物体は歪みを生じる.このような性 質を持つ物体を弾性体という.これは上記の絶縁体における外部電場を印可した場合 に誘電分極を生じる場合と同じと考えることができる.また,物体によっては応力を 印可しなくても歪みが存在,すなわち自発歪みを持つ物体がある.

強誘電体の定義が「自発分極を持ち,印可電場の向きによって自発分極の向きを変 えることができる」であるから,「強誘電体」における「外部電場」を「応力」,「自 発分極」を「自発歪み」に置き換えてやると,「自発歪みを持ち,応力印可の向きに よって自発歪みの向き(配向)を変えることができる物質」を強弾性体と定義するこ とができる.そして強誘電相転移と同様,温度や圧力の変化により強弾性相を生じる 相転移を強弾性相転移という.強誘電体における常誘電相と同様,歪みのない相を原 型相という.

さて自発分極の程度が微少であっても反転可能な電気分極があることが強誘電体 の特色であると述べたが,強弾性体でも同様で,自発歪みが微少な歪みであってもよ い.否,微小な場合に外力で反転できると行ってもよい.従って例えば温度降下に伴 って原型相から強弾性相に相転移する場合,その歪みの小ささがゆえに,歪みの配向 の異なる分域(ドメイン)が生じる場合がある.そのドメインの分布は偏光顕微鏡下 で観察することができる.またそのドメインは応力印可に伴いその分布を変わること が偏光顕微鏡下で観察可能であろう.模式図を Fig. 1.2.1 に示す.

Fig. 1.2.1 強弾性分域と反転

1.3 強誘電体(強弾性体)の相転移と機構

一般的に強誘電体や強弾性体は高対称の原型相から低対称相の強誘電相や強弾性相に相転移をする.この相転移は結晶の対称性の変化をともなう.通常,高温相は高対称性であり,低温相では対称性が低下する.この対称性の変化は原子変位によって生じる.高温相の構造から原子位置が連続的に変位して低温構造に変わる場合と,原理的に不連続的な(大規模な)変化があって低温構造に変わる場合とがある.すなわち,

① 変位型(Displacive 型)

原子(あるいはイオンや原子基)が一斉に相対変位することにより低対称相を 実現するもの

例) BaTiO3

②秩序-無秩序型 (Order-Disorder 型)

原子(あるいはイオンや原子基)の配向の無秩序状態から秩序状態への変化に より低対称相を実現するもの

例) NaNO₂

前者では,原子変位は高温相の格子振動として記述でき,特定の格子振動モードの 振動数がゼロとなる(復元力がなくなる)ことで,原子の自発的変位が生ずる.つま りソフト・フォノンモードが存在する.後者では原子の座標変化は不連続的であり, フォノンという動的な自由度としては記述できない.

現実の結晶で相転移が室温,あるいは高温で生ずる場合,フォノンがオーバーダン プしてソフト化する振動数が測定できないことが多い.そのため,相転移機構が変位 型なのか秩序-無秩序型なのかを実験的に決定することは容易ではない.幾つかのモ デル計算に基づいて,変位型から秩序-無秩序型へ連続的遷移があることすら主張さ れている.

いずれにせよ、どのような原子変位により結晶構造が変化するのか、その際、原子 変位は不連続的なのか、連続的なのかを、構造的に決定することは相転移を理解する 一歩であるといえる.

1.4 強誘電体(強弾性体)の物性と応用

強誘電体はコンデンサー材料, 圧電性材料としておおいに利用されてきた. 誘電体 の研究が大いに飛躍したのは第2次世界大戦中で, 通信機器用部品としてのコンデン サーの性能向上がその主目的であり, 大きな電気容量を持ち, 電気容量の温度依存性 が少ない物質の探査がアメリカ¹⁾, ソ連²⁾, 日本³⁾などの戦争当事国でおこなわれた. 戦時中であるが故に情報交換の行われないこれら各国で, 現在も主要なコンデンサー 材料であるチタン酸バリウム(BaTiO₃)がほぼ同時に発見されたのはまさに特筆すべ きものである. 現在では人間ドックの超音波診断で使われる圧電素子からはじめて, 通信機器のフィルターなど, 強誘電体は半導体, 磁性体にならぶ, 大きな市場となっ ている物質である.

さらに、強誘電体や強弾性体は外部印可した電場や応力の向きの情報を(外部印可 した電場や応力を取り去っても)分極や歪みの向きとして記憶することができる.向 きを記憶できる、すなわち±の情報いわゆるデジタル情報を記憶できることになり、 今日のデジタル機器にとっては重要な不揮発メモリーに最適な特色を持つ.実際、こ の性質を利用した強誘電メモリー(FeRAM)が商品化されている.

さて前述のように強誘電相転移や強弾性相転移は外部変数の温度や静水圧の変化 に伴う構造変化により引き起こされる.強誘電体材料の物性を評価する上で,相転移 特性は無視できない重要な因子である.

強誘電体材料としてはペロブスカイト系のセラミックスが利用されることが多い が、イオン結晶でも重要なものがある.例えば、TGS(硫酸グリシン)は温度上昇に 伴って48℃で強誘電相から常誘電相に相転移する.その相転移近傍で TGS は強く 帯電し(このような現象を焦電現象という)、そこをショートさせると焦電流が流れ る.したがって TGS を転移温度直下でキープしておき、温度を上げる効果のある赤 外線を当てると焦電流が流れる.このことを利用して TGS は赤外線センサーとして 利用されている.

TGS はある温度における急激な変化をセンサーとして利用したものだがその逆も ある. すなわちコンデンサーは電子機器として様々な温度での利用が想定されるが, ある温度を境にその機能が消失してはコンデンサーとしては不具合である. そこで今 日注目されているのが緩和型強誘電体(リラクサー)で,誘電率が大きい割に温度特 性がなだらか(散漫相転移)であるという特徴をもつので,コンデンサー材料として 注目され,研究が進んでいる.

このように強誘電体や強弾性体の構造や温度,圧力に対する構造変化等を調べることはこのような電子機器の開発の基礎研究としても大変重要である.

1.5 硫安系強誘電体

戦後,前述の BaTiO₃ を中心とした強誘電体の研究の研究が盛んに行われたが,新 規の強誘電体はなかなか発見されなかった.

事態が一変したのは 1956 年でアメリカのベル研の Matthias グループとペンシルベ ニア州立大学の Pepinsky グループとによって精力的に新強誘電体が見いだされ, 1956 ~57 年の 2 年間に両グループで発見された強誘電体は (NH₄) $_2$ SO₄⁴⁾, (NH₄) $_2$ Cd₂ (SO₄) $_3^{5)}$ など現在でも重要なものばかりである.

その中で、硫酸アンモニウム(anmonium sulfate: $(NH_4)_2SO_4$ 略称:硫安)の強誘 電性の発見⁶⁾ は肥料として用いられている極めて身近な物質が強誘電体であること, またこの物質は NH⁺₄, SO²⁻₄という 2 種類の正もしくは準正四面体基だけからなるこ とから関心が持たれた. すなわちこの各四面体基のところに別種四面体基や単原子を 置き換えてやることにより様々な強誘電体が創出される可能性が見いだされたから である. また NH⁺₄四面体基は2つの異なった配置をとることがわかり, それぞれの配 置に別種の原子を置くことの可能性も考慮された. すなわち A₂BX₄ 型だけではなく AA'BX₄ 型構造をとる物質である. そして硫安系強誘電体と呼ばれる同族の新強誘電 体として(NH₄)₂BeF₄⁷⁾ をはじめ(NH₄)HSO₄⁸⁾, RbHSO₄⁹⁾, K₂SeO₄¹⁰⁾ などが発見され た.

東工大の沢田らはこのような硫安系強誘電体の研究を精力的に行い, RbLiSO₄¹¹⁾, Rb₂ZnCl₄¹²⁾, Rb₂ZnBr₄¹³⁾, Rb₂CoCl₄¹⁴⁾, {N(CH₃)₄}₂ZnCl₄¹⁵⁾, N(CH₃)₄}₂CoCl₄¹⁶⁾などの強 誘電性を発見した.

硫安系は Rb₂ZnCl₄ 群強誘電体とも呼ばれているが¹⁷⁾, これは沢田らが発見した一連の物質群のうち,最初の物質が Rb₂ZnCl₄ であることと,この物質の相転移がこれらの系での典型的な室温相構造やこの物質群の特徴である不整合-整合相転移を伴うことなどによる.

1.6 TMATC-M 族物質群

東工大の沢田らは前述の $\{N(CH_3)_4\}MCl_4(M=Zn, Co)$ の強誘電性の発見の後, M=Fe, Ni, Cu, Mn の各物質について研究を進め、これらが Zn 塩や Co 塩と同様の相転移を 行うことを見いだした. さらに静水圧下での Fe 塩の強誘電性が見いだされ、これら の TMATC-*M* 物質群の相転移が統一的圧力–温度相図で説明できることが実験的に 確認された ¹⁸⁻²⁰.

これらの物質は室温においては β -K₂SO₄型構造をとり空間群は *Pmcn* (*Z* = 4)である. この室温相(I相)は温度降下にともない incommensurate 相(II相) - commensurate 相(II相) と逐次相転移を行う.

Fig. 1.6.1 に TMATC-*M*(M=Co, Fe, Zn, Mn)の統一的 P-T 相図を示す. 図からわ かるように, 圧力の低い順から, M=Mn, Co, Fe, Zn の順番に配置されるが, この 順番は *M*-Cl の bond length の順番, すなわちより bond length が長い方が, より圧力の 低い側に配置されている.

Fig. 1.6.1. TMATC-*M*(M=Co, Fe, Zn, Mn)の 統一 P-T 相図²⁰⁾

1.7 TMATC-Mn の相転移系列と相図

TMATC-Mn 相転移について改めて整理する.

TMATC-Mn の逐次相転移は Sawada らによりまず 17 ℃, -6.5 ℃, -98 ℃における 相転移が見いだされた²¹⁾. その後 Shimizu らは DTA(示差熱分析) 測定の結果により, TMATC-Mn における P-T 相図をみいだした¹⁸⁾. また彼らは TMATC-Mn と同時に, TMATC-Zn, TMATC-Co, および TMATC-Fe の P-T 相図も見いだしており, その相似 性から TMATC-Mn において 17 ℃から-6.5℃の相が incommensurate 相であると推測し た¹⁹⁻²⁰⁾.

一方 Mashiyama と Tanisaki は2軸X線回折測定を行い,大気圧下でのTMATC-Mn の incommensurate 相の存在の確認を試みた²²⁾. その結果を Fig. 1.7.1 に示す. すな わち 10℃近傍で超格子反射(201/2)反射が観測され,その強度は温度降下に伴い

$$I \propto (T_c - T)^{2\beta} \tag{1.1}$$

で表される強度変化を示した. ここで T_c =19.1 °C, β = 0.35 となった. また-6.5 °C 以下 では3 倍の超格子構造を示す (201/3) が観測された. そこで 19 °C 近傍を注意深く測 定することにより,上述の incommensurate 相を見いだした. その結果は Fig.1.7.1 に示 されている.

このように、当初予想されていた広い温度範囲の相は incommensurate 相ではなく、 c軸が2倍の超格子構造の相であり、incommensurate 相は極めて狭い温度範囲に存在 することが分かった.かくして得られた TMATC-Mn の大気圧下での相転移を Fig. 1.7.2 に、P-T 相図の概略^{20,23,24)}を Fig. 1.7.3 に示す.

整理すると TMATC-Mn の大気圧下での相転移は、以下の通りである。

室温以上では,他の類似化合物の Normal 相とおなじ I 相であり, incommensurate 相は大気圧下では 292.2K~291.5K までの狭い温度領域で存在するが,結晶によって その出現は左右され,出現しない場合も多い.

c 軸方向に2倍の整合構造を持つⅢ相(空間群 P2₁/c11)へは293Kで, c 軸方向
 に3倍の整合構造を持つⅣ相(空間群 P112₁/n)へは267Kで相転移をする. そして
 normal 相であるⅤ相(空間群 P12₁/c11)へは172Kで相転移する. c 軸方向に5倍
 の超格子構造を持つ強誘電相は高圧下のみ出現する.

大気圧下においては 90K 近傍において一次転移の相転移の存在, すなわち新しい相 VI相の存在を示唆する結果が誘電率の測定²⁵⁾および光学的研究²⁶⁾より示されている. この相についてはその空間群や構造等が確定していないので本論文では省略した.

また,多くの commensurate 相が incommensurate 相内に見いだされている^{27,28)}.

Fig. 1.7.1 TMATC-Mn の(201/2)及び(201/3)反射の積分強度の温度依存性²²⁾ 挿入された図は incommensurate 反射 (20ζ) ζ=0.483 と(201/2)の温度依存性

Fig. 1.7.2 TMATC-Mn の大気圧下での相転移

Fig. 1.7.3 TMATC-Mn の圧力-温度相図. 括弧内の分数表示は整合構造の

変調波数 $\mathbf{k} = \frac{q}{p} \mathbf{c}^*$ を表す.

1.8 TMATC-Mn に関する研究

TMATC-Mn に関しては様々な手法による測定がなされている.以下にその代表的なものの概要を記す.

1.8.1 比熱測定

TMATC-Mn の比熱測定は 1969 年 T. P. Melia, R. Merrifield らの手により断熱法の手法により初めて試みられた²⁹⁾.

さらに J. Zubillaga, A. Lopez-Echarri, M. J. Tello らスペインのグループにより 50K ~330K までの広い温度範囲で精密に測定された³⁰⁾. 以下にその実験について記す.

まず,55 K から345 K 間で160 点以上の測定点において比熱の測定が行われた. Fig. 1.8.1 に測定された比熱の温度依存性の全体像を,Fig. 1.8.2 に263 K から300 K までの拡大図を示す.このスケールではII-II相転移の様子は明確には見えない.また104 K 近傍に小さなショルダーが観察され.これは数回の heating-cooling のサイクル を経ても消えることがなかった.(彼らはこの異常を不純物に起因すると結論づけている.)また両図のピーク形状より292.6 K での相転移は2 次的であり,それ以外の相転移は1 次的であると結論づけている.

Fig. 1.8.1 TMATC-Mn の比熱の温度依存性³⁰⁾

ここで、この実験においては 温度変化は6K/hour でおこなわれた. そこで I-Ⅱ

相転移の存在を確認するため、この相転移近傍の温度領域で 0.07~0.1 K/hour という ゆっくりとした温度変化のもと比熱測定を行った。その結果を Fig. 1.8.3 に示す ³⁰⁾. Heating および Cooling 双方において図中矢印で示される温度異常が見いだされ、 I-II 相転移の存在が比熱測定手法により確認できた。

さらに TMATC-Mn の各相転移における比熱測定より得られた熱力学関数を Table1.8.1 に示す. TMATC-Mn についての一連の相転移に伴う全エントロピー変化 Δ Sは ΔS =1.27R (Rは気体定数)が得られた. この値に対しては第4章で議論する.

Fig. 1.8.2 TMATC-Mnの263 Kから300 Kの温度範囲での 昇温過程(6 K h⁻¹)での比熱の温度依存性³⁰.

Table 1.8.1 得られた TMATC-Mn の相転移における熱力学関数

Transition	$T_{\rm c}$ (on heating)	$T_{\rm c}$ (on cooling)	$\Delta H/R$	$\Delta S/R$
I–II II–III III–IV IV–V	$292.6 \pm 0.01 292.3 \pm 0.01 268.65 \pm 0.01 175.63 \pm 0.01$	$292.6 \pm 0.01 292.18 \pm 0.01 266.7 \pm 0.01$	250 ± 20 0.7 ± 0.2 28 ± 5 37 ± 3	$\begin{array}{c} 0.96 \pm 0.1 \\ 0.0024 \pm 0.0006 \\ 0.10 \pm 0.02 \\ 0.21 \pm 0.02 \end{array}$

Fig. 1.8.3 TMATC-Mn の比熱の温度依存性³⁰⁾
図中下のグラフは heating 過程を、上のグラフは cooling 過程を示す.
温度変化率はそれぞれ(□) 0.07; (*) 0.12; (●) 0.15; (△) 0.20 K h⁻¹ である.

1.8.2 誘電率測定

Fig. 1. 8. 4 に Gesi によりより見いだされた TMATC-Mn の H 塩と水素を重水素置換した D 塩の大気圧下における a 軸に沿っての f=100 KHz での誘電率測定の結果²⁵⁾ を示す.

TMATC-Mn は大気圧下では強誘電相は出現しないので強誘電体にみられる誘電率の 発散的変化はみられないが、各相転移点での誘電率グラフの異常が見いだされた.図 からわかるように KDP 系物質とは異なり相転移温度における大きな重水素置換効果は みられなかった.これは KDP 系物質の相転移においては水素結合が大きく寄与してい ることが考えられるのに対し TMATC-Mn では水素結合は相転移温度を支配するような 大きな寄与がないことを示唆しているものと思われる.

Fig.1.8.4 TMATC-MnのH塩およびD塩のa軸に沿っての誘電率の温度変化 図中下向きの矢印とともに示された温度はD塩における相転移温度を示し、上向きの矢印とともに"h"と記された温度はH塩における相転移温度を示している.

1.8.3 相転移の現象論

A₂BX₄ 型誘電体の原型相(*Pmcn*)-不整合相-整合相の逐次相転移は次のような現象論的自由エネルギー密度で記述できることが知られている³¹⁾.

$$f(z) = \frac{\alpha}{2}QQ^{*} + \frac{\beta_{1}}{4}(QQ^{*})^{2} + \frac{\beta_{2}}{4n}(Q^{2n} + Q^{*2n}) + i\xi_{2}P(Q^{n} - Q^{*n}) + i\frac{\delta}{2}\left(Q^{*}\frac{dQ}{dz} - Q\frac{dQ^{*}}{dz}\right) + \frac{\kappa}{2}\frac{dQ}{dz}\frac{dQ^{*}}{dz} + \frac{c}{2}P^{2} + \xi P^{2}QQ^{*}$$
(1.2)

ここで、*Q*は複素秩序変数であり、その振幅は変調構造の振幅を表し、位相は変調波の位相である. TMATC-Mn では2次的秩序変数 *P*は第3相が単斜晶であることを記述する歪の成分であり、*c*軸方向に単位胞が2倍となるので次数 *n*=2 である. 整合相の対称性とその構造の単位胞が何倍となるかで、異なる意味の2次的秩序変数と*P*とnの項を付加することで、TMATC-Mnの低温の3倍相や圧力下の7倍、5倍相を記述できることが知られている³²⁾.

ここで、現象論的にはパラメータαが正で一定の値以上では Q=P=0 が自由エネル ギー $F = \int f(z)dz$ を極小とし、これが原型相を表す. 自由エネルギーを最小とする条 件より、一般に、αが小さくなると $|Q|\neq 0$ の変調構造を表す解が出現し、さらにαが 負に小さくなるとロックイン項が働いて、変調周期が基本格子の整数倍となる整合相 が安定となる. QやPの温度(上式では α)依存性は下図のようになる.

Fig. 1.8.5 主秩序変数 Q と従秩序変数 P の温度(α) 依存性

(1.2)式において、 δ が小さくなると α_L が α_1 に近づき、不整合相の温度域が狭まることになる.

X線回折実験では超格子反射強度

 $I(2\ 0\ 1/2 - \delta) \propto \left|Q\right|^2$

(1.3)

と考えられる. TMATC-Mn の初期の研究では、次のような温度依存性が報告されている³³⁾. I-II-III 相で強度はほとんど連続的な変化である.

Fig. 1.8.6 TMATC-Mn の(2 0 1/2)と(2 0 1/3)の反射強度の温度依存性 ³³⁾. 反射指数は Normal 相 (I 相)の単位胞を基礎になされている. 挿入図は 19℃付近の詳細図であり, incommensurate 相を示す(2 0 ζ) $\zeta = 0.483$ の衛星反射と整合反射(2 0 1/2)の強度を示す. 転移点直上で は散漫散乱強度が認められる.

1.8.4 イージングモデル

秩序変数の「実体」に踏み込んだ相転移モデルもいくつか提案されている. Bak-von Boehm は不整合・整合相転移を示す,イージングモデルの一種の ANNNI モデルを提 案した³⁴⁾. 層状の結晶構造で,原子変位をイージングスピンで表現し,層内ではフ ェロ的で,相関ではフェロ的とアンチ・フェロ的な相互作用が競合しているとする. Fig. 1.8.7 でフェロ的相互作用が J₁(>0),アンチフェロ的が J₂(<0)で表現されている.

Fig. 1.8.7 ANNNI モデルのスピン配列と相互作用

|J₂|>J₁/4 では変調構造が出現し、下図の黒く塗りつぶされている領域が不整合相で、 1/6 とか 1/4 とかの有理数の領域が整合相である.

例えば、|J₂|/J₁=0.52の場合、温度が下がると Fig. 1.8.8の点線の矢印のように 5.5

Fig. 1.8.8 ANNNI モデルに対して分子場近似で得られた相図. 変調構造は矢印あるいは変調波数で表現されている. 黒く塗りつぶした領域は高次の整合構造もしくは不整合構造とみなせる部分³⁴⁾.

以下で不整合相が出現, 5.2 くらいの温度で q=1/6 のスピンが $\downarrow \downarrow \downarrow \uparrow \uparrow \uparrow$ の整合相 になり, t<2 で $\uparrow \uparrow \downarrow \downarrow \downarrow \phi$ q=1/5 の整合相を経て, 低温では $\uparrow \uparrow \downarrow \downarrow \phi$ の整合相が安 定である.

この ANNNI モデルが発表されるとほどなく, いくつかの改良モデルが提案された. まず, Yamada-Hamaya は3つ隣のセルまでの相互作用 J₃を取り入れた.そして, TMATC-M 系の統一圧力相図に現れる種々の整合相が表現できることを示した³⁵⁾. Fig. 1.8.9 の h-Mn, d-Zn などの矢印がそれぞれ,軽水素塩の TMATC-Mn,重水素塩の TMATC-Zn の常圧下での相変化を表す.ただし,注意すべきことは A_2BX_4 型結晶では 基本構造 *Pmcn* では *c* 映進面があるので, *ac* 面投影するとあたかも *c*/2 の周期構造と 見えることである.そのため

q=1/4 $\uparrow \uparrow \downarrow \downarrow$: c 軸 2 倍の $P2_1/c11$ 構造 q=3/10 $\uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow \downarrow$: c 軸 5 倍の $P2_1cn$ 構造 q=1/3 $\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow$: c 軸 3 倍の $P112_1/n$ 構造 と対応していることに留意しなければならない.

 Fig. 1.8.9 拡張された ANNNI モデルで計算された相図³⁵⁾.

 TMATC-M 系の相転移が矢印で示されている. h と d は軽水

 塩と重水塩を表している.

また, Mashiyama は相互作用を第2隣接までとするが, A の自由度と BX₄の自由度 に別々のイージング変数をあてがうモデルをたてて, 複雑な相図が説明できることを 示した ³⁶⁾.

このモデルは後に LiRb_{1-x}(NH4)_xSO₄ 混晶系の相図を説明するのに使われた³⁷⁾. Fig.1.8.10 の左手の LiRbSO₄において, SO₄を TC-Mn に Li と Rb を2種類の TMA に 対応させると TMATC-Mn に相当する.計算で得られた相図とモデルハミルトニアン を Fig. 1.8.11 に示す. 高温の原型相から曲線に沿って進むと考えると,不整合相を経 て 1/4, 1/3, 1/2 となるが,これらが TMATC-Mn のIII, IV, V相に対応する. ちなみに

q=1/2 ↑↓ : c軸1倍の*P*12₁/*c*1構造 と対応する(LiRbSO₄ではP112₁/n構造だが).

Fig. 1.8.10 LiRbSO₄(左)およびLiNH₄SO₄(右)の低温構造の *b*軸投影図. +, -は SO₄四面体基の*c*軸まわりの回転の向き を表している.

$$H = \frac{1}{2} \sum_{j} [-c_0 u_j^2 + c_1 (u_{j+1} - u_j)^2 + c_2 (u_{j+2} - u_j)^2 + \cdots \\ -b_0 m_j^2 + b_1 (m_{j+1} - m_j)^2 + \cdots + a (u_j - m_j)^2 + a' (u_{j+1} - m_j)^2] ,$$

Fig. 1.8.11 LiRbSO₄ (LRS) および LiNH₄SO₄ (LAS) の逐次転移. モデル挿図上で,点線の矢印で示したように相互作用パラメータ が変化すると,それぞれの結晶の相転移を記述できる.

1.9 本研究の目的と構成

A₂BX₄型物質である TMATC-Mn において,原型相および各整合相の構造を決定することは相転移機構を議論する際の基礎的情報として不可欠なものである.

そこで TMATC-Mn の原型相である室温相及び温度降下に伴って現れる各整合相の 構造をまず決定する. 原型相においては前述の Order-Disorder 型および Displacive 型 に対応するモデルをそれぞれ用いて解析を行う.

さらに原型相とこの物質群の相転移に特徴的な incommensurate 相を伴う整合相との相転移点の前後での構造の秩序化過程の詳細を,細かい温度刻みでの詳細な構造解析を行うことにより,構造的および構造解析で得られた様々な情報の多角的見地からの議論を行い,この相転移における構造の秩序化を支配するメカニズムについての知見を得ることを目的とする.

第2章ではX線回折実験とⅠ,Ⅲ,Ⅳ,Ⅴ相の各相の典型的な温度での構造決定について記述する.

ついで第3章ではI相内で相転移の前駆現象を記述するため,多数の温度で構造パ ラメータを精密に測定し,温度依存性を記載して,変位型の構造なのか,秩序無秩序 型の構造の特徴を持っているかを議論している.

第4章では normal-commensurate 相転移に伴って相転移点近傍を細かく構造解析す ることにより相転移に伴う構造変化を詳細に議論している.そして変位型のモデルが 適切なのか,秩序・無秩序型の構造モデルが適切なのかを結論している.

第4章での構造解析は最小二乗法を使用しているので,採用しているモデルへの依存は避けがたい.そこでア・プリオリなモデルを必要としない最大エントロピー法(MEM)を使って,変位型なのか秩序・無秩序型なのかの判定を第5章で行う.

第6章では TMATC-Zn の結晶構造との比較を行う. 最後に結論を第7章でまとめる.

こうして、相転移機構の特徴を調べ、 A_2BX_4 型物質の相転移に関する知見を得ることを目的としている.

参考文献

- 1) E. Wainer and A. N. Salomon: Elec. Rep. of Titanium Alloy Mfg. Co. 8 (1942).
- 2) B. M. Vul and L. M. Goldman: C. R. USSR 46 (1945) 139.
- 3) 小川建男:物性論研究 6 (1947) 1.
- 4) B. T. Matthias and J. P. Remeika: Phys. Rev. 103 (1956) 262.
- 5) F. Jona and R. Pepinsky: Phys. Rev. 103 (1956) 1126.
- 6) B. T. Matthias and J. P. Remeika: Phys. Rev. 103 (1956) 262.
- 7) R. Pepinsky and F. Jona: Phys. Rev. 105 (1957) 344.
- 8) R. Pepinsky, K. Vedam, S. Hoshino, and Y. Okaya: Phys. Rev. 111 (1958) 430, 1508.
- 9) R. Pepinsky and K. Vedam: Phys. Rev. 117 (1960) 1502.
- 10) K. Aiki, K. Fukuda, and O. Matumura: J. Phys. Soc. Jpn. 26 (1969) 1064.
- 11) Y. Shiroishi, A. Nakata, and S. Sawada: J. Phys. Soc. Jpn. 40 (1976) 911.
- S. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige, and M. Matsuo: J. Phys. Soc. Jpn. 43 (1977) 2099.
- S. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige, and M. Matsuo: J. Phys. Soc. Jpn. 43 (1977) 2101.
- 14) S. Sawada, Y. Shiroishi, and A. Yamamoto: Ferroelectrics, 21 (1978) 413.
- 15) Yamamoto, M. Takashige, and M. Matsuo: J. Phys. Soc. Jpn. 44 (1978) 687.
- S. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige, and M. Matsuo: Phys. Lett. 67A (1978) 56.
- 17) 沢田正三:日本物理学会誌 51 (1996) 633.
- H. Shimizu, N. Abe, N. Yasuda, S. Fujimoto, S. Sawada, and Y. Shiroishi: Jpn. J. Appl. Phys. 18 (1979) 857.
- 19) H. Shimizu, A. Oguri, N. Abe, N. Kokubo, N. Yasuda, S. Fujimoto, S. Sawada,Y. Shiroishi, and M. Takashige: Solid State Commun. 29 (1979) 125.
- H. Shimizu, N. Abe, N. Kokubo, N. Yasuda, S. Fujimoto, T. Yamaguchi, and S. Sawada: Solid State Commun. 34 (1980) 363.
- 21) 沢田正三他:日本物理学会第33回年次大会概要集(1978).
- 22) H. Mashiyama and S. Tanisaki: J. Phys. Soc. Jpn. 50 (1981) 1413.
- 23) K. Gesi and K. Ozawa: J. Phys. Soc. Jpn. 53 (1984) 627.
- 24) J. D. Axe, M. Iizumi and G. Shirane: *Incommensurate Phases in Dielectrics 2. Materials* (North-Holland, Amsterdam, 1986) Chap. 10.
- 25) K. Gesi: Ferroelectrics, 96 (1989) 195.
- 26) M C Marco de Lucas and F Rodríguez: J. Phys. Condens. Matter 1 (1989) 4251.
- 27) N. Hamaya, Y. Fujii, S. Shimomura, Y. Kuroiwa, S. Sasaki, and T. Matsushita: Solid State

Commun. 67 (1988) 329.

- 28) S. Shimomura, N. Hamaya, and Y. Fujii: Phys. Rev. B 53 (1996) 8975.
- 29) T. P. Melia and R. Merrifield: J. Inorg. Nucl. Chem. 32 (1969) 1873.
- 30) J. Zubillaga, A. Lopez-Echarri, and M. J. Tello: J. Phys. C 21 (1988) 4417.
- 31) Y. Ishibashi: *Incommensurate Phases in Dielectrics* 2 (North-Holland, 1986, Amsterdam) Chap. 11.
- 32) H. Mashiyama: J. Phys. Soc. Jpn. 49 (1980) 2270.
- 33) H. Mashiyama and S. Tanisaki: J. Phys. Soc. Jpn. 50 (1981) 1413.
- 34) P. Bak and J. von Boehm: Phys. Rev. B 21 (1980) 5297.
- 35) Y. Yamada and N. Hamaya: J. Phys. Soc. Jpn. 52 (1983) 3466.
- 36) H. Mashiyama: J. Phys. C: Solid State Phys. 16 (1983) 187.
- 37) K. Kawamura, A. Kuramashi, H. Nakamura, H. Kasano, H. Mashiyama, S. Nakanishi, and H. Itoh: Ferroelectrics **105** (1990) 279.

第2章 TMATC-Mn の逐次相転移と 構造の決定

第2章では前章で述べた特色を持つ TMATC-Mn の各相の構造について各 相の典型的温度で X 線構造解析した結果について述べる. 試料の作成及び X 線回折のための試料整形等の説明,使用した回折計及び測定条件につい て述べる. その後,得られた各相の構造及びその特徴について説明する.

2.1 結晶作成と試料の準備

{N(CH₃)₄}₂MnCl₄(以下 N(CH₃)₄を TMA, MnCl₄を TC-Mn と略記し, この化合物を TMATC-Mn と記す)の単結晶は水溶液蒸発法により育成された. すなわち N(CH₃)₄Cl と MnCl₂を化学量論比に仕込んだ水溶液を室温に置き,水溶液蒸発法により単結晶を 育成した.

育成された TMATC-Mnの単結晶の外観を Fig.2.1.1 に示す. これからわかるように 単結晶は透明で薄い黄色の色である. また結晶は弱い潮解性を持つ.

この試料を以下に説明するボンド法により球形に整形した.

ボンド法装置の外形を Fig.2.1.2(a)に、その構造図を Fig.2.1.2(b)に示す. Fig.2.1.2(b) にあるように耐水ペーパーを円筒の内周に固定し、各辺 1mm 程度の正方形に整形し た単結晶試料をいれ、カバー取り付け後、チューブから乾燥剤を通過させたドライエ アーを入れる. エアーによって試料は回転し、球状に整形される.

半径 0.20mm 程度の球形に整形された試料は偏光顕微鏡下で単結晶であることを確認した後、潮解から防ぐため、エポキシ接着剤(アラルダイト)で表面をコーティングし乾燥させた.その後、Fig.2.1.3 に示すように細いガラス管の先にエポキシ接着剤で固定し X線回折用の試料とした.

(b)

Fig. 2.1.2 試料整形に用いるボンド法装置の(a)外観と(b)模式図

2.2 X線回折実験

TMATC-Mn の各相の構造を決定するために、Ⅰ、Ⅲ、およびV相の構造を山口大 学機器分析センター所有の X 線回折装置AFC-5R (RIGAKU) (Fig.2.2.1(a))を用 いて、Ⅳ相の構造解析のために九州大学中央分析センター所有の CAD-4 (Nonius) (Fig.2.2.1(b))を用いてデータ収集を行った.

両機器の測定に用いた X 線は Mo Kα 線である. その他の測定温度やスキャン方法, 得られた格子定数等を Table. 2.2.1 に示す.

	Ι	Ш	IV	V
Measurement	202	772	261	169
temperature (K)	293	275	201	108
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic
Space group	Pmcn	$P2_{1}/c11$	$P112_{1}/n$	$P12_{1}/c1$
Ζ	4	8	12	4
a (Å)	9.046 (1)	9.041 (2)	9.037 (2)	8.977 (3)
b (Å)	15.669 (3)	15.626 (6)	15.589 (3)	15.334 (7)
<i>c</i> (Å)	12.333 (3)	24.661 (6)	36.973 (11)	12.216 (6)
Monoclinic		a = 80.06(3)	$\gamma = 00.22(3)$	$\beta = 00.16(3)$
angle (°)	-	u = 89.90(3)	γ = 90.22 (3)	p- 90.10 (3)
Scan method	2 heta- $ heta$	2θ - θ	ω	2 <i>θ</i> - <i>θ</i>
$2\theta_{\max}$ (°)	50	50	45	50
Index range	$0 \le h \le 10$	$0 \le h \le 10$	$-9 \le h \le 9$	$0 \le h \le 10$
	$0 \le k \le 18$	$0 \le k \le 18$	$0 \le k \le 16$	$0 \le k \le 18$
	$0 \le l \le 14$	$-29 \le l \le 29$	$0 \le l \le 39$	$-14 \le l \le 14$
No. of measured	1806	6836	7304	3301
reflections				
No. of significant	925	3718	4856	2587
reflections				
$[F > 5\sigma(F)]$				
Absorption	1.324	1.328	1.332	1.376
coefficient (mm ⁻¹)				
Crystal	0.175	0.180	0.181	0.182
radius (mm)				
Transmission	0.708 - 0.718	0.700 - 0.710	0.696 - 0.708	0.687 - 0.699
factors				
Final values of R	0.050	0.053	0.066	0.040

Table 2.2.1 TMATC-Mn 各相の構造解析における諸条件

各温度で得られた X 線強度について吸収補正, LP 補正を行ったのち, $F_{obs} > 5\sigma(F_{obs})$

の強い反射強度のみ解析に用いた.ここで Fobs と o(Fobs)はそれぞれ観測された強度 より求めた構造因子とその標準偏差である.解析に当たって,等価な反射は平均化し て解析に用いた.

最小二乗計算はブロック対角化最小二乗プログラム UNICSⅢ¹⁾を用いて行った.

ブロック対角近似最小二乗計算においては

$$R_{w}^{2} = \sum_{hkl} w(hkl) \{ |F_{obs}(hkl)| - |F_{cal}(hkl)| \}^{2} / \sum_{hkl} w(hkl) |F_{obs}(hkl)|^{2}$$
(2.1)

で求められる重みのついた R 因子 Rw を重み w=1 の条件のもと最小にするよう計算が 行われる.

今回の解析においては水素原子を考慮していない. 原子散乱因子は International Tables for X-ray Crystallographyの値を用いた^{2).}

計算の収斂の状態は以下の式で定義される R 因子

$$R = \sum_{hkl} \left\| F_{obs}(hkl) \right\| - \left| F_{ave}(hkl) \right\| / \sum_{hkl} \left| F_{obs}(hkl) \right|$$
(2.2)

により評価される.

(b)

Fig. 2.2.1 使用した X 線回折装置

(a) RIGAKU AFC-5R (山口大学 機器分析センター)

(b) Nonius CAD-4 (九州大学 中央分析センター)

2.3 各相の構造の決定

2.3.1 原型相(|相)の構造解析

Wiesner らが行った同じ TMATC-*M* 物質系に属する {N(CH₃)₄}₂ZnCl₄(以下 TMATC-Zn)の原型相(I相)の解析結果³⁾をスタートパラメータとして最小二乗計算 を行った.

計算においては 2 次の消衰効果の影響と受けていると思われる 7 個の反射(002, 013, 021, 040, 111, 131, 200)を除いた.

a 軸に垂直に x=0.25 の位置にあるミラー面に対し, 各四面体基それ自身がミラー対称持つ位置に各四面体基を固定し解析を行った. このモデルを Displacive モデルと呼ぶ. Displacive モデルでの最小二乗計算は *R*=6.5%で収束した.

次に同じく TMATC-Zn の解析で提唱された⁴⁾, a軸に垂直なミラー面に対して各四 面体基を等確率で配置させる(split-atom 法) モデルを考え, これを Order-Disorder モ デル (OD)とする. Order-Disorder モデルでの最小二乗計算は R=5.0% で収束した.

Hamilton 検定⁵⁾の結果, 99.5%の確からしさで Order-Disorder 型が優位であるとの 結果を得た.

Table 2.3.1 に Order-Disorder モデルで得られた原子位置及び等方性温度因子の値を示す.

Fig. 2.3.1 に I 相の構造の *bc* および *ab* 面投影図を示す. また得られた bond lengths と bond angles の一覧を Table 2.3.2 に示す.

Table 2.3.1. TMATC-Mn I相の 293K における Order-Disorder モデルでの原子位置(×10⁴) および等価等方性温度因子(×10²). 括弧内は標準偏差を表し,*印のものは固定した ものを表す. Order-Disorder モデルではミラー面(x=0.25)挟んで2つの等価なサイトを とるが,この Table では一方のサイトのみを表している.

atom	X	У	Z	Beq
Mn	2500(*)	4074(1)	2456(1)	375(3)
Cl(1)	2682(7)	4064(3)	566(2)	695(8)
Cl(2)	2854(5)	5454(2)	3167(3)	716(12)
Cl(3)	270(4)	3537(3)	3060(4)	712(12)
Cl(4)	4491(5)	3227(3)	3085(4)	684(11)
N (1)	2500(*)	964(5)	1494(6)	459(20)
N (2)	7500(*)	3259(5)	84(6)	438(21)
C (1)	2135(36)	995(13)	2641(10)	1321(90)
C (2)	2028(27)	71(10)	1121(14)	1064(96)
C (3)	1557(25)	1630(12)	949(19)	1212(74)
C (4)	4033(21)	1138(20)	1200(21)	1460(104)
C (5)	7702(32)	2389(9)	566(15)	1243(57)
C (6)	6868(25)	3845(13)	916(15)	1196(87)
C (7)	6649(24)	3244(15)	-903(16)	1294(73)
C (8)	9002(16)	3566(10)	-171(17)	810(57)
Table 2.3.2 TMATC-Mn I相の 293K における bond lengths (Å) と bond angles(°). 括弧内は標準偏差を表す.

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.338 (4)	Mn - Cl(2)	2.354 (13)
Mn - Cl(3)	2.309 (13)	Mn - Cl(4)	2.369 (20)
N(1) - C(1)	1.453 (17)	N(1) - C(2)	1.534 (12)
N(1) - C(3)	1.507 (24)	N(1) - C(4)	1.460 (21)
N(2) - C(5)	1.497 (19)	N(2) - C(6)	1.491 (24)
N(2) - C(7)	1.442 (23)	N(2) - C(8)	1.475 (17)

atom1 atom3 atom2	angle[°]	atom1 atom3 atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.6(7)	Cl(1) - Mn - Cl(3)	112.4(7)
Cl(1) - Mn - Cl(4)	105.6(7)	Cl(2) - Mn - Cl(3)	109.5(6)
Cl(2) - Mn - Cl(4)	106.8(5)	Cl(3) - Mn - Cl(4)	110.7(4)
C(1) - N (1) - C(2)	105.0(11)	C(1) - N (1) - C(3)	106.4(13)
C(1) - N (1) - C(4)	116.9(14)	C(2) - N (1) - C(3)	109.9(11)
C(2) - N (1) - C(4)	111.1(11)	C(3) - N (1) - C(4)	107.3(9)
C(5) - N (2) - C(6)	109.5(8)	C(5) - N (2) - C(7)	112.7(9)
C(5) - N (2) - C(8)	105.6(13)	C(6) - N (2) - C(7)	112.8(11)
C(6) - N (2) - C(8)	107.4(9)	C(7) - N (2) - C(8)	108.4(10)

Fig. 2.3.1. TMATC-Mn(I相, 293 K) における結晶構造の *ab* 面および *bc* 面. *bc* 面においては独立な原子のみ異方性温度因子を示す楕円体で描かれており,対称操作でうつる原子は円で描かれている. *ab* 面図で *x*<0.5 の範囲に描かれているのが Order-Disorder モデルでの一方のサイトの原子で, *x*>0.5 の範囲に描かれているのが Displacive モデルでの解析結果である.

Fig. 2.3.1. TMATC-Mn(I相, 293 K) における結晶構造の *ab* 面および *bc* 面. *bc* 面においては独立な原子のみ異方性温度因子を示す楕円体で描かれており,対称操作でうつる原子は円で描かれている. *ab* 面図で *x*<0.5 の範囲に描かれているのが Order-Disorder モデルでの一方のサイトの原子で, *x*>0.5 の範囲に描かれているのが Displacive モデルでの解析結果である.

2.3.2 ドメイン構造とそれに対応した解析方法

Fig.2.3.2 に TMATC-Mn Ⅲ相の温度領域での単結晶を偏光顕微鏡下で観察したときの顕微鏡写真を示す⁴⁾.写真からわかるように十分な大きさを持つストライプ状のドメインの様子の存在が認められる.

さてⅢ相の空間群である $P2_1/c11$ の対称要素は, (i) x, y, z (ii) 1/2-x, y, 1/2+z (iii) 1/2+x, -y, 1/2-z (iv) -x, -y, -z の4つである. したがって本来, 結晶が単分域であれば 構造因子は $|F_{obs}(hkl)| \neq |F_{obs}(hk\bar{l})|$ となり, 測定された(hkl) と (hk\bar{l}) の反射強度は異な るはずである. しかしⅢ相の測定で得られた(hkl) と (hk\bar{l}) の強度の差はわずかであ った. このことは Fig. 2.3.3 に示すように反位相の関係にある 2 種のストライプ状の ドメインからの回折線を同時に測定していることがその理由であると思われる.

そこで実際の解析においては,前述のように2種のドメインが十分大きいことを考慮し,2つのドメインからの回折強度には相関はないものとして,ドメイン分域の体積分率 *X*Mを最小二乗計算のフィッティングパラメータに追加して

$$|F_{\rm ave}(hkl)|^{2} = x_{\rm dm} \cdot |F_{\rm cal}(hkl)|^{2} + (1 - x_{\rm dm}) \cdot |F_{\rm cal}(hk\bar{l})|^{2}$$
(2.3)

を測定強度と比較するように最小二乗法計算を行った.

Fig.2.3.2 偏光顕微鏡下で観察された TMATC-Mn のⅢ相におけるドメイン構造⁶.

12

Fig. 2.3.3 2つのドメインからの回折 X 線とその指数

なお、Ⅲ相のみならず、Ⅳ, V相でも単斜晶系のドメインが残っていたので、これ らの相の解析においても、それぞれドメイン比を考慮して解析を行った.

3.3 強弾性相(III相)の構造解析

Ⅲ相は前章で述べたように空間群 $P2_1/c11$ の monoclinic 相であり、また原型相と比較して c 軸方向に 2 倍の超格子構造をとる.

最小二乗法の初期パラメータとして I 相の Displacive モデルでの配置を2 倍の超格 子構造に積み上げたものを使い,最初の数サイクルは TCM 四面体基のみを自由に動 かし,そののち TMA 四面体基を動かした.

また最小二乗計算においては前章で述べた Monoclinic ドメインを考慮した解析を 行なった. *R* 因子は *R*=5.3%で収束した. 得られたドメイン比は 64.8:35.2 であった.

得られた原子位置を Table 2.3.3 に, 原子配置の *bc* 投影図を Fig2.3.4 に, bond lengths (Å) と bond angles(°)を Table 2.3.4 に示す.

Fig. 2.3.4 において各四面体基の *c* 軸に関する回転方向を図中の矢印で示している. 矢印からわかるように同一 layer の各四面体基は TCM および TMA によらず,同一方 向に回転している.従って *c* 軸正の方向から見て,時計回りを-,反時計回りを+で 表現すると, $z \approx \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$ の各点に位置する layer における四面体基の回転方向は, -, +, +, -と表現できることが判明した.

	atom	X	У	Z	Beq
TCM(a)	Mn(a)	2543(1)	4075(1)	1222(1)	370(3)
	Cl(1a)	2659(4)	4078(5)	279(1)	663(9)
	Cl(2a)	2893(4)	5450(2)	1593(1)	727(10)
	Cl(3a)	228(6)	3545(3)	1510(1)	699(10)
	Cl(4a)	4450(4)	3309(2)	1566(1)	721(10)
TCM(b)	Mn(b)	2705(1)	933(1)	3730(1)	359(3)
	Cl(1b)	2679(4)	939(3)	2780(1)	742(10)
	Cl(2b)	3034(4)	-451(2)	4085(2)	705(10)
	Cl(3b)	447(4)	1474(3)	4053(2)	779(10)
	Cl(4b)	4684(4)	1799(2)	4019(2)	716(9)
TMA(1a)	N (1a)	2655(9)	936(6)	737(3)	484(22)
	C (1a)	2425(22)	894(12)	1364(5)	1122(61)
	C (2a)	2228(19)	107(9)	484(7)	981(53)
	C (3a)	1691(21)	1604(10)	472(7)	1051(60)
	C (4a)	4210(16)	1134(14)	614(7)	1162(67)
TMA(1b)	N (1b)	2553(8)	4033(6)	3250(3)	417(20)
	C (1b)	2373(20)	3925(10)	3628(4)	890(50)
	C (2b)	2106(19)	4909(8)	3071(5)	847(47)
	C (3b)	1622(20)	3362(10)	2983(7)	1053(56)
	C (4b)	4120(16)	3879(13)	3081(7)	1103(63)
TMA(2a)	N (2a)	7555(9)	3287(5)	54(3)	346(19)
	C (5a)	7757(18)	2398(9)	286(7)	1040(53)
	C (6a)	6686(18)	3766(12)	391(8)	1416(61)
	C (7a)	6785(21)	3185(12)	-464(6)	1436(59)
	C (8a)	9000(15)	3632(9)	-57(7)	936(52)
TMA(2b)	N (2b)	7618(9)	1771(6)	2528(4)	512(24)
	C (5b)	7566(20)	2665(9)	2715(7)	1136(58)
	C (6b)	7441(28)	1100(11)	2980(6)	1386(84)
	C (7b)	6410(21)	1578(13)	2190(8)	1611(69)
	C (8b)	9070(19)	1568(11)	2303(8)	1298(66)

 Table 2.3.3 TMATC-Mn Ⅲ相の 273 K における原子位置(×10⁴)および等価等

 方性温度因子(×10²). 括弧内は標準偏差を表す.

Fig. 2.3.4 TMATC-Mn Ⅲ相 273 K における結晶構造での *bc* 面. 矢印は *c* 軸に平行な軸に関する回転方向を示す.

atom	1 atom2	distanc	æ[Å]	atoml	atom2	distance	e[Å]
Mn (a)	Cl(1a)	2.329 ((3)	Mn (a)	Cl(2a)	2.356 (2	25)
Mn (a)) Cl(3a)	2.360 ((8)	Mn (a)	Cl(4a)	2.349 (15)
Mn (b)	Cl(1b)	2.344 ((3)	Mn (b)	Cl(2b)	2.352 (2	24)
Mn (b)	Cl(3b)	2.349 ((9)	Mn (b)	Cl(4b)	2.354 (13)
N (1a)	C (1a)	1.562 ((16)	N (1a)	C (2a)	1.490 (24)
N (1a)	C (3a)	1.508 ((24)	N (1a)	C (4a)	1.472 (18)
N (1b)	C (1b)	1.439 ((14)	N (1b)	C (2b)	1.494 (20)
N (1b)	C (3b)	1.497 ((23)	N (1b)	C (4b)	1.496 (17)
N (2a)	C (5a)	1.514 ((23)	N (2a)	C (6a)	1.367 (24)
N (2a)	C (7a)	1.466 ((18)	N (2a)	C (8a)	1.439 (16)
N (2b)	C (5b)	1.472 ((22)	N (2b)	C (6b)	1.538 (29)
N (2b)	C (7b)	1.407 ((22)	N (2b)	C (8b)	1.460 (20)
			1 503				1 503
atom1	atom3 a	tom2		atom1	$\frac{1}{1}$ atom 3 a	itom2	angle[°]
Cl(1a)	Mn (a)	Cl(2a)	112.3(14)	Cl(1a)	Mn (a)	Cl(3a)	109.9(6)
Cl(1a)	Mn (a)	Cl(4a)	109.1(9)	Cl(2a)	Mn (a)	Cl(3a)	108.8(4)
Cl(2a)	Mn (a)	Cl(4a)	106.7(3)	Cl(3a)	Mn (a)	Cl(4a)	109.9(7)
Cl(1b)	Mn (b)	Cl(2b)	112.1(15)	Cl(1b)	Mn (b)	Cl(3b)	109.2(6)
Cl(1b)	Mn (b)	Cl(4b)	107.9(10)	Cl(2b)	Mn (b)	Cl(3b)	108.4(5)
Cl(2b)	Mn (b)	Cl(4b)	108.7(2)	Cl(3b)	Mn (b)	Cl(4b)	110.5(8)
C (1a)	N (1a)	C (2a)	110.1(14)	C (1a)	N (1a)	C (3a)	112.4(13)
C (1a)	N (1a)	C (4a)	109.9(8)	C (2a)	N (1a)	C (3a)	105.7(7)
C (2a)	N (1a)	C (4a)	110.1(8)	C (3a)	N (1a)	C (4a)	108.5(8)
C (1b)	N (1b)	C (2b)	111.5(15)	C (1b)	N (1b)	C (3b)	106.8(12)
C (1b)	N (1b)	C (4b)	111.3(8)	C (2b)	N (1b)	C (3b)	111.1(8)
C (2b)	N (1b)	C (4b)	108.7(8)	C (3b)	N (1b)	C (4b)	107.3(9)
C (5a)	N (2a)	C (6a)	110.0(8)	C (5a)	N (2a)	C (7a)	106.7(13)
C (5a)	N (2a)	C (8a)	107.8(9)	C (6a)	N (2a)	C (7a)	108.6(12)
C (6a)	N (2a)	C (8a)	115.7(7)	C (7a)	N (2a)	C (8a)	107.7(8)
C (5b)	N (2b)	C (6b)	114.6(8)	C (5b)	N (2b)	C (7b)	111.4(12)
C (5b)	N (2b)	C (8b)	110.8(10)	C (6b)	N (2b)	C (7b)	101.6(10)
C (6b)	N (2b)	C (8b)	102.8(9)	C (7b)	N (2b)	C (8b)	115.2(7)

Table 2.3.4 TMATC-Mn Ⅲ相の 273 K における bond lengths (Å) と bond angles(°). 括弧内は標準偏差を表す.

2.3.4 IV 相の構造解析

IV相は空間群 *P*112₁/n の monoclinic 相であり, また原型相と比較して *c* 軸方向に 3 倍の超格子構造をとる.

最小二乗法の初期パラメータとして I 相の Displacive モデルでの配置を3倍の超格子構造に積み上げたものを使い,最初の数サイクルは TCM 四面体基のみを自由に動かし,そののち TMA 四面体基を動かした.

Ⅲ相と同様,この相も γ =90.22[°]の monoclinic 相である.したがってこの相においても Monoclinic ドメインを考慮した解析を行った. *R* 因子は *R*=6.6%で収束し,得られたドメイン比は 64.8:35.2 であった.

得られた原子位置を Table 2.3.5 に, 原子配置の *bc* 投影図を Fig2.3.5 に, bond lengths (Å) と angles(°)を Table 2.3.6 に示す.

Fig2.3.5 において各四面体基の c 軸に関する回転方向を矢印で示している. III相と同様にN相においても、図中の矢印からわかるように同一 layer の各四面体基は TCM および TMA によらず、同一方向に回転している. 従って c 軸正の方向から見て、時計回りを一、反時計回りを+で表現すると、各 layer における回転方向は、一、+、

-, -, +, -と表現できる.

Fig. 2.3.6 に TMATC-Mn IV相の layer 構造を構成する TCM 四面体基と TMA 四面体 基の変調構造の様子を示している.

 Table 2.3.5
 TMATC-Mn
 IV相の 261 K
 における原子位置(×10⁴)
 および等価等方性温度

 因子(×10²).
 括弧内は標準偏差を表す.

•	atom	x	у	Z	Beq
TCM(a)	Mn(a)	2526(2)	4088(1)	816(1)	324(4)
	Cl(1a)	2739(4)	4061(3)	184(1)	609(9)
	Cl(2a)	2847(5)	5477(3)	1054(1)	632(12)
	Cl(3a)	181(4)	3555(3)	995(1)	651(10)
	Cl(4a)	4401(4)	3230(3)	1065(1)	619(11)
TCM(b)	Mn(b)	2794(2)	4092(1)	4157(1)	328(4)
	Cl(1b)	2604(5)	4110(3)	3523(1)	629(12)
	Cl(2b)	3194(5)	5482(3)	4384(1)	603(12)
	Cl(3b)	569(4)	3567(3)	4406(1)	643(12)
	Cl(4b)	4810(4)	3197(3)	4323(1)	613(11)
TCM(c)	Mn(c)	2256(2)	4021(1)	7489(1)	338(3)
1010(0)	Cl(1c)	2152(5)	4070(3)	6855(1)	649(12)
	C1(2c)	1890(5)	5380(3)	7761(1)	633(12)
	C1(2c)	371(5)	3120(3)	7695(1)	670(12)
	Cl(3c)	4578(4)	3/91(3)	7695(1)	644(12)
$TMA(1_{0})$	$N(1_{0})$	2740(10)	054(8)	406(3)	426(20)
TMA(Ta)	$\Gamma(1a)$	2749(10)	934(8)	490(3)	420(30)
	C(1a)	2372(23)	907(21)	890(3) 257(5)	700(56)
	C(2a)	2331(20)	88(12) 1608(12)	337(3)	799(30)
	C(3a)	1789(22)	1008(12)	303(6)	908(65)
	U (4a)	4370(18)	1042(15)	429(7)	941(73)
IMA(Ib)	N (1b)	2564(10)	989(6)	3828(2)	273(23)
	C (1b)	2487(27)	1037(14)	4228(5)	951(74)
	C (2b)	2013(21)	130(12)	3711(5)	810(57)
	C (3b)	1541(27)	1559(19)	3670(7)	1411(94)
	C (4b)	4062(18)	1165(15)	3711(5)	858(65)
TMA(1c)	N (1c)	2316(12)	882(9)	7161(3)	548(55)
	C (1c)	2552(25)	996(13)	7565(4)	965(66)
	C (2c)	2766(23)	33(11)	7005(6)	798(63)
	C (3c)	756(18)	1129(20)	7082(6)	1218(89)
	C (4c)	3216(21)	1627(11)	6989(4)	683(53)
TMA(2a)	N (2a)	7572(10)	3241(7)	35(3)	370(28)
	C (5a)	7868(25)	2400(14)	186(7)	1045(77)
	C (6a)	6854(20)	3862(14)	323(4)	882(58)
	C (7a)	6478(21)	3166(14)	-260(5)	1004(60)
	C (8a)	9022(18)	3650(13)	-65(6)	838(65)
TMA(2b)	N (2b)	7631(11)	3263(7)	3343(3)	408(29)
	C (5b)	7490(21)	2366(10)	3439(6)	853(61)
	C (6b)	8622(32)	3661(21)	3564(8)	2183(148)
	C (7b)	6200(21)	3616(17)	3307(9)	1476(117)
	C (8b)	8135(36)	3245(17)	2967(6)	1762(103)
TMA(2c)	N (2c)	7258(11)	3264(7)	6693(3)	420(29)
~ /	C (5c)	7282(23)	2294(10)	6826(6)	960(61)
	C (6c)	7885(27)	3824(13)	6954(6)	1048(114)
	(7)	5775(17)	2508(10)	6585(5)	711(62)
	U (/C)	5//5(1/1	2200(10)	0202121	/11000

Fig. 2.3.5 TMATC-Mn IV相 261 K における結晶構造における *bc* 面. 矢印は *c* 軸に平行な軸に関する回転方向を示している.

	Type a	Type b	Туре с
Mn - Cl(1)	2.345(4)	2.394(4)	2.345(4)
Mn - Cl(2)	2.356(9)	2.350(11)	2.370(10)
Mn - Cl(3)	2.368(23)	2.356(22)	2.332(32)
Mn - Cl(4)	2.315(30)	2.381(3)	2.352(23)
N(1)- C(1)	1.521(21)	1.485(21)	1.517(20)
N(1)- C(2)	1.494(24)	1.490(25)	1.502(25)
N(1)- C(3)	1.520(29)	1.412(34)	1.492(24)
N(1)- C(4)	1.491(20)	1.447(21)	1.553(29)
N(2)- C(5)	1.451(25)	1.448(19)	1.591(20)
N(2)- C(6)	1.545(22)	1.361(33)	1.420(25)
N(2)- C(7)	1.478(21)	1.413(25)	1.451(20)
N(2)- C(8)	1.503(22)	1.464(26)	1.453(25)
Cl(1) - Mn - $Cl(2)$	112.3(2)	110.8(1)	112.9(2)
Cl(1) - Mn - $Cl(3)$	110.3(2)	109.4(2)	108.5(3)
Cl(1) - Mn - Cl(4)	108.7(14)	108.7(2)	109.0(2)
Cl(2) - Mn - $Cl(3)$	108.9(14)	108.0(13)	107.2(9)
Cl(2) - Mn - $Cl(4)$	106.9(9)	109.5(10)	108.9(13)
Cl(3) - Mn - $Cl(4)$	109.7(4)	110.5(4)	110.3(5)
C(1) - N(1) - C(2)	103.7(8)	108.6(6)	116.3(7)
C(1) - N(1) - C(3)	111.2(10)	110.5(10)	107.2(9)
C(1) - N(1) - C(4)	112.7(8)	109.4(10)	104.1(9)
C(2) - N(1) - C(3)	107.6(9)	103.2(12)	114.3(16)
C(2) - N(1) - C(4)	105.7(17)	113.2(15)	111.0(10)
C(3) - N(1) - C(4)	115.1(11)	111.8(10)	102.6(12)
C(5) - N(2) - C(6)	111.7(4)	110.4(9)	111.5(6)
C(5) - N(2) - C(7)	109.8(9)	108.8(13)	110.6(12)
C(5) - N(2) - C(8)	108.4(13)	104.0(5)	113.4(10)
C(6) - N(2) - C(7)	108.5(11)	118.7(8)	113.1(9)
C(6) - N(2) - C(8)	102.9(7)	112.0(16)	97.9(11)
C(7) - N(2) - C(8)	115.5(4)	101.7(12)	109.9(7)

Table 2.3.6 TMATC-Mn IV相の 261 K における bond lengths (Å) と bond angles(°). 括弧内は標準偏差を表す.

2.3.5 V相の構造解析

V相は空間群 $P12_1/c1$ の monoclinic 相であり、また原型相と同じ normal 相である. III, IV相度同様, この相も β =90.16°の monoclinic 相である.

したがってこの相においても Monoclinic ドメインを考慮した解析を行い, R 因子は R=4.0%で収束した.得られたドメイン比は 64.8:35.2 であった.

得られた原子位置を Table 2.3.7 に, 原子配置の *bc* 投影図を Fig2.3.7 に, bond lengths (Å) と bond angles(^o)を Table 2.3.8 に示す.

Fig2.3.7 において各四面体基のbおよびc軸に関する回転方向を矢印で示す.b軸に関してはlayer内では同じ方向を向く. 一方c軸に関する回転はこの相では同一layerで、反対の方向を向くことがIII、IV相とは異なる.

Table 2.3.7 TMATC-Mn V相の 168 K における原子位置(×10⁴)および等価等方性温度因子(×10²). 括弧内は標準偏差を表す

atom	Х	у	Z	Bq
Mn	2252(1)	4054(1)	2469(1)	157(1)
Cl(1)	2732(2)	4073(1)	573(1)	236(3)
Cl(2)	1875(2)	5462(1)	3187(1)	298(4)
Cl(3)	91(2)	3217(1)	2844(1)	264(4)
Cl(4)	4360(2)	3435(1)	3316(1)	329(3)
N (1)	2641(6)	972(3)	1496(3)	205(10)
N (2)	7520(5)	3295(3)	36(4)	186(10)
C (1)	2208(9)	1030(4)	2682(4)	350(16)
C (2)	2462(12)	46(4)	1115(6)	466(23)
C (3)	1635(9)	1557(5)	815(6)	393(18)
C (4)	4205(9)	1250(7)	1344(7)	599(27)
C (5)	7673(9)	2345(4)	336(6)	337(16)
C (6)	6806(8)	3783(5)	964(6)	358(17)
C (7)	6537(9)	3380(5)	-959(5)	383(16)
C (8)	9018(7)	3650(4)	-203(6)	292(17)

 Fig. 2.3.7
 TMATC-Mn
 V相
 168K
 における結晶構造における bc 面および ac 面.

 矢印は c 軸および b 軸に平行な軸に関する回転方向を示している

Table 2.3.8	TMATC-Mn	V相の	168 K におけ	る bond lengths	(Å)	と bond angles(°).
括	弧内は標準偏	諸差を表	す			

	atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
	Mn - Cl(1)	2.358 (15)	Mn - Cl(2)	2.356 (5)
	Mn - Cl(3)	2.372 (13)	Mn - Cl(4)	2.353 (28)
	N (1) - C (1)	1.503 (15)	N (1) - C (2)	1.504 (8)
	N (1) - C (3)	1.519 (19)	N (1) - C (4)	1.480 (11)
	N (2) - C (5)	1.509 (7)	N (2) - C (6)	1.504 (18)
	N (2) - C (7)	1.507 (26)	N (2) - C (8)	1.481 (12)
2	atom1 - atom3 - atom2	angle[°]	atom1 atom3 atom	n2 angle[°]
	Cl(1) - Mn - Cl(2)	112.4(3)	Cl(1) - Mn - Cl(3)	110.4(15)
	Cl(1) - Mn - Cl(4)	106.7(13)	Cl(2) - Mn - Cl(3)	107.8(8)
	Cl(2) - Mn - Cl(4)	108.8(7)	Cl(3) - Mn - Cl(4)	110.7(3)
	C(1) - N (1) - C(2)	109.0(3)	C(1) - N (1) - C(3)	109.8(9)
	C(1) - N (1) - C(4)	110.6(17)	C(2) - N (1) - C(3)	109.0(9)
	C(2) - N (1) - C(4)	109.5(8)	C(3) - N (1) - C(4)	108.9(8)
	C(5) - N (2) - C(6)	109.7(4)	C(5) - N (2) - C(7)	109.4(3)
	C(5) - N (2) - C(8)	108.7(5)	C(6) - N (2) - C(7)	108.5(5)
	C(6) - N (2) - C(8)	110.8(13)	C(7) - N (2) - C(8)	109.8(11)

2.4 まとめ

TMATC-MnのI相は、独立な2つのTMAとTCMがそれぞれ2サイトを等確率で 占めることで平均構造として*Pmcn*の空間群である(Disordered model)としても、あ るいは、大きな熱振動をしている原子の平均位置が*Pmcn*の空間群を満たす構造であ る(Displacive model)としても、いずれでも理解することが出来る.低温で実現する 整合構造(III 相および IV 相)では、I 相の disorder site の一方を占有するようになっ たと考えることも出来るし、II 相を経てIII 相に転移する間に大きく変位していったと も見ることが出来る.つまり、変調構造をANNNIモデル的に記述することも出来る し、変調波に乗っていると記述することも出来る.こうした変調構造そのものは TMATC-Zn と同様である⁴⁾.最後にV相では I 相で別の規約表現に属する原子変位が 起こって実現する構造へ、IV 相から 1 次転移したノーマル構造であることが分かる.

参考文献

- 1) T. Sakurai: Editor *Universal crystallographic Computation Program system*. The Crystallographic Society of Japan, Tokyo, Japan
- 2) International Tables for X-Ray Crystallography (The Kynoch Press, Birmingham, 1974) Vol. IV.
- 3) J. R. Wiesner, R. C. Srivastava, C. H. L. Kennard, M. DiVaira and E. C. Lingafelter: Acta Crystallogr. 23 (1967) 565.
- 4) K. Hasebe, H. Mashiyama and S. Tanisaki: Jpn J. Appl. Phys. 24 (1985) 802
- 5) W. Hamilton: Acta Crystallogr. 18 (1965) 502.
- 6) 山本和信:山口大学理学部物理学科卒業論文(1986)
- 7) H. Mashiyama and N. Koshiji: Acta Cryst. B45 (1989) 467.

- 44 -

第3章 原型相(|相)の構造の 精密化

第3章と第4章では TMATC-Mn の原型相(I相) – 強弾性相(Ⅲ相)間 の相転移機構を詳しく調べるため相転移近傍を中心に多数の温度点で結 晶構造解析した内容について議論する.第3章ではまずこの測定に用いた イメージングプレート(IP)を用いた迅速型 X線回折装置 DIP-3000の概要 と特色について説明する¹⁾.そしてその装置を使って得られた相転移近傍 を中心とした多数の I 相の構造について検討を行う. I 相についてはその 構造を第1章で説明した Displacive 型(変位型)と Order-Disorder 型(秩 序無秩序型)の2つのモデルを用いて解析した結果について議論する²⁾.

3.1 実験方法

構造解析のためのデータ収集実験に先立ち,相転移温度の決定をおこなった.

低温の強弾性相(Ⅲ相)は *c* 軸方向に 2 倍の超格子構造を持つため,Ⅲ相への相転移は超格子反射(h k l±1/2)の出現で特徴づけられる.

そこで相転移温度を決定するために山口大学機器分析センター所蔵の4軸 X 線回 折装置AFC-5Rを用いて(311/2)近傍の散漫散乱を観測した.

その結果、この結晶では第Ⅱ相である incommensurate 相の出現を観測することはできず、 Ⅰ相は直接Ⅲ相に *T*_c=293K で相転移をすることがわかった.

Fig. 3.1.1 に得られた(3 1 ξ) 周りの散漫散乱のうち ξ=0.3~0.4 及び ξ =0.6~0.7 における散漫散乱の温度依存性を示す.

incommensurate 相である II 相は静水圧下でより安定化し¹⁾, このように大気圧下ではしばしば出現しないことが知られている.

Fig. 3.1.1 (31ξ)における散漫散乱の温度依存性

構造解析用の X 線回折データは山口大学機器分析センター所蔵の DIP-3000 (マッ クサイエンス社製)を用いて収集した.今回行った測定の測定条件を Table 3.1.1 に, この装置の中心部の写真を fig.3.1.2 に示す.得られたイメージング像(振動写真の一 例)を Fig. 3.1.3 及び Fig. 3.1.4 に示す.

この装置の特色は従来の装置のようにシンチレーションカウンターを使って一つ 一つの反射を走査するのではなく、イメージングプレート(Imaging Plate 以下 IP) を用いた写真法であるということである. IP とは、従来の X 線フイルムとはまった く異なった原理に基づく高感度かつダイナミックレンジの広い X 線検出素子である. その原理は以下のとおりである. すなわち IP は BaFBr: Eu 2 +の微結晶を高密度塗 布したフイルムでありそのフイルムに X 線が入射すると Eu 2 +イオンの一部が Eu 3 +イオンになり、このとき放出された電子が Br イオン空格子に捕獲される. そこに 可視光線を照射することにより蛍光が発生、それを光電子倍増管で測定することによ りフイルム上の強度を数値変換する. 以上の特色を持つ DIP3000 を使用することにより,超格子構造を持つ TMATC-Mn について I-Ⅲ相転移点近傍の多数の温度点で測定し構造解析を行うことで相転移に 伴う構造変化を詳細に追うことが可能になった.

Fig. 3.1.3 のように画像データとして得られた 18 枚のイメージング像から DIP3000 付属のプログラム DENZO と SCALEPACK を用いて各温度における X 線回折用の強度データを得た.

試料	半径 0.21mm の球形試料
測定装置	DIP3000
使用X線	Mo Kα (λ =0.71073Å)
撮影方法	振動写真(ワイセンベルグ式)
回転角度範囲	10°
回転角度間隔	10°間隔で 0°~180°を撮影
回転角度速度	2.0°/min
振動回数	40
露光時間	1200 秒(1枚あたり)
	計)1200 秒×18 枚=6時間
測定点(I相)	340, 320, 300, 297, 295, 294, 293K の計 7 点
測定点(Ⅲ相)	292, 291, 290, 289,287, 285,280,275, 270K の計 9 点
温度制御	窒素ガスの吹きつけによる
温度精度	±0.1K

Table 3.1.1 測定条件等

Fig.3.1.2 イメージングプレート (IP) を備えた迅速型 X 線回折装置 DIP-3000

Fig. 3.1.3 TMATC-Mn I 相のイメージング像(振動写真) 画像のデータサイズは約 22MB である¹⁾.

Fig.3.1.4 TMATC-Mn I相で*c*軸を立てた状態でのイメージングプレート像(振動写真) 下図は上図丸近傍の部分を拡大したもの(ただし上下逆の像)¹⁾

反射データにはローレンツ因子と偏光因子による補正および吸収補正を行った. MoKa の X 線において TMATC-Mn 結晶の線吸収係数は μ =1.32 mm⁻¹であるので、半径 r=0.21mm の球形試料の質量吸収係数は μ r=0.28 となる. この値を用いて吸収補正 を行った.

解析には $F_{obs} > 5\sigma(F_{obs})$ を満たす強い反射のみを用い,等価な反射は平均化した.ここで F_{obs} と $\sigma(F_{obs})$ はそれぞれ観測された構造因子とその標準偏差である.今回の解析においては水素原子を考慮していない.原子散乱因子は International Tables for X-ray Crystallography の値を用いた²⁾.

ブロック対角近似最小二乗法の計算はパーソナルコンピューター上で走るプログ ラムである AXS89 システムを用いた³⁾.

ブロック対角近似最小二乗計算においては、(3.1)式に示した

$$R_w^2 = \sum_{\boldsymbol{h}} w(\boldsymbol{h}) \left(F_{\text{obs}}(\boldsymbol{h}) - F_{\text{cal}}(\boldsymbol{h}) \right)^2 / \sum_{\boldsymbol{h}} w(\boldsymbol{h}) F_{\text{obs}}(\boldsymbol{h})^2$$
(3.1)

で求められる R 因子 Rw を重み w(h)のもと最小にするよう計算が行われる.本論文での解析にあたっては、重みは指数に依らず1とした.

3.2 | 相の構造の変位型モデル(Displacive model)

まず始めに全ての四面体基がミラー面上(x=0.25,0.75) に配置され,かつ四面体基自 身がミラー対称を持つモデルを考える. すなわち Mn, Cl(1), Cl2(2), N(1), C(1), C(2), N(2), C(5), 及び C(6)の各原子はミラー面に固定される. 他方, Cl(3), C(3), C(7)の 各原子はミラー面上ではない点に配置され,残りの Cl および C 原子はミラー対称性 により前述のミラー面上にない原子からミラー対称で写る位置を占める. このモデル を Displacive model (DP)と呼ぶ³⁾.

解析の初期値として第2章で得られた 293 K の原子座標等を用いた. 最小二乗法計 算にもちいたパラメータ数は 83 個で, 計算の結果得られた Displacive model での各温 度における最終 R 因子の結果を table 3.3.1 に示す.

Table. 3.2.1 Displacive Model での最終 R 因子

Temperature (K)	340	320	300	297	295	294	293
R-factor (%)	7.08	6.99	8.12	7.45	7.45	7.41	7.42

また Table.3.2.2 以降,各温度での原子座標,異方性温度因子及び結合距離と結合角の一覧を示す.

ここで MnCl₄ 四面体基を TCM 四面体基と呼び, N(1)を中心に, C(1), C(2), C(3) 及び C(3)のミラー対称で写った C 原子からなる四面体基を *TMA*(1)四面体基と呼び, N(2)を中心に, C(5), C(6), C(7)及び C(7)のミラー対称で写った C 原子からなる四面 体基を *TMA*(2)四面体基と呼ぶことにする.

TCM 四面体基と, TMA(1)四面体基はほぼ正四面体であるのに対して, TMA(2)四面体基はやや歪んでいる.

Fig.3.2.1 に 295K での Displacive Model で得られた結晶構造の *c* 軸投影図を示す. 図中では 0<z<1/2 の範囲を表している.非等方性温度因子は ORTEP-III⁴⁾ を用いて 楕円体で表されている.

atom	х	У	Z	Ueq
Mn	2500(*)	4074(1)	2457(1)	479(2)
Cl(1)	2500(*)	4069(2)	562(2)	963(9)
Cl(2)	2500(*)	5457(2)	3175(3)	1323(15)
Cl(3)	380(2)	3366(1)	3074(2)	1144(7)
N (1)	2500(*)	962(4)	1490(5)	604(19)
N (2)	7500(*)	3255(4)	83(5)	573(19)
C (1)	2500(*)	989(10)	2675(9)	1787(84)
C (2)	2500(*)	91(8)	1091(12)	1923(92)
C (3)	3768(12)	1411(8)	1054(10)	2492(58)
C (5)	7500(*)	2376(7)	508(12)	1590(56)
C (6)	7500 (*)	3884(12)	902(13)	2759(152)
C (7)	8792(11)	3422(7)	-485(10)	2614(52)

 Table 3.2.2
 293K Displacive モデルでの原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 () 内の数字は標準偏差を表す.() 内が*印の座標はそれが固定されたことを示す.

Table 3.2.3 293 K Displacive モデルでの異方性温度因子. U_{ij} は平均二乗変位(×10⁴ [Å²])を, ()内の数字は標準偏差を表し, ()内が*印の値はそれがモデルの要請により固定された ことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	547(5)	445(4)	446(5)	0(*)	0(*)	6(5)
Cl(1)	1193(20)	1247(19)	450(11)	0(*)	0(*)	51(13)
Cl(2)	2339(39)	539(11)	1090(20)	0(*)	0(*)	-251(12)
Cl(3)	864(10)	1519(15)	1049(13)	-426(11)	230(11)	155(12)
N (1)	602(35)	664(35)	547(34)	0(*)	0(*)	13(31)
N (2)	554(33)	536(30)	629(37)	0(*)	0(*)	116(28)
C (1)	3137(211)	1776(127)	448(63)	0(*)	0(*)	-68(74)
C (2)	3741(249)	750(64)	1277(101)	0(*)	0(*)	-376(66)
C (3)	2239(81)	3454(120)	1784(101)	-1913(69)	685(77)	-226(96)
C (5)	1494(105)	892(55)	2384(119)	0(*)	0(*)	979(58)
C (6)	5652(416)	1661(145)	963(117)	0(*)	0(*)	-118(110)
C (7)	2097(72)	1794(83)	3952(115)	784(70)	2234(64)	1232(82)

atom1 - atom2	distance[Å]	atom1 atom2	distance[Å]
Mn - Cl(1)	2.341 (3)	Mn - Cl(2)	2.342 (3)
Mn - Cl(3)	2.345 (2)	N(1) - C(1)	1.464 (13)
N(1) - C(2)	1.450 (14)	N(1) - C(3)	1.452 (12)
N(2) - C(5)	1.474 (13)	N(2) - C(6)	1.413 (18)
N(2) - C(7)	1.389 (12)		

Table 3.2.4 293K Displacive モデルでの bond lengths (Å) & angles (°). ()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	112.5(2)	Cl(1) - Mn - $Cl(3)$	108.9(2)
Cl(2) - Mn - Cl(3)	108.3(2)	C(1) - N (1) - C(2)	111.5(17)
C(1) - N (1) - C(3)	110.9(15)	C(2) - N (1) - C(3)	109.3(15)
C(5) - N (2) - C(6)	113.3(20)	C(5) - N (2) - C(7)	110.8(15)
C(6) - N (2) - C(7)	103.3(16)		

 Table 3.2.5
 294K Displacive モデルでの原子座標 (×10⁻⁺) と等価等方性温度因子 (×10⁻⁺).

 ()内の数字は標準偏差を表す.()内が*印の座標はそれが固定されたことを示す.

atom	х	у	Z	Ueq
Mn	2500(*)	4074(1)	2457(1)	479(2)
Cl(1)	2500(*)	4069(2)	562(2)	962(9)
Cl(2)	2500(*)	5457(2)	3176(3)	1314(14)
Cl(3)	380(2)	3367(1)	3074(2)	1143(7)
N (1)	2500(*)	962(4)	1491(5)	602(19)
N (2)	7500(*)	3255(4)	82(5)	577(19)
C (1)	2500(*)	989(10)	2676(9)	1806(85)
C (2)	2500(*)	91(8)	1090(12)	1938(92)
C (3)	3771(12)	1408(8)	1053(10)	2494(59)
C (5)	7500(*)	2375(7)	510(12)	1605(56)
C (6)	7500(*)	3885(12)	901(13)	2797(154)
C (7)	8797(11)	3422(7)	-484(10)	2625(53)

Table 3.2.6 294 K Displacive モデルでの異方性温度因子. U_{ij} は平均二乗変位(×10⁴ [Å²]) を, ()内の数字は標準偏差を表し, ()内が*印の値はそれがモデルの要請により固定された ことを示す

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	545(5)	445(4)	446(5)	0(*)	0(*)	6(5)
Cl(1)	1190(20)	1246(19)	449(11)	0(*)	0(*)	53(13)
Cl(2)	2317(38)	540(11)	1086(20)	0(*)	0(*)	-250(12)
Cl(3)	866(10)	1515(15)	1047(13)	-426(11)	232(11)	154(12)
N (1)	594(34)	677(35)	537(33)	0(*)	0(*)	11(31)
N (2)	557(33)	527(30)	648(37)	0(*)	0(*)	118(28)
C (1)	3228(215)	1746(125)	442(61)	0(*)	0(*)	-81(72)
C (2)	3783(251)	751(64)	1279(102)	0(*)	0(*)	-378(66)
C (3)	2227(81)	3475(121)	1780(101)	-1904(69)	686(76)	-230(97)
C (5)	1514(106)	901(55)	2400(120)	0(*)	0(*)	986(58)
C (6)	5747(423)	1667(146)	978(116)	0(*)	0(*)	-124(111)
C (7)	2099(72)	1789(83)	3987(116)	768(70)	2244(64)	1226(83)

Table 3.2.7 294 K Displacive モデルでの bond lengths [Å] & angles [°].

() 内は標準偏差を表す

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.340 (3)	Mn - Cl(2)	2.343 (3)
Mn - Cl(3)	2.346 (2)	N(1) - C(1)	1.464 (13)
N(1) - C(2)	1.453 (14)	N(1) - C(3)	1.453 (12)
N(2) - C(5)	1.477 (13)	N(2) - C(6)	1.414 (18)
N(2) - C(7)	1.392 (12)		

atom - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	112.5(2)	Cl(1) - Mn - Cl(3)	108.9(2)
Cl(2) - Mn - Cl(3)	108.3(2)	C (1) - N (1) - C (2)	111.6(17)
C(1) - N (1) - C(3)	111.0(15)	C (2) - N (1) - C (3)	109.0(15)
C(5) - N (2) - C(6)	113.3(20)	C (5) - N (2) - C (7)	110.8(15)
C (6) - N (2) - C (7)	103.2(16)		

atom	X	у	Z	Ueq
Mn	2500(*)	4074(1)	2456(1)	484(3)
Cl(1)	2500(*)	4069(2)	562(2)	966(10)
Cl(2)	2500(*)	5457(2)	3175(3)	1308(15)
Cl(3)	381(2)	3367(2)	3074(2)	1147(8)
N (1)	2500(*)	961(4)	1490(5)	601(20)
N (2)	7500(*)	3256(4)	81(6)	578(20)
C (1)	2500(*)	993(11)	2675(9)	1802(89)
C (2)	2500(*)	90(8)	1088(12)	1941(97)
C (3)	3757(13)	1415(9)	1054(10)	2501(62)
C (5)	7500(*)	2374(7)	510(13)	1600(59)
C (6)	7500(*)	3885(12)	901(14)	2730(157)
C (7)	8781(12)	3418(7)	-493(11)	2633(56)

 Table 3.2.8
 295 K Displacive モデルでの原子座標(×10⁴)
 と等価等方性温度因子(×10⁴).

 ()
 内の数字は標準偏差を表す.()
 内が*印の座標はそれが固定されたことを示す.

Table 3.2.9 295 K Displacive モデルでの異方性温度因子. U_{ij} は平均二乗変位(×10⁴ [Å²])を, ()内の数字は標準偏差を表し, ()内が*印の値はそれがモデルの要請により固定された ことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	550(6)	451(5)	450(5)	0(*)	0(*)	6(5)
Cl(1)	1192(21)	1250(21)	455(12)	0(*)	0(*)	48(14)
Cl(2)	2296(40)	542(12)	1086(22)	0(*)	0(*)	-247(13)
Cl(3)	880(11)	1510(16)	1052(14)	-427(11)	231(11)	154(13)
N (1)	594(36)	676(37)	534(35)	0(*)	0(*)	6(33)
N (2)	567(35)	540(33)	628(40)	0(*)	0(*)	116(30)
C (1)	3202(225)	1767(133)	436(66)	0(*)	0(*)	-83(77)
C (2)	3753(263)	748(68)	1323(111)	0(*)	0(*)	-397(71)
C (3)	2194(84)	3465(127)	1844(109)	-1905(72)	711(81)	-266(103)
C (5)	1523(113)	882(58)	2397(128)	0(*)	0(*)	977(61)
C (6)	5586(431)	1635(150)	968(123)	0(*)	0(*)	-137(115)
C (7)	2109(77)	1808(89)	3984(123)	769(75)	2241(68)	1209(89)

atom1 - atom2	distance[Å]	atom1 atom2	distance[Å]
Mn - Cl(1)	2.339 (3)	Mn - Cl(2)	2.338 (3)
Mn - Cl(3)	2.344 (2)	N(1) - C(1)	1.464 (13)
N(1) - C(2)	1.450 (14)	N(1) - C(3)	1.446 (13)
N(2) - C(5)	1.477 (13)	N(2) - C(6)	1.411 (19)
N(2) - C(7)	1.384 (12)		

Table 3.2.10 295 K Displacive モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	112.5(2)	Cl(1) - Mn - $Cl(3)$	108.9(2)
Cl(2) - Mn - $Cl(3)$	108.2(2)	C(1) - N(1) - C(2)	111.9(18)
C(1) - N(1) - C(3)	110.8(16)	C(2) - N(1) - C(3)	109.5(16)
C(5) - N(2) - C(6)	113.2(21)	C (5) - N(2) - C(7)	110.7(16)
C(6) - N(2) - C(7)	103.9(17)		

Table 3.2.11 297K Displacive モデルでの原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).
()内の数字は標準偏差を表す.()内が*印の座標はそれが固定されたことを示す

atom	х	у	Z	Ueq
Mn	2500(*)	4074(1)	2457(1)	486(3)
Cl(1)	2500(*)	4069(2)	563(2)	970(10)
Cl(2)	2500(*)	5457(2)	3175(3)	1300(15)
Cl(3)	381(2)	3368(2)	3075(2)	1148(8)
N (1)	2500(*)	961(4)	1491(5)	609(21)
N (2)	7500(*)	3255(4)	81(6)	579(20)
C (1)	2500(*)	991(11)	2677(9)	1820(90)
C (2)	2500(*)	90(8)	1090(12)	1965(99)
C (3)	3757(13)	1416(9)	1054(10)	2516(62)
C (5)	7500(*)	2375(7)	508(13)	1611(59)
C (6)	7500(*)	3886(12)	900(14)	2735(157)
C (7)	8780(12)	3417(7)	-490(11)	2630(56)

Table 3.2.12 297 K Displacive モデルでの異方性温度因子. U_{ij}は平均二乗変位(×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表し, ()内が*印の値はそれがモデルの要請により固定された ことを示す

atom	U_{11}	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	547(6)	457(5)	454(5)	0(*)	0(*)	6(5)
Cl(1)	1181(21)	1267(21)	460(12)	0(*)	0(*)	47(14)
Cl(2)	2253(39)	547(12)	1100(22)	0(*)	0(*)	-251(13)
Cl(3)	880(11)	1512(16)	1053(14)	-431(11)	231(11)	155(13)
N (1)	605(37)	681(37)	540(36)	0(*)	0(*)	14(33)
N (2)	553(35)	552(33)	633(40)	0(*)	0(*)	116(30)
C (1)	3225(226)	1807(136)	427(68)	0(*)	0(*)	-88(77)
C (2)	3817(267)	741(67)	1336(111)	0(*)	0(*)	-398(71)
C (3)	2170(83)	3531(130)	1848(109)	-1901(73)	702(81)	-258(104)
C (5)	1535(113)	899(58)	2401(127)	0(*)	0(*)	993(61)
C (6)	5582(430)	1647(150)	976(123)	0(*)	0(*)	-162(114)
C (7)	2068(75)	1823(90)	3998(123)	755(74)	2230(67)	1200(89)

Table 3.2.13297 K Displacive $\forall \vec{\mathcal{T}} \mathcal{V} \vec{\mathcal{T}} \mathcal{O}$ bond lengths [Å] & angles [°].

() 内は標準偏差を表す

atom1 - atom2	distance[Å]	atom1 atom2	distance[Å]
Mn - Cl(1)	2.340 (3)	Mn - Cl(2)	2.341 (3)
Mn - Cl(3)	2.344 (2)	N(1) - C(1)	1.466 (13)
N(1) - C(2)	1.451 (14)	N(1) - C(3)	1.448 (13)
N(2) - C(5)	1.476 (13)	N(2) - C(6)	1.415 (19)
N(2) - C(7)	1.381 (12)		

atom1 - ator	n3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - M	n - Cl(2)	112.5(2)	Cl(1) - Mn - Cl(3)	108.9(2)
Cl(2) - M	n - Cl(3)	108.2(2)	C(1) - N (1) - C(2)	111.8(18)
C(1) - N (1) - C(3)	110.9(16)	C(2) - N (1) - C(3)	109.6(16)
C(5) - N (2) - C(6)	113.4(21)	C(5) - N (2) - C(7)	110.8(16)
C(6) - N (2) - C(7)	103.7(17)		

atom	X	у	Z	Ueq	
Mn	2500(*)	4075(1)	2455(1)	468(3)	
Cl(1)	2500(*)	4068(2)	564(2)	949(11)	
Cl(2)	2500(*)	5457(2)	3172(3)	1263(16)	
Cl(3)	382(3)	3367(2)	3073(2)	1124(8)	
N (1)	2500(*)	962(5)	1490(6)	601(23)	
N (2)	7500(*)	3254(4)	83(6)	570(23)	
C (1)	2500(*)	981(12)	2688(11)	1898(107)	
C (2)	2500(*)	90(9)	1062(14)	2037(117)	
C (3)	3751(14)	1428(10)	1030(12)	2616(73)	
C (5)	7500(*)	2376(8)	511(15)	1607(68)	
C (6)	7500(*)	3894(14)	920(15)	2803(184)	
C (7)	8765(14)	3407(9)	-511(13)	2665(65)	

 Table 3.2.14
 300K Displacive モデルでの原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 () 内の数字は標準偏差を表す.() 内が*印の座標はそれが固定されたことを示す

Table 3.2.15 300 K Displacive モデルでの異方性温度因子. U_{ij} は平均二乗変位 (×10⁴ [Å²])を, ()内の数字は標準偏差を表し, ()内が*印の値はそれがモデルの要請により固定された ことを示す

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	525(6)	442(5)	436(6)	0(*)	0(*)	6(6)
Cl(1)	1146(23)	1255(23)	446(13)	0(*)	0(*)	49(16)
Cl(2)	2163(42)	528(13)	1099(24)	0(*)	0(*)	-249(15)
Cl(3)	860(12)	1482(18)	1031(16)	-434(12)	225(12)	153(14)
N (1)	582(41)	680(42)	541(41)	0(*)	0(*)	2(38)
N (2)	551(39)	541(37)	620(44)	0(*)	0(*)	122(34)
C (1)	3390(271)	1930(162)	373(72)	0(*)	0(*)	-139(88)
C (2)	4004(319)	684(74)	1423(133)	0(*)	0(*)	-389(82)
C (3)	2126(91)	3840(154)	1882(128)	-2029(81)	645(91)	-164(123)
C (5)	1579(131)	873(65)	2370(143)	0(*)	0(*)	980(69)
C (6)	5859(510)	1663(173)	889(132)	0(*)	0(*)	-111(127)
C (7)	2025(83)	1859(104)	4110(143)	745(85)	2253(76)	1199(105)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.337 (3)	Mn - Cl(2)	2.340 (3)
Mn - Cl(3)	2.346 (3)	N(1) - C(1)	1.479 (15)
N(1) - C(2)	1.465 (16)	N(1) - C(3)	1.464 (15)
N(2) - C(5)	1.475 (15)	N(2) - C(6)	1.441 (21)
N(2) - C(7)	1.382 (14)		

Table 3.2.16 300 K Displacive モデルでの bond lengths [Å] & angles [°]. () 内は標準偏差を表す

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	112.5(3)	Cl(1) - Mn - Cl(3)	108.9(2)
Cl(2) - Mn - Cl(3)	108.3(2)	C(1) - N(1) - C(2)	112.3(20)
C(1) - N(1) - C(3)	112.2(18)	C(2) - N(1) - C(3)	109.0(18)
C(5) - N(2) - C(6)	113.1(24)	C(5) - N(2) - C(7)	110.6(18)
C(6) - N(2) - C(7)	105.1(20)		

 Table 3.2.17
 320K Displacive モデルでの原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 () 内の数字は標準偏差を表す.() 内が*印の座標はそれが固定されたことを示す

atom	Х	У	Z	Ueq
Mn	2500(*)	4080(1)	2454(1)	530(3)
Cl(1)	2500(*)	4064(2)	560(2)	1052(10)
Cl(2)	2500(*)	5463(2)	3162(3)	1289(13)
Cl(3)	382(2)	3381(1)	3077(2)	1215(7)
N (1)	2500(*)	964(4)	1494(5)	670(21)
N (2)	7500(*)	3248(4)	82(5)	639(20)
C (1)	2500(*)	978(11)	2665(9)	2081(98)
C (2)	2500(*)	109(8)	1082(13)	2240(106)
C (3)	3751(12)	1418(9)	1062(10)	2543(61)
C (5)	7500(*)	2386(7)	538(13)	1821(63)
C (6)	7500(*)	3873(12)	871(14)	2990(160)
C (7)	8777(12)	3408(7)	-491(10)	2713(55)
. ,	. ,		· · · · · · · · · · · · · · · · · ·	

Table 3.2.18 320 K Displacive モデルでの異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表し, ()内が*印の値はそれがモデルの要請により固定された ことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	572(6)	508(5)	509(5)	0(*)	0(*)	8(5)
Cl(1)	1244(21)	1396(22)	515(12)	0(*)	0(*)	47(14)
Cl(2)	2044(33)	611(12)	1213(21)	0(*)	0(*)	-262(14)
Cl(3)	959(11)	1550(15)	1137(14)	-475(11)	229(11)	152(13)
N (1)	650(37)	745(38)	614(37)	0(*)	0(*)	9(34)
N (2)	614(35)	600(33)	705(40)	0(*)	0(*)	115(31)
C (1)	3746(249)	2004(143)	493(69)	0(*)	0(*)	-48(83)
C (2)	4240(285)	850(72)	1630(123)	0(*)	0(*)	-486(77)
C (3)	2062(81)	3547(128)	2021(108)	-1754(73)	608(82)	-123(105)
C (5)	1645(116)	1042(61)	2777(136)	0(*)	0(*)	1153(65)
C (6)	5902(436)	1840(157)	1229(130)	0(*)	0(*)	-301(123)
C (7)	2080(74)	2103(93)	3957(118)	831(76)	2163(67)	1327(89)

Table 3.2.19 320 K Displacive モデルでの bond lengths [Å] & angles [°].

() 内は標準偏差を表す

atom1 - atom2	distance[Å]	atom1 atom2	distance[Å]
Mn - Cl(1)	2.341 (3)	Mn - Cl(2)	2.345 (3)
Mn - Cl(3)	2.346 (2)	N (1) - C (1)	1.448 (13)
N (1) - C (2)	1.438 (14)	N (1) - C (3)	1.444 (12)
N (2) - C (5)	1.468 (14)	N (2) - C (6)	1.385 (19)
N (2) - C (7)	1.382 (12)		
atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom	n2 angle[°]
Cl(1) - Mn - Cl(2)	112.5(2)	Cl(1)- Mn - Cl(3)	108.9(2)
Cl(2) - Mn - Cl(3)	108.2(2)	C(1) - N(1) - C(2)	111.5(18)
C(1) - N(1) - C(3)	111.2(16)	C(2) - N(1) - C(3)	109.4(16)
C(5) - N(2) - C(6)	112.7(21)	C(5) - N(2) - C(7)	111.4(16)
C(6) - N(2) - C(7)	103.4(17)		

atom	Х	У	Z	Ueq
Mn	2500(*)	4084(1)	2452(1)	560(3)
Cl(1)	2500(*)	4061(2)	562(2)	1107(11)
Cl(2)	2500(*)	5465(2)	3159(3)	1303(14)
Cl(3)	387(2)	3389(2)	3077(2)	1262(8)
N (1)	2500(*)	962(5)	1497(6)	721(23)
N (2)	7500(*)	3239(4)	79(6)	678(22)
C (1)	2500(*)	981(12)	2659(10)	2355(117)
C (2)	2500(*)	111(8)	1097(13)	2377(118)
C (3)	3748(13)	1402(9)	1063(11)	2715(70)
C (5)	7500(*)	2379(8)	514(14)	1931(69)
C (6)	7500(*)	3878(13)	863(14)	3011(165)
C (7)	8779(12)	3401(8)	-471(11)	2748(62)

 Table 3.2.20
 340K Displacive モデルでの原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 () 内の数字は標準偏差を表す.() 内が*印の座標はそれが固定されたことを示す.

Table 3.2.21 340 K Displacive モデルでの異方性温度因子. U_{ij} は平均二乗変位 (×10⁴ [Å²])を, ()内の数字は標準偏差を表し, ()内が*印の値はそれがモデルの要請により固定された ことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	590(6)	541(5)	550(6)	0(*)	0(*)	10(6)
Cl(1)	1291(22)	1478(24)	551(13)	0(*)	0(*)	65(16)
Cl(2)	1983(34)	645(13)	1280(23)	0(*)	0(*)	-268(15)
Cl(3)	1011(12)	1593(16)	1183(15)	-514(12)	223(12)	164(14)
N (1)	695(40)	801(42)	668(41)	0(*)	0(*)	29(38)
N (2)	650(38)	651(36)	733(43)	0(*)	0(*)	104(34)
C (1)	4255(297)	2282(170)	527(82)	0(*)	0(*)	-47(96)
C (2)	4757(326)	938(80)	1436(119)	0(*)	0(*)	-480(79)
C (3)	2122(88)	3756(144)	2266(125)	-1803(83)	674(92)	-225(120)
C (5)	1839(132)	1095(67)	2859(146)	0(*)	0(*)	1187(71)
C (6)	5816(443)	1962(173)	1255(146)	0(*)	0(*)	-152(136)
C (7)	2102(81)	2219(106)	3923(130)	731(86)	2093(75)	1136(102)

atom1 - atom2	distance[Å]	atom1 - atom2 di	stance[Å]
Mn - Cl(1)	2.337 (3)	Mn - Cl(2) 2.	345 (3)
Mn - Cl(3)	2.343 (2)	N (1) - C (1) 1.	437 (15)
N (1) - C (2)	1.429 (15)	N (1) - C (3) 1.	434 (13)
N (2) - C (5)	1.456 (14)	N (2) - C (6) 1.	398 (20)
N (2) - C (7)	1.371 (12)	C (6) - C (7) 2.	154 (20)
atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	112.7(2)	Cl(1) - Mn - $Cl(3)$	108.8(2)
Cl(2) - Mn - Cl(3)	108.1(2)	C (1) - N (1) - C (2)	111.5(20)
C(1) - N(1) - C(3)	111.3(17)	C (2) - N (1) - C (3)	108.9(17)
C(5) - N(2) - C(6)	114.5(23)	C (5) - N (2) - C (7)	110.9(17)
C(6) - N(2) - C(7)	102.1(18)	N (2) - C (6) - C (7)	38.5(9)
N(2) - C(7) - C(6)	39.4(11)		

Table 3.2.22 340 K Displacive モデルでの bond lengths [Å] & angles [°].
() 内は標準偏差を表す

Fig. 3.2.1 TMATC-Mn I相 295 K における Displacive Model での結晶構造の *c* 軸投影図.
 各原子の異方性温度因子は楕円体で描かれている.
 図においては単位胞の *c* 軸方向の半分,すなわち 0< z <1/2 の範囲にある原子が描かれている.

ここで Fig. 3.2.1 において楕円体で表されている異方性温度因子に関して議論を進める.

Fig. 3.2.1 の様子からわかるように, TCM 四面体基と TMA(1)四面体基はほぼ *c* 軸に 平行な軸に関して熱振動をしており, 一方 TMA(2)四面体基は N(2)-N(5)結合を軸とし て振動していることがわかる.

そこで TCM 四面体基の振動を議論するためミラー面上に配置された Cl(2)原子に注目する. Cl(2)原子の非等方性温度因子 U₁₁, U₂₂, U₃₃の温度変化の様子を Fig. 3.2.2 に示す. ここで非等方性温度因子は

 $\exp\left[2\pi^{2}\left\{U_{11}(ha^{*})^{2}+U_{22}(kb^{*})^{2}+U_{33}(lc^{*})^{2}+2\left(U_{12}ha^{*}kb^{*}+U_{13}ha^{*}lc^{*}+U_{23}kb^{*}lc^{*}\right)\right\}\right]$ (3-1)

で定義される.

図からわかるように U₂₂ と U₃₃ が

$$U \propto k_B T \tag{3-2}$$

で表される通常の温度変化を示すのに対し, *a* 軸に沿っての平均二乗変位を表す U₁₁ は転移点 *T*。に近づく温度降下に伴い, 増加していく傾向が示され, 臨界的挙動が見い だされたことは注目される.

Fig.3.2.2 TMATC-Mn I 相 Displacive モデルでの Cl(2)の U_{ii}の温度変化. ここで矢 印は相転移温度を表し, I 相以外の低温相のデータは第2章で述べた低温相の 解析結果を用いている.
3.3 | 相の構造の無秩序型モデル(Disordered Model)

つぎに第2のモデルとしてa軸に垂直なミラー面に対して各四面体基を等確率で配置させるモデルを考え,これを Order-Disorder モデル(OD)とする³.

まず始めに, 各四面体基の重心, すなわち Mn, N(1), N(2)を *a* 軸に垂直なミラー 面上に配置させた状態で各四面体基を disorder させるモデルを考え, これを **D-1 Model** と名付ける.

解析では第2章での293KでのDisplacive model での解析結果を初期構造モデルとして、上述の条件に合うよう、Displacive model でのミラー面上に固定するという束縛条件を、Mn、N(1)、N(2)原子以外ははずして最小二乗計算をおこなった.最小二乗法計算においてパラメータの数は128 個である.得られた D-1Model での各温度における最終 R 因子の結果を Table 3.3.1 に示す.

Temperature (K)	340	320	300	297	295	294	293
R-factor (%)	5.64	5.63	6.80	5.90	5.91	5.84	5.83

Table 3.3.1 D-1 Model での最終 R 因子

次に D-1Model における Mn, および N(1), N(2)をミラー面上に固定するという束 縛条件を外したモデルを考えこれを D-2 Model とし最小二乗法計算をおこなった. D-2 model でのパラメータ数は 137 個である.

得られた D-2 Model での各温度における最終 R 因子の結果を Table 3.3.2 に示す.

また table 3.3.3 以降 各解析で得られた原子座標, 異方性温度因子, 結合距離および結合角の一覧を示す. Fig.3.3.1 に 295K での D-2 Model で得られた結晶構造の *c* 軸 投影図を示す.

Table 3.3.2 D-2 Model での最終 R 因子

Temperature	(K)	340	320	300	297	295	294	293
R-factor	(%)	5.58	5.55	6.75	5.87	5.87	5.81	5.80

Table 3.3.3 293 K Disorderd モデル (D-1 モデル) での原子座標 (×10⁻⁴) と等価等方性温度
 因子 (×10⁻⁴).()内の数字は標準偏差を表す.()内が*印の座標はそれが固定され
 たことを示す.

atom	X	У	Z	Ueq
Mn	2500(*)	4074(1)	2456(1)	477(2)
Cl(1)	2700(4)	4069(2)	564(2)	840(8)
Cl(2)	2858(3)	5455(1)	3171(2)	901(12)
Cl(3)	264(3)	3521(2)	3085(3)	914(10)
Cl(4)	4493(3)	3226(2)	3062(3)	871(9)
N (1)	2500(*)	964(3)	1491(4)	606(16)
N (2)	7500(*)	3257(3)	83(4)	568(16)
C (1)	2170(26)	990(8)	2667(8)	1479(72)
C (2)	2061(19)	97(6)	1089(10)	1302(75)
C (3)	1549(18)	1617(9)	970(12)	1515(65)
C (4)	4072(15)	1125(13)	1145(15)	1750(84)
C (5)	7715(21)	2373(6)	512(10)	1433(47)
C (6)	6889(18)	3854(9)	872(11)	1677(71)
C (7)	6597(18)	3250(10)	-868(11)	1758(66)
C (8)	9028(12)	3551(8)	-170(12)	1066(49)

Table 3.3.4 293 K Disorderd モデル (D-1 モデル) での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表し,()内が*印の値はそれがモデルの要請 により固定されたことを示す.

atom	U_{11}	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	544(5)	443(4)	445(4)	0(*)	0(*)	7(4)
Cl(1)	828(17)	1237(16)	453(9)	-30(22)	40(17)	51(11)
Cl(2)	1052(32)	548(9)	1103(17)	-45(13)	-77(17)	-252(11)
Cl(3)	643(14)	999(18)	1101(21)	-88(15)	233(16)	82(17)
Cl(4)	820(16)	787(14)	1007(19)	178(13)	-271(15)	134(14)
N (1)	609(29)	657(29)	551(29)	0(*)	0(*)	10(26)
N (2)	538(27)	535(25)	630(31)	0(*)	0(*)	124(24)
C (1)	2245(182)	1739(105)	452(53)	167(168)	211(104)	-53(61)
C (2)	1840(203)	758(54)	1308(87)	-206(84)	-31(106)	-386(56)
C (3)	2004(137)	1213(86)	1329(113)	783(83)	-382(101)	180(83)
C (4)	696(74)	2539(180)	2014(164)	-484(100)	320(98)	307(150)
C (5)	1137(92)	870(46)	2291(98)	-34(92)	137(139)	935(48)
C (6)	2263(164)	1682(105)	1085(92)	1010(92)	643(88)	-49(82)
C (7)	2369(136)	1511(118)	1394(87)	-307(105)	-1414(71)	33(87)
C (8)	609(57)	992(76)	1597(115)	-197(59)	340(72)	-142(82)

atom1 - atom2	distance[Å]	atom1 atom2	distance[Å]
Mn - Cl(1)	2.345 (2)	Mn - Cl(2)	2.360 (2)
Mn - Cl(3)	2.337 (3)	Mn - Cl(4)	2.364 (3)
N(1) - C(1)	1.484 (12)	N(1) - C(2)	1.499 (12)
N(1) - C(3)	1.485 (15)	N(1) - C(4)	1.509 (14)
N(2) - C(5)	1.496 (11)	N(2) - C(6)	1.459 (15)
N(2) - C(7)	1.432 (15)	N(2) - C(8)	1.493 (11)

Table 3.3.5 293 K Disorderd モデル (D-1 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle	atom1 atom3 atom2	angle
Cl(1) - Mn - Cl(2)	111.4(2)	Cl(1) - Mn - Cl(3)	113.4(2)
Cl(1) - Mn - Cl(4)	104.8(2)	Cl(2) - Mn - Cl(3)	109.6(2)
Cl(2) - Mn - Cl(4)	107.0(2)	Cl(3) - Mn - Cl(4)	110.4(2)
C(1) - N (1) - C(2)	107.2(13)	C(1) - N (1) - C(3)	106.8(16)
C(1) - N (1) - C(4)	117.6(22)	C(2) - N (1) - C(3)	109.1(15)
C(2) - N (1) - C(4)	107.9(17)	C(3) - N (1) - C(4)	108.1(18)
C(5) - N (2) - C(6)	114.0(17)	C(5) - N (2) - C(7)	111.0(17)
C(5) - N (2) - C(8)	103.9(13)	C(6) - N (2) - C(7)	109.6(18)
C(6) - N (2) - C(8)	107.1(16)	C(7) - N (2) - C(8)	111.1(17)

 Table 3.3.6
 294 K Disorderd モデル (D-1 モデル) での原子座標 (×10⁻⁴) と等価等方性

 温度因子 (×10⁻⁴).()
 内の数字は標準偏差を表す.()

 ウガ*印の座標はそれが固定されたことを示す.

atom	X	У	Z	Ueq
Mn	2500(*)	4074(1)	2457(1)	477(2)
Cl(1)	2700(4)	4069(2)	565(2)	838(8)
Cl(2)	2855(3)	5455(1)	3172(2)	902(12)
Cl(3)	264(3)	3521(2)	3085(3)	913(10)
Cl(4)	4494(3)	3226(2)	3062(3)	873(9)
N (1)	2500(*)	965(3)	1492(4)	602(16)
N (2)	7500(*)	3257(3)	83(4)	574(16)
C (1)	2171(27)	991(8)	2670(8)	1500(73)
C (2)	2060(19)	98(6)	1089(10)	1315(76)
C (3)	1546(17)	1614(9)	970(12)	1510(65)
C (4)	4076(15)	1121(13)	1140(16)	1756(86)
C (5)	7713(22)	2372(6)	515(10)	1448(48)
C (6)	6883(19)	3852(9)	869(11)	1714(72)
C (7)	6597(18)	3252(10)	-874(11)	1802(67)
C (8)	9026(12)	3550(8)	-173(12)	1062(49)

Table 3.3.7 294 K Disorderd モデル (D-1 モデル) での異方性温度因子. U_{ij} は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表し, () 内が*印の値はそれがモデルの要請に より固定されたことを示す.

-	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
_	Mn	542(5)	443(4)	446(4)	0(*)	0(*)	7(4)
	Cl(1)	828(17)	1238(16)	450(9)	-27(22)	44(17)	53(11)
	Cl(2)	1058(32)	548(9)	1099(17)	-48(13)	-76(17)	-250(11)
	Cl(3)	646(14)	994(18)	1099(21)	-90(15)	231(16)	82(17)
	Cl(4)	822(16)	788(15)	1009(19)	181(13)	-274(15)	133(14)
	N(1)	606(29)	662(29)	538(28)	0(*)	0(*)	8(26)
	N (2)	544(27)	534(26)	643(31)	0(*)	0(*)	125(24)
	C (1)	2349(187)	1721(105)	430(51)	145(175)	221(106)	-61(60)
	C (2)	1875(207)	767(55)	1303(88)	-206(86)	-26(108)	-391(56)
	C (3)	1947(132)	1205(86)	1378(116)	780(81)	-426(100)	158(85)
	C (4)	697(77)	2514(182)	2056(169)	-454(103)	306(101)	276(155)
	C (5)	1168(93)	882(47)	2294(99)	-47(96)	123(144)	939(49)
	C (6)	2349(167)	1695(105)	1098(92)	1051(92)	675(88)	-61(82)
	C (7)	2476(139)	1501(118)	1428(87)	-333(106)	-1472(71)	29(87)
-	C (8)	613(57)	1010(78)	1563(113)	-207(60)	349(71)	-146(81)

Table 3.3.8 294 K Disorderd モデル (D-1 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.344 (2)	Mn - Cl(2)	2.360 (2)
Mn - Cl(3)	2.337 (3)	Mn - Cl(4)	2.364 (3)
N(1) - C(1)	1.485 (12)	N(1) - C(2)	1.501 (12)
N(1) - C(3)	1.484 (15)	N(1) - C(4)	1.513 (15)
N(2) - C(5)	1.499 (11)	N(2) - C(6)	1.458 (15)
N(2) - C(7)	1.438 (15)	N(2) - C(8)	1.491 (11)

atom1 atom3 atom2	angle[°]	atom1 atom3 atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.5(2)	Cl(1) - Mn - Cl(3)	113.4(2)
Cl(1) - Mn - Cl(4)	104.8(2)	Cl(2) - Mn - Cl(3)	109.5(2)
Cl(2) - Mn - Cl(4)	107.0(2)	Cl(3) - Mn - Cl(4)	110.4(2)
C(1) - N (1) - C(2)	107.3(13)	C(1) - N (1) - C(3)	106.8(16)
C(1) - N (1) - C(4)	117.8(22)	C(2) - N (1) - C(3)	108.8(15)
C(2) - N (1) - C(4)	107.6(17)	C(3) - N (1) - C(4)	108.3(18)
C(5) - N (2) - C(6)	113.9(17)	C(5) - N (2) - C(7)	111.2(17)
C(5) - N (2) - C(8)	103.9(14)	C(6) - N (2) - C(7)	109.4(18)
C(6) - N (2) - C(8)	107.4(16)	C(7) - N (2) - C(8)	110.8(17)

Table 3.3.9 295 K Disorderd モデル (D-1 モデル) での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴). ()内の数字は標準偏差を表す. ()内が*印の座標はそれが固定されたことを示 す.

atom	X	У	Z	Ueq
Mn	2500(*)	4074(1)	2456(1)	482(2)
Cl(1)	2701(4)	4069(2)	565(2)	842(9)
Cl(2)	2852(4)	5455(1)	3171(2)	902(13)
Cl(3)	265(3)	3520(2)	3086(3)	912(11)
Cl(4)	4490(3)	3227(2)	3063(3)	884(10)
N (1)	2500(*)	963(4)	1491(5)	603(18)
N (2)	7500(*)	3257(3)	82(5)	578(17)
C (1)	2151(26)	995(9)	2665(8)	1453(77)
C (2)	2060(20)	94(7)	1089(11)	1301(81)
C (3)	1560(19)	1617(9)	958(13)	1540(71)
C (4)	4060(16)	1129(14)	1154(16)	1790(92)
C (5)	7716(23)	2371(6)	518(11)	1440(51)
C (6)	6889(19)	3855(10)	873(11)	1634(74)
C (7)	6612(19)	3249(11)	-881(12)	1803(73)
C (8)	9018(13)	3547(8)	-176(13)	1070(53)

Table 3.3.10 295 K Disorderd モデル (D-1 モデル) での異方性温度因子. U_{ij}は平均二乗変位 (×10⁴ [Å²]) を, ()内の数字は標準偏差を表し,() 内が*印の値はそれがモデルの要請により固定されたことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	547(5)	449(4)	449(5)	0(*)	0(*)	9(5)
Cl(1)	827(18)	1240(17)	458(10)	-24(23)	53(18)	47(12)
Cl(2)	1054(34)	555(10)	1099(19)	-44(14)	-72(19)	-249(12)
Cl(3)	651(15)	1002(20)	1084(23)	-86(16)	234(17)	84(18)
Cl(4)	839(17)	788(16)	1025(21)	182(15)	-269(17)	134(15)
N (1)	611(32)	665(31)	531(30)	0(*)	0(*)	4(28)
N (2)	559(30)	542(28)	634(34)	0(*)	0(*)	126(26)
C (1)	2202(197)	1726(111)	430(55)	135(168)	237(102)	-76(65)
C (2)	1786(217)	763(58)	1354(96)	-163(90)	-13(113)	-416(61)
C (3)	1972(144)	1234(93)	1413(129)	818(88)	-381(111)	182(93)
C (4)	665(78)	2724(202)	1981(174)	-526(108)	273(104)	329(165)
C (5)	1147(99)	859(49)	2314(107)	-37(100)	151(150)	930(52)
C (6)	2170(167)	1668(110)	1063(96)	974(95)	622(90)	-102(86)
C (7)	2451(152)	1560(130)	1396(95)	-337(116)	-1425(78)	25(96)
C (8)	627(63)	1005(83)	1578(122)	-195(65)	350(78)	-150(88)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.342 (2)	Mn - Cl(2)	2.355 (3)
Mn - Cl(3)	2.337 (3)	Mn - Cl(4)	2.360 (3)
N(1) - C(1)	1.485 (12)	N (1) - C(2)	1.501 (13)
N(1) - C(3)	1.484 (16)	N (1) - C(4)	1.497 (15)
N(2) - C(5)	1.499 (12)	N (2) - C(6)	1.461 (16)
N(2) - C(7)	1.436 (16)	N (2) - C(8)	1.484 (12)

Table 3.3.11 295 K Disorderd モデル (D-1 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.5(2)	Cl(1) - Mn - Cl(3)	113.4(2)
Cl(1) - Mn - Cl(4)	104.8(2)	Cl(2) - Mn - Cl(3)	109.4(2)
Cl(2) - Mn - Cl(4)	107.0(2)	Cl(3) - Mn - Cl(4)	110.5(2)
C(1) - N (1) - C(2)	107.2(14)	C(1) - N (1) - C(3)	106.7(17)
C(1) - N (1) - C(4)	117.8(23)	C(2) - N (1) - C(3)	108.9(16)
C(2) - N (1) - C(4)	108.4(19)	C(3) - N (1) - C(4)	107.5(19)
C(5) - N (2) - C(6)	113.7(18)	C(5) - N (2) - C(7)	111.2(18)
C(5) - N (2) - C(8)	103.8(14)	C(6) - N (2) - C(7)	110.2(19)
C(6) - N (2) - C(8)	107.5(17)	C(7) - N (2) - C(8)	110.2(18)

•

Table 3.3.12 297 K Disorderd モデル (D-1 モデル) での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).()内の数字は標準偏差を表す.()内が*印の座標はそれが固定されたことを示す.

atom	X	у	z	Ueq
Mn	2500(*)	4074(1)	2457(1)	484(2)
Cl(1)	2695(5)	4069(2)	565(2)	853(9)
Cl(2)	2848(4)	5455(1)	3171(2)	905(13)
Cl(3)	265(3)	3521(2)	3086(3)	916(11)
Cl(4)	4490(3)	3227(2)	3063(3)	881(10)
N (1)	2500(*)	964(4)	1492(5)	610(18)
N (2)	7500(*)	3256(3)	81(5)	577(17)
C (1)	2155(27)	994(9)	2667(8)	1480(78)
C (2)	2057(20)	94(7)	1089(11)	1314(82)
C (3)	1552(19)	1617(9)	963(13)	1565(72)
C (4)	4052(16)	1126(14)	1153(17)	1831(94)
C (5)	7727(22)	2370(6)	518(11)	1440(51)
C (6)	6889(18)	3857(10)	872(11)	1604(72)
C (7)	6611(19)	3247(11)	-873(12)	1822(74)
C (8)	9017(13)	3544(8)	-175(13)	1104(55)

Table 3.3.13 297 K Disorderd モデル (D-1 モデル) での異方性温度因子. U_{ij}は平均二乗変 位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表し, () 内が*印の値はそれがモデルの 要請により固定されたことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	543(5)	455(4)	453(5)	0(*)	0(*)	8(5)
Cl(1)	842(18)	1255(18)	461(10)	-22(24)	50(19)	48(12)
Cl(2)	1045(33)	558(10)	1112(19)	-44(14)	-69(19)	-254(12)
Cl(3)	653(15)	995(20)	1101(23)	-93(16)	243(17)	82(18)
Cl(4)	840(17)	791(16)	1014(21)	185(15)	-261(17)	137(15)
N (1)	619(32)	670(32)	542(31)	0(*)	0(*)	10(29)
N (2)	542(29)	553(28)	635(34)	0(*)	0(*)	122(26)
C (1)	2249(198)	1764(114)	425(57)	125(174)	254(104)	-69(65)
C (2)	1821(220)	757(58)	1363(96)	-161(91)	-14(115)	-407(61)
C (3)	2084(150)	1266(95)	1345(124)	849(90)	-385(110)	202(90)
C (4)	657(77)	2791(206)	2045(178)	-546(108)	304(104)	304(169)
C (5)	1121(100)	878(50)	2322(107)	-44(95)	144(142)	947(52)
C (6)	2041(160)	1682(112)	1089(97)	920(94)	614(88)	-118(86)
C (7)	2414(149)	1591(132)	1461(99)	-354(117)	-1453(79)	55(99)
C (8)	607(62)	1036(86)	1669(128)	-211(65)	361(79)	-148(91)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.343 (2)	Mn - Cl(2)	2.357 (3)
Mn - Cl(3)	2.337 (3)	Mn - Cl(4)	2.361 (3)
N(1) - C(1)	1.486 (12)	N (1) - C (2)	1.505 (13)
N(1) - C(3)	1.487 (16)	N (1) - C (4)	1.490 (15)
N(2) - C(5)	1.502 (12)	N (2) - C (6)	1.465 (16)
N(2) - C(7)	1.427 (16)	N (2) - C (8)	1.481 (12)

Table 3.3.14:297 K Disorderd モデル (D-1 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.5(2)	Cl(1) - Mn - Cl(3)	113.3(2)
Cl(1) - Mn - Cl(4)	104.9(2)	Cl(2) - Mn - Cl(3)	109.4(2)
Cl(2) - Mn - Cl(4)	107.1(2)	Cl(3) - Mn - Cl(4)	110.4(2)
C(1) - N(1) - C(2)	107.2(14)	C(1) - N (1) - C(3)	106.6(17)
C(1) - N(1) - C(4)	117.9(23)	C(2) - N (1) - C(3)	108.8(16)
C(2) - N(1) - C(4)	108.3(19)	C(3) - N (1) - C(4)	107.7(19)
C(5) - N(2) - C(6)	113.9(18)	C(5) - N (2) - C(7)	111.4(19)
C(5) - N(2) - C(8)	103.3(14)	C(6) - N (2) - C(7)	110.1(19)
C(6) - N(2) - C(8)	107.3(17)	C(7) - N (2) - C(8)	110.5(19)

Table 3.3.15 300 K Disorderd モデル (D-1 モデル) での原子座標 (×10⁻⁴) と等価等方性温度因 子 (×10⁻⁴).()内の数字は標準偏差を表す.()内が*印の座標はそれが固定されたこと を示す.

atom	х	У	Z	Ueq
Mn	2500(*)	4075(1)	2455(1)	466(3)
Cl(1)	2697(5)	4068(2)	567(2)	832(10)
Cl(2)	2842(4)	5455(2)	3167(3)	884(15)
Cl(3)	263(4)	3519(2)	3083(3)	879(12)
Cl(4)	4487(4)	3226(2)	3061(3)	865(12)
N (1)	2500(*)	964(4)	1491(5)	602(21)
N (2)	7500(*)	3255(4)	82(6)	565(20)
C (1)	2164(36)	978(11)	2680(9)	1606(98)
C (2)	2055(25)	95(8)	1057(13)	1384(103)
C (3)	1559(23)	1630(11)	952(16)	1622(87)
C (4)	4055(18)	1126(18)	1109(20)	2008(118)
C (5)	7735(25)	2374(7)	519(13)	1435(61)
C (6)	6890(22)	3859(12)	892(13)	1613(89)
C (7)	6630(22)	3237(13)	-892(14)	1817(88)
C (8)	9018(15)	3537(10)	-186(16)	1114(66)

Table 3.3.16 300 K Disorderd モデル (D-1 モデル) での異方性温度因子. U_{ij} は平均二乗変位 (×10⁴ [Å²])を, ()内の数字は標準偏差を表し, () 内が*印の値はそれがモデルの要 請により固定されたことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	522(6)	440(5)	436(5)	0(*)	0(*)	8(5)
Cl(1)	808(21)	1241(21)	447(12)	-25(27)	61(21)	49(14)
Cl(2)	1002(38)	540(12)	1108(22)	-46(16)	-84(21)	-252(13)
Cl(3)	620(17)	954(22)	1062(26)	-95(18)	233(19)	72(21)
Cl(4)	814(20)	771(18)	1009(24)	171(17)	-260(20)	146(18)
N (1)	601(37)	660(37)	546(37)	0(*)	0(*)	-4(34)
N (2)	534(34)	536(33)	626(39)	0(*)	0(*)	122(30)
C (1)	2556(250)	1904(142)	357(63)	420(233)	120(135)	-113(77)
C (2)	2002(277)	708(67)	1441(120)	-187(114)	101(150)	-398(74)
C (3)	2113(178)	1373(119)	1379(153)	961(107)	-410(133)	132(114)
C (4)	636(89)	3209(265)	2177(223)	-702(124)	269(122)	525(207)
C (5)	1167(124)	848(58)	2291(126)	-38(111)	166(166)	938(61)
C (6)	2126(204)	1706(135)	1007(112)	952(116)	559(107)	-80(103)
C (7)	2347(176)	1655(163)	1449(116)	-266(141)	-1426(93)	-23(119)
C (8)	569(71)	998(99)	1776(158)	-193(75)	362(93)	-120(110)

atom1 - atom2	distance[Å]	atom1 atom2	distance[Å]
Mn - Cl(1)	2.339 (3)	Mn - Cl(2)	2.356 (3)
Mn - Cl(3)	2.339 (4)	Mn - Cl(4)	2.361 (4)
N (1) - C (1)	1.501 (15)	N (1) - C (2)	1.518 (15)
N (1) - C (3)	1.504 (20)	N (1) - C (4)	1.508 (18)
N (2) - C (5)	1.498 (14)	N (2) - C (6)	1.484 (19)
N (2) - C (7)	1.439 (19)	N (2) - C (8)	1.483 (14)

Table 3.3.17 300 K Disorderd モデル (D-1 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.5(2)	Cl(1) - Mn - $Cl(3)$	113.3(3)
Cl(1) - Mn - Cl(4)	104.8(2)	Cl(2) - Mn - $Cl(3)$	109.4(3)
Cl(2) - Mn - Cl(4)	107.4(2)	Cl(3) - Mn - Cl(4)	110.2(3)
C(1) - N (1) - C(2)	107.8(17)	C(1) - N (1) - C(3)	107.9(20)
C(1) - N (1) - C(4)	119.6(29)	C(2) - N (1) - C(3)	108.4(20)
C(2) - N (1) - C(4)	106.8(22)	C(3) - N (1) - C(4)	105.9(22)
C(5) - N (2) - C(6)	113.5(21)	C(5) - N (2) - C(7)	111.2(22)
C(5) - N (2) - C(8)	102.9(17)	C(6) - N (2) - C(7)	111.8(23)
C(6) - N (2) - C(8)	107.8(20)	C(7) - N (2) - C(8)	109.1(21)

Table 3.3.18 320 K Disorderd モデル (D-1 モデル) での原子座標 (×10⁻⁴) と等価等方性温度
 因子 (×10⁻⁴).()内の数字は標準偏差を表す.()内が*印の座標はそれが固定された
 ことを示す.

atom	х	у	Z	Ueq
Mn	2500(*)	4080(1)	2454(1)	529(2)
Cl(1)	2684(5)	4065(2)	563(2)	953(9)
Cl(2)	2819(4)	5460(1)	3158(2)	975(12)
Cl(3)	256(3)	3529(2)	3086(3)	977(11)
Cl(4)	4477(3)	3242(2)	3070(3)	957(10)
N (1)	2500(*)	967(3)	1493(5)	669(18)
N (2)	7500(*)	3250(3)	84(5)	637(17)
C (1)	2135(28)	978(9)	2649(8)	1750(85)
C (2)	2027(20)	116(7)	1081(11)	1535(85)
C (3)	1545(18)	1624(9)	985(12)	1644(70)
C (4)	4033(15)	1138(13)	1149(16)	1926(93)
C (5)	7728(22)	2385(6)	546(11)	1666(53)
C (6)	6879(20)	3847(10)	834(12)	1962(82)
C (7)	6612(18)	3220(10)	-873(11)	1930(74)
C (8)	9013(13)	3544(8)	-180(12)	1167(53)

Table 3.3.19 320 K Disorderd モデル (D-1 モデル) での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表し, () 内が*印の値はそれがモデルの要請 により固定されたことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	568(5)	506(4)	512(5)	0(*)	0(*)	10(5)
Cl(1)	963(18)	1386(18)	511(10)	-8(28)	60(21)	47(12)
Cl(2)	1086(30)	614(10)	1226(18)	-56(15)	-85(20)	-264(12)
Cl(3)	695(15)	1068(20)	1168(23)	-126(16)	215(17)	98(18)
Cl(4)	903(18)	871(16)	1098(21)	218(15)	-275(17)	143(16)
N (1)	661(32)	732(32)	616(31)	0(*)	0(*)	-2(29)
N (2)	605(30)	602(28)	705(34)	0(*)	0(*)	127(26)
C (1)	2766(217)	1995(122)	487(57)	210(196)	409(112)	-13(69)
C (2)	2052(226)	888(62)	1664(106)	-345(94)	11(125)	-501(67)
C (3)	2137(148)	1364(95)	1431(118)	866(90)	-362(108)	226(90)
C (4)	689(79)	2728(195)	2360(186)	-469(107)	307(108)	378(169)
C (5)	1254(103)	1035(52)	2708(113)	-19(105)	212(153)	1138(54)
C (6)	2613(190)	1817(114)	1456(108)	1060(104)	799(103)	-249(93)
C (7)	2598(155)	1726(131)	1467(92)	-408(116)	-1462(79)	19(96)
C (8)	674(62)	1116(85)	1709(120)	-211(66)	384(77)	-136(90)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.344 (2)	Mn - Cl(2)	2.357 (2)
Mn - Cl(3)	2.348 (3)	Mn - Cl(4)	2.354 (3)
N(1) - C(1)	1.467 (12)	N(1) - C (2)	1.495 (13)
N(1) - C(3)	1.488 (16)	N(1) - C (4)	1.480 (15)
N(2) - C(5)	1.490 (12)	N(2) - C (6)	1.434 (16)
N(2) - C(7)	1.433 (16)	N(2) - C (8)	1.485 (12)

Table 3.3.20 320 K Disorderd モデル (D-1 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.6(2)	Cl(1) - Mn - Cl(3)	113.0(2)
Cl(1) - Mn - Cl(4)	105.3(2)	Cl(2) - Mn - Cl(3)	108.9(2)
Cl(2) - Mn - Cl(4)	107.6(2)	Cl(3) - Mn - Cl(4)	110.3(2)
C(1) - N (1) - C(2)	106.1(14)	C(1) - N (1) - C(3)	105.7(16)
C(1) - N (1) - C(4)	119.4(24)	C(2) - N (1) - C(3)	108.1(16)
C(2) - N (1) - C(4)	109.5(19)	C(3) - N (1) - C(4)	107.5(18)
C(5) - N (2) - C(6)	113.9(18)	C(5) - N (2) - C(7)	111.4(18)
C(5) - N (2) - C(8)	103.9(14)	C(6) - N (2) - C(7)	109.5(19)
C(6) - N (2) - C(8)	107.6(18)	C(7) - N (2) - C(8)	110.4(18)

Table 3.3.21 340 K Disorderd モデル (D-1 モデル) での原子座標 (×10⁴) と等価等方性温度
 因子 (×10⁻⁴).() 内の数字は標準偏差を表す.() 内が*印の座標はそれが固定されたことを示す.

atom	X	У	Z	Ueq
Mn	2500(*)	4084(1)	2452(1)	561(2)
Cl(1)	2672(6)	4061(2)	564(2)	1023(9)
Cl(2)	2804(4)	5463(1)	3148(2)	1010(12)
Cl(3)	256(3)	3535(2)	3085(3)	1005(11)
Cl(4)	4466(3)	3250(2)	3073(3)	1013(11)
N (1)	2500(*)	965(4)	1497(5)	722(20)
N (2)	7500(*)	3245(3)	85(5)	681(19)
C (1)	2110(32)	975(10)	2638(8)	2020(100)
C (2)	2008(20)	125(7)	1073(12)	1595(93)
C (3)	1546(19)	1623(9)	986(13)	1742(76)
C (4)	4025(16)	1126(14)	1170(18)	2123(104)
C (5)	7721(29)	2390(7)	573(12)	1843(61)
C (6)	6861(21)	3849(10)	810(12)	2081(86)
C (7)	6609(20)	3206(11)	-879(12)	2031(82)
C (8)	9001(13)	3533(9)	-194(13)	1237(58)

Table 3.3.22 340 K Disorderd モデル (D-1 モデル) での異方性温度因子. U_{ij} は平均二乗変位 (×10⁴ [Å²]) を, ()内の数字は標準偏差を表し, () 内が*印の値はそれがモデルの要請 により固定されたことを示す.

atom	U_{11}	U ₂₂	U ₃₃	U_{12}	U_{13}	U_{23}
Mn	593(5)	541(4)	550(5)	0(*)	0(*)	10(5)
Cl(1)	1051(19)	1470(20)	547(11)	-3(34)	96(25)	48(13)
Cl(2)	1081(29)	649(11)	1300(20)	-68(16)	-96(21)	-262(12)
Cl(3)	709(16)	1098(21)	1209(24)	-134(16)	205(18)	91(19)
Cl(4)	946(19)	923(17)	1171(23)	241(16)	-284(18)	153(17)
N (1)	700(34)	776(35)	692(36)	0(*)	0(*)	23(32)
N (2)	654(32)	636(30)	752(37)	0(*)	0(*)	119(29)
C (1)	3404(261)	2181(137)	474(61)	92(235)	554(122)	-18(76)
C (2)	2094(245)	957(68)	1734(116)	-333(101)	63(131)	-531(73)
C (3)	2303(163)	1467(103)	1456(125)	908(98)	-438(113)	266(95)
C (4)	703(83)	3007(219)	2658(210)	-466(119)	301(119)	609(187)
C (5)	1573(122)	1119(57)	2838(124)	-35(142)	160(204)	1215(60)
C (6)	2744(195)	1963(124)	1536(117)	1124(110)	913(106)	-270(99)
C (7)	2751(175)	1890(146)	1452(100)	-397(131)	-1454(86)	-10(105)
C (8)	682(65)	1297(98)	1733(128)	-209(73)	389(81)	-157(100)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.340 (2)	Mn - Cl(2)	2.352 (3)
Mn - Cl(3)	2.351 (3)	Mn - Cl(4)	2.349 (3)
N (1) - C (1)	1.454 (14)	N (1) - C (2)	1.492 (14)
N (1) - C (3)	1.493 (16)	N (1) - C (4)	1.467 (16)
N (2) - C (5)	1.490 (13)	N (2) - C (6)	1.431 (17)
N (2) - C (7)	1.442 (16)	N (2) - C (8)	1.479 (12)

Table 3.3.23 340 K Disorderd モデル (D-1 モデル) モデルでの bond lengtha [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 atom3 atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.8(2)	Cl(1) - Mn - $Cl(3)$	112.6(3)
Cl(1) - Mn - Cl(4)	105.5(2)	Cl(2) - Mn - $Cl(3)$	108.7(2)
Cl(2) - Mn - Cl(4)	107.9(2)	Cl(3) - Mn - $Cl(4)$	110.3(2)
C(1) - N (1) - C(2)	106.1(15)	C(1) - N (1) - C(3)	105.1(17)
C(1) - N (1) - C(4)	119.7(27)	C(2) - N (1) - C(3)	107.0(16)
C(2) - N (1) - C(4)	109.9(20)	C(3) - N (1) - C(4)	108.2(20)
C(5) - N (2) - C(6)	113.7(20)	C(5) - N (2) - C(7)	111.8(20)
C(5) - N (2) - C(8)	104.3(16)	C(6) - N (2) - C(7)	108.6(20)
C(6) - N (2) - C(8)	108.5(19)	C(7) - N (2) - C(8)	109.8(19)

atom	X	У	Z	Ueq
Mn	2574(4)	4074(1)	2456(1)	463(2)
Cl(1)	2698(4)	4069(2)	565(2)	842(8)
Cl(2)	2856(3)	5455(1)	3171(2)	906(12)
Cl(3)	267(3)	3518(2)	3084(3)	925(10)
Cl(4)	4495(3)	3228(2)	3063(3)	886(9)
N (1)	2422(20)	966(3)	1488(4)	595(16)
N (2)	7574(22)	3257(3)	82(4)	554(16)
C (1)	2197(30)	990(8)	2666(8)	1540(72)
C (2)	2065(19)	98(6)	1090(10)	1302(75)
C (3)	1548(18)	1616(9)	970(12)	1539(66)
C (4)	4070(15)	1126(13)	1145(16)	1791(87)
C (5)	7711(22)	2373(6)	512(10)	1445(47)
C (6)	6888(18)	3853(9)	871(11)	1675(71)
C (7)	6594(18)	3244(10)	-866(11)	1797(67)
C (8)	9023(12)	3554(8)	-174(12)	1076(49)

Table 3.3.24 293 K Disorderd モデル (D-2 モデル) での原子座標 (×10⁻⁴) と等価等方性温 度因子 (×10⁻⁴). ()内の数字は標準偏差を表す.

Table 3.3.25 293 K Disorderd モデル (D-2 モデル) での異方性温度因子. U_{ij} は平均二乗変位 (×10⁻⁴ [Å²]) を,() 内の数字は標準偏差を表す.

atom	U11	U22	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	499(5)	444(4)	445(4)	-5(14)	-4(17)	7(4)
Cl(1)	833(17)	1240(16)	453(9)	-30(22)	43(17)	52(11)
Cl(2)	1066(32)	548(9)	1103(17)	-46(13)	-79(17)	-252(11)
Cl(3)	643(14)	1033(19)	1099(22)	-105(15)	230(16)	83(17)
Cl(4)	837(16)	813(15)	1009(19)	195(14)	-272(16)	137(14)
N (1)	570(29)	659(29)	557(29)	-93(85)	125(86)	4(26)
N (2)	497(27)	533(25)	633(31)	4(87)	-43(102)	123(24)
C (1)	2427(181)	1735(105)	458(53)	182(190)	257(117)	-52(61)
C (2)	1844(201)	761(54)	1303(86)	-213(85)	-32(107)	-386(56)
C (3)	2063(140)	1236(87)	1318(113)	822(83)	-393(101)	174(83)
C (4)	692(74)	2646(187)	2035(166)	-512(102)	326(98)	293(155)
C (5)	1167(92)	869(46)	2300(98)	-35(95)	153(142)	943(48)
C (6)	2257(163)	1676(104)	1090(92)	1003(91)	650(87)	-54(82)
C (7)	2491(140)	1470(116)	1430(87)	-290(105)	-1486(71)	18(86)
C (8)	613(57)	972(75)	1644(116)	-187(59)	373(72)	-166(81)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.340 (2)	Mn - Cl(2)	2.351 (2)
Mn - Cl(3)	2.393 (4)	Mn - Cl(4)	2.313 (4)
N(1) - C(1)	1.470 (12)	N(1) - C(2)	1.482 (12)
N(1) - C(3)	1.440 (18)	N(1) - C(4)	1.573 (23)
N(2) - C(5)	1.488 (11)	N(2) - C(6)	1.486 (17)
N(2) - C(7)	1.470 (19)	N(2) - C(8)	1.429 (21)

Table 3.3.26 293 K Disorderd モデル (D-2 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle	atom1 - atom3 - atom2	angle
Cl(1) - Mn - Cl(2)	111.9(2)	Cl(1) - Mn - Cl(3)	111.4(2)
Cl(1) - Mn - Cl(4)	106.6(2)	Cl(2) - Mn - $Cl(3)$	108.0(2)
Cl(2) - Mn - Cl(4)	108.9(2)	Cl(3) - Mn - Cl(4)	110.1(3)
C (1) - N (1) - C (2)	108.8(14)	C(1) - N (1) - C(3)	110.2(18)
C (1) - N (1) - C (4)	113.2(23)	C(2) - N (1) - C(3)	112.4(18)
C (2) - N (1) - C (4)	105.4(19)	C(3) - N (1) - C(4)	106.8(20)
C (5) - N (2) - C (6)	112.7(17)	C(5) - N (2) - C(7)	108.8(18)
C (5) - N (2) - C (8)	107.8(18)	C(6) - N (2) - C(7)	106.2(18)
C (6) -N (2) - C (8)	108.9(20)	C(7) - N (2) - C(8)	112.5(22)

• • • /			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	atom	х	у	Z	Ueq
	Mn	2574(4)	4074(1)	2457(1)	462(2)
	Cl(1)	2698(4)	4069(2)	565(2)	842(8)
	Cl(2)	2853(3)	5455(1)	3172(2)	908(12)
	Cl(3)	267(3)	3518(2)	3085(3)	924(10)
	Cl(4)	4496(3)	3229(2)	3063(3)	888(9)
	N (1)	2421(20)	966(3)	1489(4)	591(16)
	N (2)	7574(22)	3257(3)	82(4)	560(16)
	C (1)	2200(31)	991(8)	2668(8)	1566(72)
	C (2)	2064(19)	98(6)	1089(10)	1313(76)
	C (3)	1544(17)	1613(9)	973(12)	1528(65)
	C (4)	4075(15)	1123(13)	1139(16)	1798(89)
	C (5)	7706(23)	2373(6)	514(10)	1462(47)
	C (6)	6882(18)	3852(9)	868(11)	1714(72)
	C (7)	6589(18)	3247(10)	-869(11)	1835(67)
	C (8)	9021(12)	3553(8)	-177(12)	1072(49)

Table 3.3.27 294 K Disorderd モデル (D-2 モデル) での原子座標 (×10⁻⁴) と等価等方性温度 因子 (×10⁻⁴). ()内の数字は標準偏差を表す.

Table 3.3.28 294 K Disorderd モデル (D-2 モデル) での異方性温度因子. U_{ij}は平均二乗変位 (×10⁴ [Å²]) を, ()内の数字は標準偏差を表す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	498(5)	443(4)	446(4)	-4(14)	-2(18)	7(4)
Cl(1)	834(17)	1241(16)	450(9)	-28(22)	46(17)	54(11)
Cl(2)	1074(32)	548(9)	1100(17)	-48(13)	-79(17)	-250(11)
Cl(3)	646(14)	1030(19)	1096(21)	-107(15)	228(16)	82(17)
Cl(4)	840(16)	813(15)	1010(19)	198(14)	-275(16)	135(14)
N (1)	567(29)	662(29)	545(28)	-68(86)	145(82)	3(26)
N (2)	503(27)	532(25)	646(31)	16(87)	-39(103)	124(24)
C (1)	2541(185)	1719(104)	437(51)	162(197)	274(118)	-59(60)
C (2)	1872(204)	768(55)	1299(87)	-214(86)	-23(108)	-387(56)
C (3)	1991(133)	1226(87)	1367(115)	814(81)	-442(100)	144(85)
C (4)	685(76)	2610(189)	2099(173)	-470(104)	309(102)	248(160)
C (5)	1205(93)	883(47)	2298(99)	-52(100)	135(149)	946(48)
C (6)	2346(165)	1686(105)	1111(92)	1042(92)	691(88)	-61(82)
C (7)	2584(142)	1456(115)	1465(86)	-303(106)	-1541(71)	10(86)
C (8)	616(57)	986(76)	1613(114)	-197(59)	381(71)	-174(81)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.339 (2)	Mn - Cl(2)	2.352 (2)
Mn - Cl(3)	2.394 (4)	Mn - Cl(4)	2.313 (4)
N(1) - C (1)	1.471 (12)	N(1) - C(2)	1.483 (12)
N(1) - C (3)	1.437 (18)	N(1) - C(4)	1.579 (23)
N(2) - C (5)	1.491 (11)	N(2) - C(6)	1.485 (17)
N(2) - C (7)	1.475 (19)	N(2) - C(8)	1.428 (21)

Table 3.3.29 294 K Disorderd モデル (D-2 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.9(2)	Cl(1) - Mn - Cl(3)	111.4(2)
Cl(1) - Mn - Cl(4)	106.6(2)	Cl(2) - Mn - Cl(3)	107.9(2)
Cl(2) - Mn - Cl(4)	108.9(2)	Cl(3) - Mn - Cl(4)	110.1(3)
C(1) - N (1) - C(2)	109.0(14)	C (1) - N (1) - C (3)	110.2(18)
C(1) - N (1) - C(4)	113.3(23)	C (2) - N (1) - C (3)	112.3(18)
C(2) - N (1) - C(4)	105.0(19)	C (3) - N (1) - C (4)	107.0(20)
C(5) - N (2) - C(6)	112.6(17)	C (5) - N (2) - C (7)	108.9(18)
C(5) - N (2) - C(8)	108.0(18)	C (6) - N (2) - C (7)	105.8(18)
C(6) - N (2) - C(8)	109.3(20)	C (7) - N (2) - C (8)	112.4(22)

atom	х	у	Z	Ueq
Mn	2574(4)	4074(1)	2456(1)	467(2)
Cl(1)	2699(4)	4069(2)	566(2)	845(9)
Cl(2)	2851(4)	5455(1)	3171(2)	908(13)
Cl(3)	268(3)	3517(2)	3085(3)	923(11)
Cl(4)	4492(3)	3229(2)	3063(3)	899(10)
N (1)	2422(22)	965(4)	1488(5)	591(18)
N (2)	7575(23)	3256(3)	80(5)	565(17)
C (1)	2176(29)	995(9)	2665(8)	1510(77)
C (2)	2062(20)	95(7)	1088(11)	1298(80)
C (3)	1560(19)	1616(9)	959(13)	1569(72)
C (4)	4058(16)	1133(14)	1156(17)	1825(94)
C (5)	7714(23)	2371(6)	517(11)	1450(51)
C (6)	6886(19)	3854(10)	872(11)	1619(72)
C (7)	6607(19)	3242(11)	-877(12)	1837(73)
C (8)	9015(13)	3550(8)	-180(13)	1081(53)

T Table 3.3.30 295 K Disorderd モデル (D-2 モデル) での原子座標 (×10⁴) と等価等方性 温度因子 (×10⁴). ()内の数字は標準偏差を表す.

Table 3.3.31 295 K Disorderd モデル (D-2 モデル) での異方性温度因子. U_{ij} は平均二乗 変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	502(5)	450(4)	450(5)	-9(16)	-4(19)	9(5)
Cl(1)	833(18)	1243(18)	458(10)	-26(24)	56(18)	48(12)
Cl(2)	1072(34)	554(10)	1099(19)	-45(14)	-74(19)	-249(12)
Cl(3)	649(15)	1037(20)	1082(23)	-104(16)	231(17)	84(19)
Cl(4)	857(18)	814(16)	1027(21)	203(15)	-270(17)	137(16)
N (1)	570(32)	665(31)	537(30)	-75(95)	127(92)	0(28)
N (2)	517(30)	539(28)	638(34)	-18(95)	-77(108)	125(26)
C (1)	2377(196)	1718(111)	434(55)	179(187)	274(113)	-75(65)
C (2)	1775(214)	767(58)	1350(96)	-181(89)	-8(113)	-412(61)
C (3)	2046(147)	1267(94)	1394(128)	873(88)	-389(111)	177(93)
C (4)	653(78)	2809(208)	2013(177)	-550(108)	277(104)	312(169)
C (5)	1172(99)	859(49)	2319(107)	-44(102)	166(152)	937(52)
C (6)	2121(163)	1665(110)	1071(96)	965(93)	621(88)	-101(86)
C (7)	2553(154)	1513(127)	1447(95)	-301(116)	-1504(78)	7(95)
C (8)	625(62)	971(81)	1646(124)	-186(64)	371(78)	-177(88)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.337 (2)	Mn - Cl(2)	2.346 (3)
Mn - Cl(3)	2.395 (4)	Mn - Cl(4)	2.309 (4)
N(1) - C(1)	1.471 (12)	N(1) - C(2)	1.484 (13)
N(1) - C(3)	1.440 (20)	N(1) - C(4)	1.562 (24)
N(2) - C(5)	1.491 (12)	N(2) - C(6)	1.489 (18)
N(2) - C(7)	1.472 (20)	N(2) - C(8)	1.421 (23)

Table 3.3.32 295 K Disorderd モデル (D-2 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle	atom1 - atom3 - atom2	angle
Cl(1) - Mn - Cl(2)	111.9(2)	Cl(1) - Mn - Cl(3)	111.4(3)
Cl(1) - Mn - Cl(4)	106.6(2)	Cl(2) - Mn - Cl(3)	107.8(2)
Cl(2) - Mn - Cl(4)	108.9(2)	Cl(3) - Mn - Cl(4)	110.2(3)
C(1) - N (1) - C(2)	108.9(15)	C(1) - N (1) - C(3)	110.1(19)
C(1) - N (1) - C(4)	113.5(24)	C(2) - N (1) - C(3)	112.2(19)
C(2) - N (1) - C(4)	106.0(20)	C(3) - N (1) - C(4)	106.2(22)
C(5) - N (2) - C(6)	112.4(18)	C(5) - N (2) - C(7)	109.1(19)
C(5) - N (2) - C(8)	107.7(19)	C(6) - N (2) - C(7)	106.6(19)
C(6) - N (2) - C(8)	109.3(21)	C(7) - N (2) - C(8)	111.8(23)

.

atom	X	у	Z	Ueq
Mn	2574(4)	4074(1)	2457(1)	469(2)
Cl(1)	2693(5)	4069(2)	565(2)	855(9)
Cl(2)	2846(4)	5455(1)	3171(2)	912(13)
Cl(3)	269(3)	3518(2)	3086(3)	927(11)
Cl(4)	4493(3)	3230(2)	3063(3)	897(10)
N (1)	2421(22)	965(4)	1489(5)	599(18)
N (2)	7572(24)	3256(3)	80(5)	563(17)
C (1)	2180(30)	994(9)	2666(8)	1540(78)
C (2)	2059(20)	94(7)	1089(11)	1310(82)
C (3)	1549(19)	1614(9)	962(13)	1598(73)
C (4)	4047(16)	1130(14)	1154(17)	1882(97)
C (5)	7724(22)	2371(6)	518(11)	1445(51)
C (6)	6887(18)	3856(10)	871(11)	1602(72)
C (7)	6606(19)	3241(11)	-870(12)	1855(74)
C (8)	9012(13)	3548(8)	-179(13)	1114(55)

Table 3.3.33 297 K Disorderd モデル (D-2 モデル) での原子座標 (×10⁻⁴) と等価等方性温度 因子 (×10⁻⁴). ()内の数字は標準偏差を表す.

Table 3.3.34 297 K Disorderd モデル (D-2 モデル) での異方性温度因子. U_{ij} は平均二乗変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表す.

atom	U11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	499(5)	455(4)	453(5)	-3(16)	-2(19)	8(5)
Cl(1)	849(18)	1256(18)	461(10)	-21(25)	52(19)	48(12)
Cl(2)	1064(34)	559(10)	1113(19)	-45(14)	-71(19)	-254(12)
Cl(3)	653(15)	1029(20)	1098(23)	-110(16)	241(17)	81(19)
Cl(4)	859(18)	816(16)	1015(21)	203(15)	-262(17)	139(16)
N (1)	579(32)	670(32)	546(31)	-73(97)	127(94)	5(29)
N (2)	501(30)	554(28)	635(34)	15(99)	-32(115)	122(26)
C (1)	2424(198)	1764(114)	431(57)	143(195)	296(115)	-71(65)
C (29	1813(219)	759(58)	1358(96)	-165(91)	-16(115)	-404(61)
C (3)	2186(155)	1292(95)	1316(123)	914(90)	-394(111)	190(90)
C (4)	652(77)	2928(216)	2066(182)	-583(109)	309(105)	299(175)
C (5)	1138(100)	870(50)	2326(108)	-46(97)	160(144)	945(52)
C (6)	2032(160)	1675(112)	1101(98)	914(94)	618(88)	-116(87)
C (7)	2526(153)	1537(130)	1501(99)	-327(117)	-1524(80)	34(98)
C (8)	611(62)	1012(85)	1719(130)	-202(65)	393(79)	-179(91)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.339 (2)	Mn - Cl(2)	2.349 (3)
Mn - Cl(3)	2.393 (4)	Mn - Cl(4)	2.310 (4)
N (1) - C (1)	1.471 (12)	N (1) - C (2)	1.487 (13)
N (1) - C (3)	1.443 (20)	N (1) - C (4)	1.553 (25)
N (2) - C (5)	1.494 (12)	N (2) - C (6)	1.490 (18)
N (2) - C (7)	1.464 (21)	N (2) - C (8)	1.420 (23)

Table 3.3.35 297 K Disorderd モデル (D-2 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	112.0(2)	Cl(1) - Mn - Cl(3)	111.3(3)
Cl(1) - Mn - Cl(4)	106.7(2)	Cl(2) - Mn - Cl(3)	107.7(2)
Cl(2) - Mn - Cl(4)	109.0(2)	Cl(3) - Mn - Cl(4)	110.1(3)
C(1) - N (1) - C(2)	108.9(15)	C (1) - N (1) - C (3)	110.0(19)
C(1) - N (1) - C(4)	113.5(25)	C (2) - N (1) - C (3)	112.0(19)
C(2) - N (1) - C(4)	105.9(21)	C (3) - N (1) - C (4)	106.4(22)
C(5) - N (2) - C(6)	112.6(18)	C (5) - N (2) - C (7)	109.3(19)
C(5) - N (2) - C(8)	107.2(19)	C (6) - N (2) - C (7)	106.6(20)
C(6) - N (2) - C(8)	109.2(22)	C (7) - N (2) - C (8)	112.0(24)

х	У	Z	Ueq
2574(4)	4075(1)	2455(1)	451(3)
2696(5)	4068(2)	568(2)	835(10)
2840(4)	5455(2)	3167(3)	892(15)
267(4)	3515(2)	3083(3)	891(13)
4489(4)	3229(2)	3061(3)	882(12)
2423(27)	966(4)	1489(5)	593(21)
7573(27)	3255(4)	81(6)	552(20)
2199(41)	979(11)	2680(9)	1679(96)
2059(25)	95(8)	1056(13)	1387(102)
1556(23)	1622(11)	952(16)	1653(87)
4054(19)	1128(18)	1111(21)	2100(125)
7728(27)	2374(7)	520(13)	1448(61)
6892(22)	3861(12)	891(13)	1615(89)
6626(22)	3231(13)	-888(14)	1843(88)
9014(15)	3541(10)	-191(16)	1129(67)
	x 2574(4) 2696(5) 2840(4) 267(4) 4489(4) 2423(27) 7573(27) 2199(41) 2059(25) 1556(23) 4054(19) 7728(27) 6892(22) 6626(22) 9014(15)	xy2574(4)4075(1)2696(5)4068(2)2840(4)5455(2)267(4)3515(2)4489(4)3229(2)2423(27)966(4)7573(27)3255(4)2199(41)979(11)2059(25)95(8)1556(23)1622(11)4054(19)1128(18)7728(27)2374(7)6892(22)3861(12)6626(22)3231(13)9014(15)3541(10)	xyz $2574(4)$ $4075(1)$ $2455(1)$ $2696(5)$ $4068(2)$ $568(2)$ $2840(4)$ $5455(2)$ $3167(3)$ $267(4)$ $3515(2)$ $3083(3)$ $4489(4)$ $3229(2)$ $3061(3)$ $2423(27)$ $966(4)$ $1489(5)$ $7573(27)$ $3255(4)$ $81(6)$ $2199(41)$ $979(11)$ $2680(9)$ $2059(25)$ $95(8)$ $1056(13)$ $1556(23)$ $1622(11)$ $952(16)$ $4054(19)$ $1128(18)$ $1111(21)$ $7728(27)$ $2374(7)$ $520(13)$ $6892(22)$ $3861(12)$ $891(13)$ $6626(22)$ $3231(13)$ $-888(14)$ $9014(15)$ $3541(10)$ $-191(16)$

 Table 3.3.36 300 K Disorderd モデル (D-2 モデル) での原子座標 (×10⁻⁴) と等価等方性温度

 因子 (×10⁻⁴).()

 内の数字は標準偏差を表す.

Table 3.3.37 300 K Disorderd モデル (D-2 モデル) での異方性温度因子. U_{ij}は平均二乗 変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表す.

<u> </u>						
atom	\mathbf{U}_{11}	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	477(6)	440(5)	436(5)	0(18)	-8(22)	8(5)
Cl(1)	816(21)	1242(21)	447(12)	-25(28)	65(21)	49(14)
Cl(2)	1027(38)	539(12)	1110(22)	-47(16)	-87(22)	-251(13)
Cl(3)	619(17)	993(23)	1059(26)	-112(18)	231(19)	71(21)
Cl(4)	834(21)	801(19)	1011(24)	191(17)	-262(20)	148(18)
N (1)	566(37)	666(37)	549(37)	-124(103)	103(114)	-10(34)
N (2)	493(34)	536(33)	627(39)	-6(113)	-33(132)	122(30)
C (1)	2768(246)	1904(141)	364(63)	525(257)	143(155)	-112(77)
C (2)	2006(276)	713(67)	1442(120)	-188(115)	106(151)	-401(74)
C (3)	2183(177)	1411(118)	1367(151)	1043(105)	-430(131)	112(113)
C (4)	628(89)	3438(284)	2233(230)	-736(128)	278(125)	519(219)
C (5)	1201(123)	847(58)	2296(126)	-34(116)	183(173)	939(61)
C (6)	2114(203)	1713(135)	1017(113)	954(116)	560(107)	-81(103)
C (7)	2429(179)	1604(159)	1497(116)	-225(140)	-1489(93)	-47(118)
C (8)	573(70)	972(97)	1843(161)	-189(74)	390(94)	-148(109)

atom1 - atom2	distance[Å]	atom1 atom2	distance[Å]
Mn - Cl(1)	2.334 (3)	Mn - Cl(2)	2.348 (3)
Mn - Cl(3)	2.397 (5)	Mn - Cl(4)	2.309 (5)
N(1) - C (1)	1.486 (14)	N(1) - C(2)	1.503 (16)
N(1) - C (3)	1.454 (24)	N(1) - C(4)	1.571 (29)
N(2) - C (5)	1.489 (14)	N(2) - C(6)	1.511 (21)
N(2) - C (7)	1.474 (24)	N(2) - C(8)	1.421 (27)

Table 3.3.38 300 K Disorderd モデル (D-2 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	111.9(2)	Cl(1) - Mn - Cl(3)	111.3(3)
Cl(1) - Mn - Cl(4)	106.6(3)	Cl(2) - Mn - Cl(3)	107.8(3)
Cl(2) - Mn - Cl(4)	109.3(3)	Cl(3) - Mn - Cl(4)	109.9(3)
C(1) - N(1) - C(2)	109.5(18)	C (1) - N(1) - C(3)	111.6(23)
C(1) - N(1) - C(4)	114.9(31)	C (2) - N (1) - C (3)	111.2(22)
C(2) - N(1) - C(4)	104.4(24)	C (3) - N (1) - C (4)	105.0(25)
C(5) - N(2) - C(6)	112.4(21)	C (5) - N (2) - C (7)	109.0(23)
C(5) - N(2) - C(8)	107.0(22)	C (6) - N (2) - C (7)	108.4(24)
C(6) - N(2) - C(8)	109.5(25)	C (7) - N (2) - C (8)	110.6(27)

atom	х	у	Z	Ueq
Mn	2574(4)	4080(1)	2454(1)	514(2)
Cl(1)	2682(5)	4065(2)	562(2)	955(9)
Cl(2)	2813(4)	5460(1)	3158(2)	987(12)
Cl(3)	261(3)	3526(2)	3086(3)	988(11)
Cl(4)	4479(3)	3245(2)	3070(3)	970(10)
N (1)	2417(21)	968(3)	1490(5)	662(18)
N (2)	7577(22)	3251(3)	84(5)	627(17)
C (1)	2150(31)	979(9)	2648(8)	1851(86)
C (2)	2031(20)	116(7)	1084(11)	1544(85)
C (3)	1548(18)	1623(9)	987(12)	1703(71)
C (4)	4026(15)	1141(13)	1159(16)	1988(95)
C (5)	7725(24)	2388(6)	552(11)	1692(54)
C (6)	6875(20)	3850(9)	829(12)	2000(81)
C (7)	6599(18)	3221(10)	-869(11)	1982(72)
C (8)	9009(12)	3546(8)	-180(12)	1173(53)

Table 3.3.39 320 K Disorderd モデル (D-2 モデル) での原子座標 (×10⁻⁴) と等価等方性温度 因子 (×10⁻⁴). ()内の数字は標準偏差を表す

Table 3.3.40 320 K Disorderd モデル (D-2 モデル) での異方性温度因子. U_{ij} は平均二乗 変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表す.

	,	,				
atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	524(5)	507(4)	512(5)	-8(16)	-4(19)	10(5)
Cl(1)	964(18)	1388(18)	512(10)	-1(28)	62(21)	47(12)
Cl(2)	1116(30)	615(10)	1231(18)	-58(15)	-89(20)	-265(12)
Cl(3)	694(15)	1104(20)	1166(23)	-137(16)	209(17)	97(18)
Cl(4)	915(18)	898(16)	1099(21)	236(15)	-274(17)	147(16)
N (1)	626(32)	736(32)	625(31)	-114(86)	135(90)	-8(29)
N (2)	569(30)	600(28)	713(34)	27(93)	-73(106)	127(26)
C (1)	3101(225)	1960(120)	492(56)	147(217)	506(119)	-22(69)
C (2)	2066(226)	892(62)	1673(106)	-335(94)	1(126)	-510(67)
C (3)	2291(153)	1391(95)	1426(116)	944(89)	-455(107)	204(89)
C (4)	694(78)	2858(202)	2414(190)	-516(107)	335(108)	354(174)
C (5)	1330(106)	1030(52)	2716(113)	-31(111)	169(163)	1143(54)
C (6)	2716(189)	1789(112)	1494(107)	1053(103)	905(101)	-241(91)
C (7)	2724(151)	1691(129)	1531(90)	-390(115)	-1597(76)	18(94)
C (8)	654(61)	1120(85)	1745(120)	-199(65)	408(75)	-179(89)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Mn - Cl(1)	2.340 (2)	Mn - Cl(2)	2.349 (2)
Mn - Cl(3)	2.404 (4)	Mn - Cl(4)	2.302 (4)
N(1) - C(1)	1.451 (12)	N (1) - C (2)	1.474 (13)
N(1) - C(3)	1.439 (19)	N (1) - C (4)	1.541 (23)
N(2) - C(5)	1.482 (12)	N (2) - C (6)	1.463 (18)
N(2) - C(7)	1.475 (20)	N (2) - C (8)	1.418 (22)

Table 3.3.41 320 K Disorderd モデル (D-2 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	112.0(2)	Cl(1) - Mn - Cl(3)	111.0(3)
Cl(1) - Mn - Cl(4)	107.1(2)	Cl(2) - Mn - Cl(3)	107.2(2)
Cl(2) - Mn - Cl(4)	109.6(2)	Cl(3) - Mn - Cl(4)	110.0(3)
C(1) - N (1) - C(2)	107.9(15)	C (1) - N (1) - C (3)	109.0(18)
C(1) - N (1) - C(4)	114.7(25)	C (2) - N (1) - C (3)	111.9(18)
C(2) - N (1) - C(4)	107.1(20)	C (3) - N (1) - C (4)	106.2(21)
C(5) - N (2) - C(6)	112.5(19)	C (5) - N (2) - C (7)	109.7(19)
C(5) - N (2) - C(8)	107.8(19)	C (6) - N (2) - C (7)	105.1(19)
C(6) - N (2) - C(8)	109.5(22)	C (7) - N (2) - C (8)	112.3(23)

atom	x	V	7	Uea
		y 4004(1)		
Mn	2573(4)	4084(1)	2452(1)	546(2)
Cl(1)	2670(6)	4061(2)	564(2)	1024(9)
Cl(2)	2798(4)	5463(1)	3148(2)	1026(12)
Cl(3)	259(3)	3532(2)	3085(3)	1021(12)
Cl(4)	4469(4)	3253(2)	3074(3)	1025(11)
N (1)	2421(23)	966(4)	1493(5)	714(20)
N (2)	7576(24)	3245(3)	82(5)	671(19)
C (1)	2131(34)	977(10)	2636(8)	2082(99)
C (2)	2010(20)	124(7)	1073(12)	1588(92)
C (3)	1540(19)	1621(9)	988(13)	1784(77)
C (4)	4019(16)	1125(14)	1168(18)	2179(107)
C (5)	7711(30)	2390(7)	572(12)	1858(60)
C (6)	6860(21)	3850(10)	807(12)	2085(85)
C (7)	6606(20)	3202(11)	-877(12)	2073(83)
C (8)	8996(13)	3535(9)	-198(13)	1249(57)

Table 3.3.42 340 K Disorderd モデル (D-2 モデル) での原子座標 (×10⁻⁴) と等価等方性温度 因子 (×10⁻⁴). ()内の数字は標準偏差を表す.

Table 3.3.43 340 K Disorderd モデル (D-2 モデル) での異方性温度因子. U_{ij}は平均二乗 変位 (×10⁴ [Å²]) を, ()内の数字は標準偏差を表す.

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
-	Mn	548(5)	541(4)	550(5)	-1(17)	0(21)	10(5)
	Cl(1)	1055(19)	1471(20)	547(11)	4(34)	97(25)	48(13)
	Cl(2)	1125(29)	649(11)	1303(20)	-71(16)	-102(22)	-262(12)
	Cl(3)	714(16)	1136(21)	1212(24)	-145(17)	203(18)	90(20)
	Cl(4)	959(19)	948(18)	1166(23)	259(16)	-286(18)	155(17)
	N (1)	667(34)	776(35)	699(35)	-104(101)	162(99)	14(32)
	N (2)	617(32)	638(30)	758(37)	-29(103)	-116(112)	119(29)
	C (1)	3587(259)	2168(137)	492(61)	27(251)	627(127)	-23(76)
	C (2)	2061(242)	955(68)	1747(116)	-315(100)	47(130)	-527(73)
	C (3)	2419(168)	1481(102)	1450(124)	967(98)	-462(114)	255(94)
	C (4)	697(83)	3132(227)	2707(214)	-491(120)	316(120)	599(192)
	C (5)	1616(121)	1118(57)	2841(123)	-20(151)	180(215)	1216(60)
	C (6)	2753(193)	1951(123)	1550(116)	1118(109)	939(104)	-267(98)
	C (7)	2866(178)	1871(145)	1483(99)	-381(132)	-1527(86)	-24(104)
	C (8)	687(65)	1273(96)	1786(129)	-206(72)	422(81)	-186(99)

-	atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
	Mn - Cl(1)	2.336 (2)	Mn - Cl(2)	2.344 (3)
	Mn - Cl(3)	2.408 (4)	Mn - Cl(4)	2.297 (4)
	N (1) - C (1)	1.437 (14)	N (1) - C (2)	1.473 (14)
	N (1) - C (3)	1.448 (20)	N (1) - C (4)	1.529 (25)
	N (2) - C (5)	1.482 (13)	N (2) - C (6)	1.461 (19)
	N (2) - C (7)	1.479 (21)	N (2) - C (8)	1.413 (23)

Table 3.3.44 340 K Disorderd モデル (D-2 モデル) モデルでの bond lengths [Å] & angles [°].
()内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 - atom3 - atom2	angle[°]
Cl(1) - Mn - Cl(2)	112.2(2)	Cl(1) - Mn - Cl(3)	110.6(3)
Cl(1) - Mn - $Cl(4)$	107.3(3)	Cl(2) - Mn - Cl(3)	106.9(2)
Cl(2) - Mn - Cl(4)	109.9(2)	Cl(3) - Mn - Cl(4)	110.0(3)
C(1) - N(1) - C(2)	108.1(16)	C (1) - N (1) - C (3)	108.3(19)
C(1) - N(1) - C(4)	115.5(28)	C (2) - N (1) - C (3)	110.4(19)
C(2) - N(1) - C(4)	107.2(22)	C (3) - N (1) - C (4)	107.2(23)
C(5) - N(2) - C(6)	112.3(20)	C (5) - N (2) - C (7)	109.6(21)
C(5) - N(2) - C(8)	108.5(21)	C (6) - N (2) - C (7)	104.8(20)
C(6) - N(2) - C(8)	110.2(23)	C (7) - N (2) - C (8)	111.4(24)

Fig. 3.3.1 TMATC-Mn I相 295Kにおける Disordered (D-2) Model での結 晶構造の c 軸投影図.

Displacive モデルでは各四面体基自身が x=0.25 の固定したミラー面に関するミラー対称を持つという束縛条件下での解析であったため,各原子は自由に動かすことができず各四面体基の動きは Fig. 3.2.2 で示されるような異方性温度因子の挙動のみで表現されたが, order-disorder モデルでは各原子は自由に動かすことが可能である.

Fig. 3.3.2 に OD モデルでの解析結果の典型的原子の座標から求まったミラー面からの変位を Å 単位で示す.

図中, TCM, TMA(1), TMA(2)はその四面体基の重心である Mn, N(1), N(2)の挙 動を表し, Displacive モデルではミラー面に固定していた Cl(2), C(2), C(6)の挙動は 各四面体基の *c* 軸に垂直な軸に関する回転の様子を示していると解釈できる.

図から各四面体基の重心のミラー面からの変位量はわずかで、またほとんど温度変化しないことがわかりこれがD-1モデルとD-2モデルで大きな差が出なかった理由であると考えられる.

一方, Cl(2)原子は温度降下に伴って臨界的にミラー面から離れる方向に変位していく, すなわち重心の移動がないから TCM 四面体基が *c*軸に平行な軸を中心にミラー 面から離れる方向に回転していくことがわかる.

さらに Fig. 3.3.3 に D-2 モデルの解析で得られた Cl(2)原子の異方性温度因子の挙動 を示す. Fig. 3.2.2 示された Displacive モデルでの結果と異なり,各方向とも絶対温度 に比例した直線からの特別な跳びは認められなかった.

Fig. 3.3.2 D-2 モデルにおける各四面体基の重心と Cl(2), C(2)及び C(6)原子の mirror 面からの変位の温度変化

Fig.3.3.4 D-2 モデルにおける Cl(2)の異方性温度因子の温度依存性

3.4 まとめ

さて Fig. 3.4.1 に Cl(2)原子と C(6)原子の X 線構造解析結果から得られた I 相における c 軸に垂直な断面における電子密度分布を示す. 図中×印が D-2 モデルでの解析結果での原子位置である. C(6)の電子密度分布が明らかなダブルピークを示しているの に対し, Cl(2)原子はシングルピークであり, この図からは Displacive 型なのか order-disorder 型なのかの明確な判断ができない.

さらに Fig. 3.2.2 で示したような温度因子の挙動が本質的なものかどうか否かは, これに続くⅢ相の構造解析結果を含めて,総合的視点からの相転移に関してのモデル を立て,議論する必要がある. そこで次節ではⅢ相の構造について詳細な解析を行う.

Fig.3.4.1 フーリエ合成より求 295K における *c* 軸に垂直な断面における電子密度分布. (a) Cl(2) (等高線間隔 1 [e/Å³]), (b) C(6) (等高線間隔 0.2 [e/Å³])

参考文献

- 1) 越地尚宏: 久留米工業高等専門学校紀要(1995) 第11 巻 第1号 p.59
- 2) N. Koshiji and H. Mashiyama: J. Phys. Soc. Japan 69 (2000) 3853.
- 3) H. Mashiyama and N. Koshiji: Acta Crystallographica B45 (1989) 467.

.

第4章 強弾性相(|||相)の構造の精密化

第4章ではTMATC-Mnの原型相(I相) – 強弾性相(Ⅲ相)間の相転移機構 を詳しく調べるため前章と同様イメージングプレート(IP)を用いた迅速型X線 回折装置 DIP-3000 で測定した相転移点近傍のⅢ相の構造解析結果について述べる.

解析においては第一段階として I 相の Displacive 型に連なる Fully-Ordered model (FOM)を用いての解析結果について述べる. その結果を基に得られた単位 包内の電子密度分布の特色について議論する. そこで見いだされた部分的な無 秩序構造を occupation probability を使って表現した Partially-Ordered model (POM) (I相での Order-Disorder 型に連なるモデル)での解析結果について述べる. そして I – 町相間の相転移機構について原子基の変位や回転,温度因子(平均二 乗変位)の挙動に着目,詳細な検討の結果,この相転移が Order-Disorder 型であ ると結論づけた. このことは Displacive 型か Order-Disorder 型か相転移機構を論 ずる際 split-atom の成否のみに依存した従来の議論が不十分であり,このような 詳細な検討が重要であることを示した¹⁾.

4.1 超格子反射強度の温度依存性

Ⅲ相の構造について 292K, 291K, 290K, 289K, 287K, 285K, 280K, 275K, 270K の 9 点の温度でデータ収集をおこなった. 室温相の構造との比較を容易にするため, 格子定数 *a* と *b* を I 相と共通にとったため, Ⅲ相の空間群は *P*2₁/*c*11 (α≠90°) とな る. 各温度で消滅則のチェックを行い,空間群を確認した.

Ⅲ相の単位格子は I 相に比べ c 軸方向に 2 倍となる. それに伴いⅢ相では(h k l+1/2)の超格子反射が出現する. Fig. 4.1.1 に今回の測定で得られた, 典型的な超格子 反射である(2 0 1/2)の強度の温度依存性のグラフを示す. 図からわかるように Tc=293K 以下で温度降下とともに単純に増加していくことがわかる. この強度変化を式(4.1)

$$F_{\rm obs}^{\ \ 2} = I_{\rm o} \left(T_{\rm c} - T \right)^{2\tilde{\beta}} \tag{4.1}$$

で最小二乗計算でフィットすると、その結果は図中の実線のようになり、このとき $\tilde{\beta} = 0.3775$ となる.このような超格子反射の連続的な強度変化はⅢ相内における超格 子構造の連続的な変化を反映していると考えられる.

そこでⅢ相内ではどのような構造変化が起こり,図に示す超格子反射の強度変化の

起源になっているかを調査するのが本研究の主題である.

Fig. 4.1.1 超格子反射(201/2)の温度依存性. ここでミラー指数は I 相をもとにつけられている.強度は $I \propto (T_c - T)^{2\tilde{\beta}}$ の関係を満足し,図中の実線は最小二乗計算でフィットした結果で $\tilde{\beta} = 0.3775$ である.

4.2 格子定数の温度変化

Fig. 4.2.1 に得られた TMATC-Mn の I 相 7 点, Ⅲ相 9 点, 計 16 点における格子定数 a, b, c および単位包の体積 V の温度依存性を示す. ここでⅢ相における格子定数 c は I 相のそれと比較するため 1/2 倍の値に置き換えており, Ⅲ相の体積 V を求める計算 でも 1/2 倍の c の値を用いている. I 相内では各格子定数及び体積は温度降下ととも に単調に減少しているが, 相転移点 Tc=293 K で折れ曲がりを示していることがわか る.

Fig.4.2.1 (a) 格子定数 *a* (b) 格子定数 *b* (c) 格子定数 *c* (d) 単位包の体積 *V* の各 値の温度変化. Ⅲ相内の *c* 及びそれを用いて計算したⅢ相内の体積 *V* は I 相との比較の ため、1/2 倍した *c* の値を用いている.
第2章で述べたように、TMATC-Mn Ⅲ相の温度領域の単結晶を偏光顕微鏡下で観察したとき、顕微鏡像はストライプ状のドメインの存在を示す. Ⅲ相の空間群である $P2_1/c11$ の対称要素は、(i) x, y, z (ii) 1/2-x, y, 1/2+z (iii) 1/2+x, -y, 1/2-z (iv) -x, -y, -z. の4つである. したがって本来、結晶が単分域であれば構造因子は $F(hkl) \neq F(hk\bar{l})$ と 測定された(hkl) と ($hk\bar{l}$)の反射強度は異なるはずである. しかし今回の DIP3000 によるデータにおいてもⅢ相の測定で得られた(hkl) と ($hk\bar{l}$)の強度の差はわずか であった. よって

 $F_{\text{ave}}(hkl)^2 = x_{\text{dm}} \cdot F_{\text{cal}}(hkl)^2 + (1 - x_{\text{DM}}) \cdot F_{\text{cal}}(hk\bar{l})^2$ (4.2)

を測定強度と比較するように最小二乗法計算を行った.

4.3 変位型モデル(Fully-Ordered Model: FOM)

まず始めに前述の第2章での 272K での解析結果を最小二乗計算のスタートパラメ ータとして解析を行った²⁾. 272K の結果は全ての四面体基は全て秩序化されている構 造でありこれをスタートパラメータとして解析した構造は,転移点直下も含む全ての 温度において 272K と同様に全ての四面体基は完全に秩序化されているというモデル であり,これを Fully-ordered Model (FOM) と名付ける.最小二乗解析においては, FOM はすべての原子が制約を受けずに自由に動かすことができる.最小二乗計算に おいて FOM のパラメータ数は 272 個である.

FOM での得られた各温度における最終 R 因子の結果を Table 4.3.1 に示す. Fig.4.3.1 に295K での Displacive Model で得られた結晶構造のa軸投影図を示す. また Table 4.3.2 に典型例として 289K における原子座標を, Table 4.3.3 に原子変位パラメータ(デバイ・ワラーの熱振動パラメータ)を示す.以下において,異方性温度因子は次式で定義された U_{ij} を 10^4 [A^2] の単位, すなわち[pm²]の単位で表示している.

$$\exp\left[-2\pi^{2} \left\{ \begin{array}{c} U_{11}(ha^{*})^{2} + U_{22}(kb^{*})^{2} + U_{33}(lc^{*})^{2} \\ + 2U_{12}hka^{*}b^{*} + 2U_{13}hla^{*}c^{*} + 2U_{23}klb^{*}c^{*} \end{array} \right\} \right]$$
(4.3)

解析の結果各温度での最終ドメイン比は 0.515~0.506(289K においては 0.506)で あった.得られた構造の詳細な検討は 4.5章で提唱するモデルとの比較検討で行う.

Temperature(K)	292	291	290	289	287	285	280	275	270
R-factor(%)	8.58	8.69	8.45	8.41	8.17	8.06	8.28	7.94	7.95

Table 4.3.1 FOM での解析の最終 R-因子[%]

Fig. 4.3.1 TMATC-Mn Ⅲ相の FOM における a 軸投影図

Table 4.3.2 292 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

() 内の数字は標準偏差を表す.

······					
	atom	x	У	Z	Ueq
TCM(a)	Mn(a)	2510(3)	4080(2)	1224(1)	488(6)
	Cl(1a)	2541(7)	4075(4)	282(2)	1014(22)
	Cl(2a)	2636(9)	5448(5)	1578(3)	1314(29)
	Cl(3a)	313(6)	3450(5)	1525(3)	1252(31)
	Cl(4a)	4587(6)	3336(5)	1539(2)	1120(25)
TCM(b)	Mn(b)	2555(3)	933(2)	3734(1)	590(7)
	Cl(1b)	2543(7)	939(5)	2780(2)	1072(24)
	Cl(2b)	2696(9)	-486(5)	4073(3)	1344(30)
	Cl(3b)	416(6)	1593(5)	4052(3)	1345(32)
	Cl(4b)	4603(6)	1692(5)	4042(2)	1161(26)
TMA(1a)	N (1a)	2541(15)	976(11)	735(6)	855(55)
	C (1a)	2488(29)	956(14)	1356(6)	1032(86)
	C (2a)	2335(34)	145(16)	491(8)	1351(114)
	C (3a)	1544(31)	1485(18)	448(9)	1961(122)
	C (4a)	3849(29)	1287(23)	505(10)	2071(160)
TMA(1b)	N (1b)	2530(13)	4036(9)	3248(4)	545(38)
	C (1b)	2477(37)	3695(28)	3775(9)	2260(207)
	C (2b)	2310(41)	4956(21)	3167(8)	1987(172)
	C (3b)	1639(38)	3336(25)	3080(11)	3388(170)
	C (4b)	3946(29)	3730(27)	3152(14)	2434(210)
TMA(2a)	N (2a)	7512(14)	3286(9)	69(5)	569(43)
	C (5a)	7560(28)	2417(14)	360(9)	1183(90)
	C (6a)	6580(34)	3790(25)	254(15)	3140(178)
	C (7a)	7196(55)	3220(25)	-536(13)	2765(246)
	C (8a)	8808(31)	3669(21)	36(17)	2342(193)
TMA(2b)	N (2b)	7529(15)	1782(10)	2519(5)	671(51)
	C (5b)	7514(30)	2702(15)	2634(8)	1119(92)
	C (6b)	7505(37)	1111(18)	2961(8)	1464(128)
	C (7b)	6205(25)	1496(21)	2271(10)	1737(143)
	C (8b)	8923(24)	1497(19)	2300(10)	1538(132)

Table 4.3.3 292 K FOM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表す

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn(a)	571(10)	416(11)	477(10)	34(16)	-2(13)	1(10)
	Cl(1a)	1257(38)	1299(52)	485(22)	-34(46)	25(31)	47(27)
	Cl(2a)	2124(64)	593(44)	1226(42)	55(53)	10(52)	-271(30)
	Cl(3a)	753(30)	1974(80)	1030(43)	-326(38)	202(31)	171(43)
	Cl(4a)	946(32)	1352(57)	1062(41)	434(32)	-233(31)	177(36)
TCM(b)	Mn(b)	577(12)	692(16)	501(11)	-9(17)	10(14)	-50(13)
	Cl(1b)	1166(36)	1630(59)	420(21)	10(47)	-24(31)	7(29)
	Cl(2b)	2153(67)	560(45)	1319(44)	-2(53)	-113(54)	283(31)
	Cl(3b)	901(33)	2155(80)	978(42)	523(39)	230(32)	-138(44)
	Cl(b)4	1011(33)	1466(59)	1008(40)	-462(33)	-231(31)	-204(37)
TMA(1a)	N(1a)	573(72)	965(117)	1026(91)	32(95)	-64(84)	-460(78)
	C(1a)	1879(188)	926(164)	291(74)	-174(183)	57(142)	65(81)
	C(2a)	2546(271)	836(179)	671(116)	-374(204)	1(190)	-279(94)
	C(3a)	3022(236)	2129(244)	732(142)	1734(152)	-662(134)	61(133)
	C(4a)	1868(185)	2966(403)	1379(186)	-1265(193)	1060(136)	-314(212)
TMA(1b)	N(1b)	525(60)	678(84)	432(53)	2(77)	-35(69)	-167(54)
	C(1b)	1662(229)	4712(568)	407(119)	-143(353)	87(167)	195(221)
	C(2b)	3257(351)	2338(362)	368(109)	883(311)	346(211)	297(144)
	C(3b)	4039(294)	5104(375)	1024(189)	-3659(208)	-1019(194)	1335(193)
	C(4b)	1110(165)	4042(521)	2151(316)	1220(215)	158(215)	674(323)
TMA(2a)	N(2a)	544(63)	531(89)	631(70)	-31(73)	39(77)	26(59)
	C(5a)	1255(163)	744(147)	1550(159)	16(150)	-42(171)	666(103)
	C(6a)	3043(222)	3066(352)	3313(337)	2210(174)	2005(191)	551(270)
	C(7a)	5028(556)	1144(386)	2123(297)	-234(397)	-1658(328)	-288(221)
	C(8a)	1707(197)	1229(263)	4092(479)	-987(148)	-935(265)	336(300)
TMA(2b)	N(2b)	523(66)	828(116)	662(79)	14(88)	-19(77)	-40(70)
	C(5b)	1578(191)	700(150)	1078(136)	-98(170)	76(171)	-371(96)
	C(6b)	2513(283)	1117(230)	762(130)	167(254)	29(207)	351(118)
	C(7b)	1288(144)	1972(359)	1949(188)	186(175)	-1304(116)	-364(195)
	C(8b)	1060(132)	1689(320)	1863(197)	-84(158)	1021(122)	-341(185)

atom1 atom2		distance[Å] atom1		atom2	distance[Å]	
Mn (a)	Cl(1a)	2.327 (5)	Mn (a)	Cl(2a)	2.315 (7)	
Mn (a)	Cl(3a)	2.342 (6)	Mn (a)	Cl(4a)	2.345 (6)	
Mn (b)	Cl(1b)	2.356 (5)	Mn (b)	Cl(2b)	2.377 (8)	
Mn (b)	Cl(3b)	2.331 (7)	Mn (b)	Cl(4b)	2.331 (7)	
N (1a)	C (1a)	1.536 (20)	N (1a)	C (2a)	1.445 (29)	
N (1a)	C (3a)	1.398 (31)	N (1a)	C (4a)	1.400 (31)	
N (1b)	C (1b)	1.408 (28)	N (1b)	C (2b)	1.468 (36)	
N (1b)	C (3b)	1.422 (38)	N (1b)	C (4b)	1.390 (31)	
N (2a)	C (5a)	1.540 (26)	N (2a)	C (6a)	1.242 (37)	
N (2a)	C (7a)	1.524 (35)	N (2a)	C (8a)	1.321 (32)	
N (2b)	C (5b)	1.466 (28)	N (2b)	C (6b)	1.516 (28)	
N (2b)	C (7b)	1.419 (27)	N (2b)	C (8b)	1.445 (27)	

Table 4.3.4 292 K FOM での bond lengths [Å]. ()内は標準偏差を表す

Table 4.3.5292 K FOM \mathcal{CO} bond angles [°]

atom1 atom3 atom2		- atom2	angle[°]	atoml	atom3 -	- atom2	angle[°]	
Cl(1a)	Mn (a)	Cl(2a)	112.3(5)	Cl(1a)	Mn (a)	Cl(3a)	109.0(4)	
Cl(1a)	Mn (a)	Cl(4a)	108.7(4)	Cl(2a)	Mn (a)	Cl(3a)	108.2(6)	
Cl(2a)	Mn (a)	Cl(4a)	107.1(5)	Cl(3a)	Mn (a)	Cl(4a)	111.5(5)	
Cl(1b)	Mn (b)	Cl(2b)	110.9(5)	Cl(1b)	Mn (b)	Cl(3b)	109.3(4)	
Cl(1b)	Mn (b)	Cl(4b)	109.1(4)	Cl(2b)	Mn (b)	Cl(3b)	109.9(6)	
Cl(2b)	Mn (b)	Cl(4b)	108.6(6)	Cl(3b)	Mn (b)	Cl(4b)	109.0(5)	
C (1a)	N (1a)	C (2a)	113.1(28)	C (1a)	N (1a)	C (3a)	119.9(34)	
C (1a)	N (1a)	C (4a)	116.0(33)	C (2a)	N (1a)	C (3a)	102.6(33)	
C (2a)	N (1a)	C (4a)	104.7(36)	C (3a)	N (1a)	C (4a)	98.2(32)	
C (1b)	N (1b)	C (2b)	119.7(50)	C (1b)	N (1b)	C (3b)	87.6(29)	
C (1b)	N (1b)	C (4b)	93.4(31)	C (2b)	N (1b)	C (3b)	129.7(68)	
C (2b)	N (1b)	C (4b)	116.1(50)	C (3b)	N (1b)	C (4b)	102.0(38)	
C (5a)	N (2a)	C (6a)	114.1(45)	C (5a)	N (2a)	C (7a)	113.9(38)	
C (5a)	N (2a)	C (8a)	113.8(40)	C (6a)	N (2a)	C (7a)	106.0(46)	
C (6a)	N (2a)	C (8a)	109.8(46)	C (7a)	N (2a)	C (8a)	97.9(41)	
C (5b)	N (2b)	C (6b)	122.8(41)	C (5b)	N (2b)	C (7b)	112.6(36)	
C (5b)	N (2b)	C (8b)	112.6(35)	C (6b)	N (2b)	C (7b)	94.7(27)	
C (6b)	N (2b)	C (8b)	93.9(26)	C (7b)	N (2b)	C (8b)	118.6(36)	

 Table 4.3.6
 291 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 ()内の数字は標準偏差を表す...

	atom	X	у	Z	Ueq
TCM(a)	Mn(a)	2514(2)	4082(2)	1225(1)	491(5)
	Cl(1a)	2554(7)	4072(5)	282(2)	1060(23)
	Cl(2a)	2688(9)	5454(5)	1578(3)	1285(28)
	Cl(3a)	298(6)	3470(5)	1523(2)	1226(29)
_	Cl(4a)	4565(6)	3324(4)	1541(2)	1123(24)
TCM(b)	Mn(b)	2575(2)	935(2)	3733(1)	591(7)
	Cl(1b)	2559(6)	935(5)	2780(2)	1049(23)
	Cl(2b)	2752(8)	-484(5)	4072(3)	1249(27)
	Cl(3b)	410(6)	1580(5)	4053(3)	1353(30)
	Cl(4b)	4612(6)	1711(5)	4040(2)	1159(24)
TMA(1a)	N (1a)	2551(14)	978(10)	727(5)	826(51)
	C (1a)	2470(28)	960(14)	1358(6)	1033(86)
	C (2a)	2288(33)	135(16)	504(8)	1412(117)
	C (3a)	1551(30)	1493(19)	455(8)	1931(120)
	C (4a)	3912(26)	1254(22)	518(10)	1930(147)
TMA(1b)	N (1b)	2529(13)	4029(9)	3251(4)	591(40)
	C (1b)	2452(40)	3676(30)	3775(9)	2444(225)
	C (2b)	2252(41)	4933(21)	3158(9)	1940(172)
	C (3b)	1619(36)	3327(24)	3086(10)	3065(162)
	C (4b)	3998(28)	3743(28)	3166(13)	2552(209)
TMA(2a)	N (2a)	7515(13)	3283(8)	66(5)	547(40)
	C (5a)	7588(27)	2450(15)	378(9)	1163(92)
	C (6a)	6586(31)	3798(24)	260(14)	3018(161)
	C (7a)	7146(46)	3227(25)	-541(13)	2588(212)
	C (8a)	8843(28)	3657(20)	22(15)	2096(169)
TMA(2b)	N (2b)	7539(15)	1783(11)	2524(5)	770(58)
	C (5b)	7511(27)	2716(15)	2632(8)	1093(89)
	C (6b)	7482(35)	1112(18)	2956(8)	1434(125)
	C (7b)	6246(25)	1483(20)	2255(10)	1809(142)
	C (8b)	8927(24)	1488(19)	2295(10)	1618(131)

Table 4.3.7 291 K FOM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

	atom	U ₁₁	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn(a)	573(10)	433(11)	466(9)	36(14)	-3(12)	-10(10)
	Cl(1a)	1260(38)	1469(56)	450(21)	5(44)	26(28)	55(28)
	Cl(2a)	1977(59)	626(45)	1253(43)	57(47)	31(46)	-261(31)
	Cl(3a)	815(30)	1794(73)	1069(41)	-322(36)	220(30)	142(40)
	Cl(4a)	1062(33)	1231(52)	1076(39)	447(30)	-243(30)	179(34)
TCM(b)	Mn(b)	564(11)	690(15)	520(11)	-19(15)	4(13)	-63(13)
	Cl(1b)	1170(35)	1543(56)	434(21)	24(43)	-22(27)	12(28)
	Cl(2b)	1895(57)	551(43)	1302(43)	38(44)	-99(46)	260(30)
	Cl(3b)	817(29)	2253(78)	990(40)	508(36)	252(29)	-128(43)
	Cl(4b)	955(31)	1530(57)	991(37)	-448(31)	-232(29)	-200(36)
TMA(1a)	N (1a)	559(68)	982(109)	934(82)	26(84)	-53(74)	-491(71)
	C(1a)	2018(195)	807(154)	273(72)	-65(172)	78(131)	76(74)
	C(2a)	2537(267)	943(192)	756(126)	-338(198)	-147(176)	-331(101)
	C(3a)	2724(215)	2371(258)	697(135)	1712(151)	-584(128)	37(135)
	C(4a)	1596(159)	2840(376)	1354(171)	-1153(174)	975(126)	-436(198)
TMA(1b)	N(1b)	575(63)	720(87)	477(55)	8(74)	-38(64)	-215(55)
	C(1b)	2159(281)	4849(606)	324(116)	-201(390)	28(169)	132(220)
	C(2b)	3235(359)	2175(356)	410(117)	505(315)	217(202)	274(146)
	C(3b)	3637(275)	4389(357)	1173(183)	-3077(203)	-1152(183)	1322(189)
	C(4b)	1086(156)	4596(538)	1975(283)	1292(216)	293(198)	890(311)
TMA(2a)	N(2a)	512(58)	465(82)	663(70)	-48(63)	-3(68)	82(57)
	C(5a)	1273(160)	746(158)	1471(160)	-30(142)	-45(159)	576(109)
	C(6a)	2942(198)	3073(323)	3039(299)	2195(157)	1897(170)	532(242)
	C(7a)	3947(419)	1275(377)	2542(300)	-100(324)	-1780(268)	-433(228)
	C(8a)	1448(170)	1499(275)	3342(393)	-939(143)	-701(227)	262(273)
TMA(2b)	N(2b)	537(68)	1156(141)	618(79)	13(88)	8(71)	28(79)
	C(5b)	1429(172)	709(153)	1142(140)	-26(149)	51(154)	-356(100)
	C(6b)	2543(272)	1087(227)	672(122)	185(235)	-1(185)	275(114)
	C(7b)	1439(150)	1909(351)	2080(191)	268(177)	-1384(119)	-436(194)
	C(8b)	1111(130)	1700(314)	2041(200)	-142(157)	1100(121)	-422(186)

atom1 atom2		distance[Å]	atom1 atom2		distance[Å]
Mn (a)	Cl(1a)	2.330 (5)	Mn (a)	Cl(2a)	2.319 (7)
Mn (a)	Cl(3a)	2.342 (6)	Mn (a)	Cl(4a)	2.336 (6)
Mn (b)	Cl(1b)	2.357 (5)	Mn (b)	Cl(2b)	2.377 (8)
Mn (b)	Cl(3b)	2.342 (6)	Mn (b)	Cl(4b)	2.333 (6)
N (1a)	C (1a)	1.562 (19)	N (1a)	C (2a)	1.448 (29)
N (1a)	C (3a)	1.386 (30)	N (1a)	C (4a)	1.404 (28)
N (1b)	C (1b)	1.410 (29)	N (1b)	C (2b)	1.455 (36)
N (1b)	C (3b)	1.432 (37)	N (1b)	C (4b)	1.419 (30)
N (2a)	C (5a)	1.516 (26)	N (2a)	C (6a)	1.259 (35)
N (2a)	C (7a)	1.539 (35)	N (2a)	C (8a)	1.340 (30)
N (2b)	C (5b)	1.483 (29)	N (2b)	C (6b)	1.500 (28)
N (2b)	C (7b)	1.425 (28)	N (2b)	C (8b)	1.454 (27)

Table 4.3.8 291 K FOM での bond lengths [Å] ()内は標準偏差を表す...

Table 4.3.9 291 K FOM での bond angles [°]. ()内は標準偏差を表す.

atom1 atom3 atom2		angle[°]	atom1	atom3 a	atom2	angle[°]	
Cl(1a)	Mn (a)	Cl(2a)	112.3(5)	Cl(1a)	Mn (a)	Cl(3a)	108.9(4)
Cl(1a)	Mn (a)	Cl(4a)	108.6(4)	Cl(2a)	Mn (a)	Cl(3a)	108.6(5)
Cl(2a)	Mn (a)	Cl(4a)	106.9(5)	Cl(3a)	Mn (a)	Cl(4a)	111.6(5)
Cl(1b)	Mn (b)	Cl(2b)	110.7(5)	Cl(1b)	Mn (b)	Cl(3b)	109.3(4)
Cl(1b)	Mn (b)	Cl(4b)	109.2(4)	Cl(2b)	Mn (b)	Cl(3b)	109.9(6)
Cl(2b)	Mn (b)	Cl(4b)	108.5(5)	Cl(3b)	Mn (b)	Cl(4b)	109.2(4)
C (1a)	N (1a)	C (2a)	110.8(27)	C (1a)	N (1a)	C (3a)	117.7(31)
C (1a)	N (1a)	C (4a)	114.4(30)	C (2a)	N (1a)	C (3a)	103.7(34)
C (2a)	N (1a)	C (4a)	106.5(36)	C (3a)	N (1a)	C (4a)	102.5(32)
C (1b)	N (1b)	C (2b)	121.2(53)	C (1b)	N (1b)	C (3b)	86.2(28)
C (1b)	N (1b)	C (4b)	93.4(30)	C (2b)	N (1b)	C (3b)	126.9(63)
C (2b)	N (1b)	C (4b)	116.3(50)	C (3b)	N (1b)	C (4b)	104.9(38)
C (5a)	N (2a)	C (6a)	112.6(42)	C (5a)	N (2a)	C (7a)	117.2(41)
C (5a)	N (2a)	C (8a)	112.1(37)	C (6a)	N (2a)	C (7a)	105.3(43)
C (6a)	N (2a)	C (8a)	110.5(43)	C (7a)	N (2a)	C (8a)	98.1(37)
C (5b)	N (2b)	C (6b)	124.0(42)	C (5b)	N (2b)	C (7b)	113.2(36)
C (5b)	N (2b)	C (8b)	113.4(35)	C (6b)	N (2b)	C (7b)	94.2(26)
C (6b)	N (2b)	C (8b)	94.8(26)	C (7b)	N (2b)	C (8b)	115.1(34)

 Table 4.3.10
 290 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 () 内の数字は標準偏差を表す.

	atom	X	у	Z	Ueq(
TCM(a)	Mn(a)	2517(2)	4079(2)	1224(1)	493(5)
	Cl(1a)	2567(6)	4071(4)	283(2)	1032(22)
	Cl(2a)	2721(8)	5453(4)	1579(2)	1240(26)
	Cl(3a)	293(5)	3477(5)	1521(2)	1192(27)
	Cl(4a)	4545(6)	3308(4)	1543(2)	1094(22)
TCM(b)	Mn(b)	2591(2)	931(2)	3734(1)	576(6)
	Cl(1b)	2573(6)	936(4)	2778(2)	1052(22)
	Cl(2b)	2798(8)	-485(4)	4072(2)	1230(26)
	Cl(3b)	413(5)	1559(5)	4053(2)	1328(29)
	Cl(4b)	4622(5)	1720(4)	4036(2)	1136(23)
TMA(1a)	N (1a)	2567(13)	966(10)	731(5)	794(47)
	C (1a)	2488(25)	949(14)	1360(5)	1009(81)
	C (2a)	2309(30)	114(15)	498(7)	1287(102)
	C (3a)	1599(28)	1512(18)	449(8)	1868(119)
	C (4a)	3912(27)	1263(21)	518(9)	2048(140)
TMA(1b)	N (1b)	2531(12)	4028(9)	3251(4)	588(39)
	C (1b)	2488(33)	3692(27)	3771(8)	2241(201)
	C (2b)	2267(36)	4926(19)	3164(8)	1780(151)
	C (3b)	1669(34)	3317(22)	3086(10)	2928(148)
	C (4b)	3996(26)	3773(25)	3160(12)	2220(184)
TMA(2a)	N (2a)	7524(13)	3276(8)	71(5)	563(40)
	C (5a)	7588(26)	2432(14)	368(8)	1155(86)
	C (6a)	6645(31)	3814(23)	286(13)	2939(153)
	C (7a)	7109(47)	3214(24)	-533(13)	2777(212)
	C (8a)	8877(26)	3651(19)	11(14)	2036(158)
TMA(2b)	N (2b)	7549(13)	1767(10)	2519(5)	697(51)
	C (5b)	7510(25)	2704(14)	2628(8)	1075(83)
	C (6b)	7489(34)	1103(18)	2948(8)	1482(124)
	C (7b)	6259(23)	1485(19)	2254(10)	1744(129)
	C (8b)	8939(23)	1488(18)	2299(10)	1572(122)

	atom	U_{11}	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃		
TCM(a)	Mn(a)	566(10)	438(11)	474(9)	39(13)	-4(11)	-4(10)		
	Cl(1a)	1225(35)	1396(52)	475(21)	-15(41)	17(25)	54(27)		
	Cl(2a)	1864(53)	602(41)	1253(40)	75(42)	14(42)	-289(28)		
	Cl(3a)	765(27)	1757(68)	1055(39)	-283(33)	207(28)	145(37)		
	Cl(4a)	984(29)	1274(51)	1024(36)	425(28)	-240(27)	160(32)		
TCM(b)	Mn(b)	562(10)	660(14)	505(10)	-14(14)	-3(12)	-52(12)		
	Cl(1b)	1170(33)	1582(54)	406(19)	12(40)	-28(25)	11(27)		
	Cl(2b)	1855(54)	563(41)	1271(41)	74(40)	-76(43)	250(29)		
	Cl(3b)	833(28)	2150(73)	999(38)	501(34)	240(28)	-112(41)		
	Cl(4b)	968(29)	1468(53)	970(34)	-443(29)	-221(27)	-210(33)		
TMA(1a)	N (1a)	508(62)	940(103)	935(79)	36(76)	-27(67)	-460(68)		
	C (1a)	1818(173)	915(156)	294(71)	-97(159)	59(116)	101(77)		
	C (2a)	2170(226)	1069(180)	621(102)	-245(177)	-81(148)	-363(89)		
	C (3a)	2522(208)	2423(264)	661(129)	1573(153)	-481(125)	81(133)		
	C (4a)	1959(166)	2829(355)	1354(155)	-1330(172)	1161(118)	-571(184)		
TMA(1b)	N(1b)	593(61)	731(87)	439(52)	20(70)	-55(59)	-170(55)		
	C(1b)	1553(206)	4764(557)	407(114)	-64(320)	57(134)	169(212)		
	C(2b)	2811(298)	2087(324)	444(106)	395(267)	368(168)	323(133)		
	C(3b)	3761(264)	3915(312)	1112(176)	-3000(182)	-997(179)	1096(176)		
	C(4b)	976(141)	3902(473)	1784(252)	1007(193)	45(178)	435(285)		
TMA(2a)	N (2a)	556(59)	478(82)	656(68)	-51(59)	18(64)	72(56)		
	C (5a)	1341(160)	716(144)	1411(146)	-20(134)	-70(146)	598(99)		
	C (6a)	2945(197)	2943(309)	2931(281)	2110(153)	1837(165)	487(232)		
	C (7a)	4715(451)	1099(358)	2516(276)	10(328)	-2091(258)	-340(215)		
	C (8a)	1250(145)	1636(263)	3222(369)	-918(129)	-547(210)	184(261)		
TMA(2b)	N(2b)	491(61)	990(121)	611(73)	-1(75)	46(63)	-28(70)		
	C(5b)	1384(160)	839(149)	1002(121)	-57(141)	63(133)	-403(91)		
	C(6b)	2523(268)	1142(227)	783(128)	206(227)	40(177)	345(118)		
	C(7b)	1347(135)	1804(317)	2081(177)	293(156)	-1361(109)	-397(180)		
	C(8b)	1177(133)	1501(283)	2038(193)	-102(147)	1055(121)	-414(173)		

Table 4.3.11 290 K FOM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表す.

tom1 -	- atom2	distance[Å] atom1		atom2	distance[Å]
Mn (a)	Cl(1a)	2.327 (5)	Mn (a)	Cl(2a)	2.326 (7)
Mn (a)	Cl(3a)	2.341 (6)	Mn (a)	Cl(4a)	2.335 (6)
Mn (b)	Cl(1b)	2.359 (5)	Mn (b)	Cl(2b)	2.375 (7)
Mn (b)	Cl(3b)	2.340 (6)	Mn (b)	Cl(4b)	2.336 (6)
N (1a)	C (1a)	1.556 (19)	N (1a)	C (2a)	1.469 (27)
N (1a)	C (3a)	1.409 (29)	N (1a)	C (4a)	1.406 (28)
N (1b)	C (1b)	1.391 (27)	N (1b)	C (2b)	1.441 (33)
N (1b)	C (3b)	1.418 (35)	N (1b)	C (4b)	1.403 (28)
N (2a)	C (5a)	1.513 (25)	N (2a)	C (6a)	1.274 (34)
N (2a)	C (7a)	1.540 (34)	N (2a)	C (8a)	1.366 (28)
N (2b)	C (5b)	1.489 (27)	N (2b)	C (6b)	1.487 (28)
N (2b)	C (7b)	1.410 (26)	N (2b)	C (8b)	1.439 (25)

Table 4.3.12 290 K FOM での bond lengths [Å] ()内は標準偏差を表す.

Table 4.3.13 290 K FOM での bond angles [°]. ()内は標準偏差を表す.

atom1 atom3 atom2		atom2	angle[°]	atom1	atom1 atom3 atom2		angle[°]
Cl(1a)	Mn (a)	Cl(2a)	112.3(5)	Cl(1a)	Mn (a)	Cl(3a)	109.2(4)
Cl(1a)	Mn (a)	Cl(4a)	108.6(4)	Cl(2a)	Mn (a)	Cl(3a)	108.8(5)
Cl(2a)	Mn (a)	Cl(4a)	106.7(5)	Cl(3a)	Mn (a)	Cl(4a)	111.3(4)
Cl(1b)	Mn (b)	Cl(2b)	110.9(5)	Cl(1b)	Mn (b)	Cl(3b)	109.2(4)
Cl(1b)	Mn (b)	Cl(4b)	108.8(4)	Cl(2b)	Mn (b)	Cl(3b)	109.8(5)
Cl(2b)	Mn (b)	Cl(4b)	108.5(5)	Cl(3b)	Mn (b)	Cl(4b)	109.6(4)
C (1a)	N (1a)	C (2a)	111.6(25)	C (1a)	N (1a)	C (3a)	118.4(30)
C (1a)	N (1a)	C (4a)	114.9(29)	C (2a)	N (1a)	C (3a)	104.9(32)
C (2a)	N (1a)	C (4a)	106.9(34)	C (3a)	N (1a)	C (4a)	98.8(29)
C (1b)	N (1b)	C (2b)	120.1(48)	C (1b)	N (1b)	C (3b)	87.3(27)
C (1b)	N (1b)	C (4b)	93.8(28)	C (2b)	N (1b)	C (3b)	129.1(61)
C (2b)	N (1b)	C (4b)	114.2(44)	C (3b)	N (1b)	C (4b)	104.6(36)
C (5a)	N (2a)	C (6a)	113.5(41)	C (5a)	N (2a)	C (7a)	115.1(38)
C (5a)	N (2a)	C (8a)	113.2(35)	C (6a)	N (2a)	C (7a)	107.0(42)
C (6a)	N (2a)	C (8a)	108.8(39)	C (7a)	N (2a)	C (8a)	98.0(36)
C (5b)	N (2b)	C (6b)	124.0(41)	C (5b)	N (2b)	C (7b)	111.9(33)
C (5b)	N (2b)	C (8b)	112.8(33)	C (6b)	N (2b)	C (7b)	94.7(25)
C (6b)	N (2b)	C (8b)	95.2(26)	C (7b)	N (2b)	C (8b)	117.0(33)

Table 4.3.14 289 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

() 内の数字は標準偏差を表す.

	atom	X	у	Z	Ueq
TCM(a)	Mn(a)	2519(2)	4079(1)	1225(1)	495(5)
	Cl(1a)	2577(6)	4075(4)	283(2)	1025(21)
	Cl(2a)	2750(7)	5450(4)	1575(2)	1229(25)
	Cl(3a)	285(5)	3484(5)	1522(2)	1179(26)
	Cl(4a)	4530(5)	3295(4)	1546(2)	1112(22)
TCM(b)	Mn(b)	2602(2)	931(2)	3733(1)	570(6)
	Cl(1b)	2581(6)	939(4)	2778(2)	1044(21)
	Cl(2b)	2826(7)	-480(4)	4077(2)	1177(24)
	Cl(3b)	415(5)	1546(5)	4051(2)	1282(27)
	Cl(4b)	4625(5)	1728(4)	4032(2)	1113(22)
TMA(1a)	N (1a)	2577(12)	963(9)	722(5)	712(44)
	C (1a)	2486(24)	943(14)	1355(6)	999(79)
	C (2a)	2294(29)	100(15)	506(7)	1315(103)
	C (3a)	1628(28)	1531(17)	456(8)	1794(114)
	C (4a)	3943(26)	1249(21)	533(9)	2117(137)
TMA(1b)	N (1b)	2527(12)	4029(9)	3261(4)	591(39)
	C (1b)	2507(32)	3692(26)	3782(8)	2175(192)
	C (2b)	2249(34)	4936(18)	3157(8)	1652(134)
	C (3b)	1689(34)	3308(22)	3074(11)	3006(153)
	C (4b)	4007(26)	3807(24)	3156(12)	2125(179)
TMA(2a)	N (2a)	7523(12)	3280(8)	69(4)	523(37)
	C (5a)	7614(26)	2420(14)	346(9)	1186(91)
	C (6a)	6632(31)	.3810(23)	267(13)	2906(157)
	C (7a)	7130(47)	3196(23)	-534(12)	2691(208)
	C (8a)	8888(25)	3656(18)	3(13)	1828(137)
TMA(2b)	N (2b)	7559(13)	1771(10)	2517(5)	728(52)
	C (5b)	7519(24)	2714(14)	2630(8)	1082(82)
	C (6b)	7482(33)	1114(16)	2957(7)	1424(118)
	C (7b)	6272(23)	1498(19)	2248(10)	1743(130)
	C (8b)	8928(23)	1507(18)	2288(10)	1604(121)

Table 4.3.15 289 K FOM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

,

	atom	U_{11}	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	565(10)	460(11)	461(9)	31(13)	-6(10)	1(10)
	Cl(1a)	1226(35)	1357(50)	492(21)	-23(39)	12(25)	74(26)
	Cl(2a)	1759(50)	584(41)	1342(42)	37(39)	47(41)	-279(29)
	Cl(3a)	761(26)	1699(64)	1077(38)	-281(31)	189(27)	146(36)
	Cl(4a)	994(29)	1293(50)	1050(35)	427(28)	-221(27)	185(31)
TCM(b)	Mn (b)	555(10)	631(14)	522(10)	-14(13)	0(12)	-41(12)
	Cl(1b)	1152(33)	1587(53)	395(18)	-7(38)	-30(24)	32(26)
	Cl(2b)	1782(51)	570(38)	1180(37)	105(37)	-105(39)	240(27)
	Cl(3b)	805(27)	2067(69)	974(36)	457(33)	234(27)	-110(39)
	Cl(4b)	957(28)	1432(51)	949(33)	-426(28)	-215(26)	-200(32)
TMA(1a)	N (1a)	506(60)	834(97)	797(72)	1(71)	-7(61)	-323(66)
	C (1a)	620(62)	706(85)	448(53)	1(68)	-37(58)	-146(54)
	C (2a)	525(55)	495(77)	549(59)	-17(56)	6(57)	107(50)
	C (3a)	507(61)	941(120)	736(80)	-19(73)	41(65)	-5(73)
	C (4a)	1760(166)	900(154)	337(72)	-118(151)	63(115)	37(78)
TMA(1b)	N (1b)	2134(225)	1158(188)	652(107)	-222(178)	-73(147)	-385(95)
	C (1b)	2486(208)	2233(242)	662(126)	1460(148)	-377(125)	172(126)
	C (2b)	1901(158)	3012(350)	1436(155)	-1384(168)	1215(114)	-703(186)
	C (3b)	1459(195)	4553(527)	514(127)	-111(300)	41(134)	133(211)
	C (4b)	2664(277)	1638(269)	655(117)	409(229)	440(164)	405(125)
TMA(2a)	N (2a)	3488(253)	4182(328)	1349(199)	-2979(183)	-1033(186)	1182(194)
	C (5a)	1404(165)	620(148)	1534(160)	-45(132)	-101(152)	516(105)
	C (6a)	2821(203)	3168(316)	2729(285)	2110(157)	1495(173)	204(234)
	C (7a)	4931(467)	1086(335)	2056(244)	138(332)	-1883(250)	-296(194)
	C (8a)	1274(143)	1442(229)	2769(314)	-854(119)	-433(191)	36(221)
TMA(2b)	N (2b)	956(142)	3534(450)	1884(257)	834(194)	-40(179)	279(282)
	C (5b)	1269(149)	641(136)	1335(144)	-53(123)	89(139)	-407(95)
	C (6b)	2812(278)	878(194)	581(106)	220(211)	47(166)	170(99)
	C (7b)	1274(131)	1886(319)	2068(182)	268(156)	-1274(111)	-352(185)
	C (8b)	1241(135)	1523(279)	2048(189)	-68(148)	1087(119)	-413(171)

atom1 atom2		distance[Å]	atom1	atom2	distance[Å]
Mn (a)	Cl(1a)	2.331 (4)	Mn (a)	Cl(2a)	2.322 (7)
Mn (a)	Cl(3a)	2.344 (6)	Mn (a)	Cl(4a)	2.336 (6)
Mn (b)	Cl(1b)	2.362 (4)	Mn (b)	Cl(2b)	2.374 (7)
Mn (b)	Cl(3b)	2.338 (6)	Mn (b)	Cl(4b)	2.336 (6)
N (1a)	C (1a)	1.568 (18)	N (1a)	C (2a)	1.474 (27)
N (1a)	C (3a)	1.400 (28)	N (1a)	C (4a)	1.396 (27)
N (1b)	C (1b)	1.394 (27)	N (1b)	C (2b)	1.463 (31)
N (1b)	C (3b)	1.436 (35)	N (1b)	C (4b)	1.409 (27)
N (2a)	C (5a)	1.514 (25)	N (2a)	C (6a)	1.256 (34)
N (2a)	C (7a)	1.538 (31)	N (2a)	C (8a)	1.378 (26)
N (2b)	C (5b)	1.500 (26)	N (2b)	C (6b)	1.500 (25)
N (2b)	C (7b)	1.409 (26)	N (2b)	C (8b)	1.424 (25)

Table 4.3.16 289 K FOM での bond lengths [Å]. () 内は標準偏差を表す.

Table 4.3.17 289 K FOM での bond angles [°]. () 内は標準偏差を表す.

atom1 atom3 atom2		angle	atom1	atom1 atom3 atom2		angle	
Cl(1a)	Mn (a)	Cl(2a)	111.8(5)	Cl(1a)	Mn (a)	Cl(3a)	109.4(4)
Cl(1a)	Mn (a)	Cl(4a)	108.7(4)	Cl(2a)	Mn (a)	Cl(3a)	109.1(5)
Cl(2a)	Mn (a)	Cl(4a)	106.8(5)	Cl(3a)	Mn (a)	Cl(4a)	111.0(4)
Cl(1b)	Mn (b)	Cl(2b)	111.4(4)	Cl(1b)	Mn (b)	Cl(3b)	109.1(4)
Cl(1b)	Mn (b)	Cl(4b)	108.6(4)	Cl(2b)	Mn (b)	Cl(3b)	109.5(5)
Cl(2b)	Mn (b)	Cl(4b)	108.4(5)	Cl(3b)	Mn (b)	Cl(4b)	109.8(4)
C (1a)	N (1a)	C (2a)	109.4(24)	C (1a)	N (1a)	C (3a)	116.8(29)
C (1a)	N (1a)	C (4a)	112.7(28)	C (2a)	N (1a)	C (3a)	107.8(33)
C (2a)	N (1a)	C (4a)	109.1(35)	C (3a)	N (1a)	C (4a)	100.6(30)
C (1b)	N (1b)	C (2b)	121.8(47)	C (1b)	N (1b)	C (3b)	89.6(28)
C (1b)	N (1b)	C (4b)	95.1(28)	C (2b)	N (1b)	C (3b)	127.9(57)
C (2b)	N (1b)	C (4b)	111.8(40)	C (3b)	N (1b)	C (4b)	104.5(35)
C (5a)	N (2a)	C (6a)	116.4(44)	C (5a)	N (2a)	C (7a)	112.1(34)
C (5a)	N (2a)	C (8a)	112.6(33)	C (6a)	N (2a)	C (7a)	106.6(41)
C (6a)	N (2a)	C (8a)	110.0(39)	C (7a)	N (2a)	C (8a)	97.4(33)
C (5b)	N (2b)	C (6b)	122.5(37)	C (5b)	N (2b)	C (7b)	111.4(32)
C (5b)	N (2b)	C (8b)	112.4(32)	C (6b)	N (2b)	C (7b)	95.5(25)
C (6b)	N (2b)	C (8b)	97.4(26)	C (7b)	N (2b)	C (8b)	116.4(33)

 Table 4.3.18
 287 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 () 内の数字は標準偏差を表す.

	atom	x	у	Z	Ueq
TCM(a)	Mn(a)	2523(2)	4079(1)	1225(1)	497(5)
	Cl(1a)	2590(6)	4078(4)	283(2)	1004(20)
	Cl(2a)	2786(7)	5451(4)	1577(2)	1163(23)
	Cl(3a)	269(5)	3494(4)	1517(2)	1159(25)
	Cl(4a)	4516(5)	3273(4)	1546(2)	1080(21)
TCM(b)	Mn(b)	2620(2)	930(2)	3733(1)	554(6)
	Cl(1b)	2597(6)	943(4)	2777(2)	1041(21)
	Cl(2b)	2871(6)	-478(4)	4077(2)	1104(22)
	Cl(3b)	418(5)	1522(4)	4054(2)	1223(25)
	Cl(4b)	4634(5)	1736(4)	4030(2)	1096(20)
TMA(1a)	N (1a)	2592(12)	967(9)	721(5)	742(46)
	C (1a)	2480(23)	945(13)	1357(5)	1002(76)
	C (2a)	2280(28)	99(15)	494(7)	1334(97)
	C (3a)	1639(27)	1549(17)	452(7)	1699(108)
	C (4a)	3997(24)	1235(21)	543(8)	2069(129)
TMA(1b)	N (1b)	2529(11)	4032(8)	3257(4)	553(36)
	C (1b)	2503(31)	3736(24)	3772(8)	1990(169)
	C (2b)	2236(31)	4917(16)	3156(7)	1506(117)
	C (3b)	1720(31)	3295(20)	3075(10)	2596(136)
	C (4b)	4016(24)	3827(23)	3158(11)	1976(164)
TMA(2a)	N (2a)	7528(12)	3279(8)	69(4)	528(36)
	C (5a)	7632(24)	2429(13)	353(8)	1132(84)
	C (6a)	6704(30)	3816(22)	304(12)	2604(144)
	C (7a)	7066(41)	3208(21)	-520(11)	2622(175)
	C (8a)	8915(23)	3643(17)	0(12)	1734(127)
TMA(2b)	N (2b)	7571(13)	1768(9)	2516(5)	702(49)
	C (5b)	7522(23)	2711(13)	2634(8)	1062(78)
	C (6b)	7471(33)	1101(17)	2950(7)	1492(121)
	C (7b)	6279(22)	1484(18)	2255(9)	1669(121)
_	C (8b)	8960(22)	1495(17)	2301(9)	1502(110)

Table 4.3.19 287 K FOM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	557(9)	465(11)	467 (9)	34(12)	-10(9)	-8(10)
	Cl(1a)	1210(33)	1324(47)	478(20)	-25(36)	7(23)	87(25)
	Cl(2a)	1600(44)	592(38)	1296(39)	43(34)	42(36)	-283(27)
	Cl(3a)	728(25)	1734(62)	1015(36)	-288(30)	148(26)	109(34)
	Cl(4a)	984(28)	1242(47)	1015(33)	425(26)	-209(26)	146(29)
TCM(b)	Mn (b)	546(10)	600(13)	514(10)	-11(12)	-3(10)	-49(11)
	Cl(1b)	1143(31)	1584(52)	396(18)	-27(36)	-36(22)	39(25)
	Cl(2b)	1592(44)	548(35)	1172(35)	105(32)	-101(35)	245(26)
	Cl(3b)	785(25)	1865(62)	1017(34)	418(30)	228(26)	-129(35)
	Cl(4b)	948(27)	1371(47)	968(31)	-393(27)	-200(25)	-249(29)
TMA(1a)	N (1a)	486(58)	847(99)	891(77)	14(69)	13(60)	-282(70)
	C (1a)	1725(158)	980(154)	302(67)	-149(143)	102(101)	107(74)
	C (2a)	2035(207)	1362(185)	603(95)	-275(167)	-130(129)	-466(88)
	C (3a)	2436(200)	2036(228)	626(113)	1292(144)	-445(115)	134(116)
	C (4a)	1789(144)	3076(334)	1340(138)	-1355(158)	1177(103)	-740(172)
TMA(1b)	N (1b)	617(59)	668(80)	375(47)	-10(62)	-32(51)	-92(50)
	C (1b)	1491(187)	3991(460)	488(115)	-46(270)	43(123)	139(191)
	C (2b)	2495(248)	1453(232)	571(100)	225(199)	397(140)	397(106)
	C (3b)	3231(231)	3389(283)	1171(183)	-2520(161)	-758(170)	749(174)
	C (4b)	867(129)	3398(422)	1663(222)	661(186)	-82(159)	201(258)
TMA(2a)	N (2a)	507(53)	535(77)	543(58)	-34(53)	-2(54)	107(50)
	N (2b)	499(58)	870(111)	738(78)	-29(67)	40(61)	-2(69)
	C (5a)	1420(158)	545(134)	1433(145)	-45(121)	-152(140)	485(96)
	C (6a)	2608(197)	2869(301)	2335(242)	1791(154)	1247(160)	13(210)
	C (7a)	4623(381)	1009(292)	2234(213)	211(270)	-2155(197)	-406(168)
TMA(2b)	C (8a)	1113(127)	1554(225)	2535(283)	-794(114)	-356(171)	-30(207)
	C (5b)	1251(141)	672(132)	1261(133)	-53(116)	90(127)	-403(90)
	C (6b)	2816(278)	1023(209)	639(110)	156(217)	12(164)	253(105)
	C (7b)	1301(131)	1758(295)	1947(168)	230(149)	-1206(108)	-364(168)
	C (8b)	1167(125)	1380(252)	1958(177)	-60(133)	988(114)	-356(156)

atom1 atom2		atom2	distance[Å]	atom1 atom2		distance[Å]	
	Mn (a)	Cl(1a)	2.324 (4)	Mn (a)	Cl(2a)	2.326 (6)	
	Mn (a)	Cl(3a)	2.349 (5)	Mn (a)	Cl(4a)	2.339 (5)	
	Mn (b)	Cl(1b)	2.356 (4)	Mn (b)	Cl(2b)	2.372 (7)	
	Mn (b)	Cl(3b)	2.335 (5)	Mn (b)	Cl(4b)	2.333 (6)	
	N (1a)	C (1a)	1.572 (18)	N (1a)	C (2a)	1.496 (27)	
	N (1a)	C (3a)	1.420 (27)	N (1a)	C (4a)	1.409 (25)	
	N (1b)	C (1b)	1.355 (24)	N (1b)	C (2b)	1.432 (28)	
	N (1b)	C (3b)	1.436 (32)	N (1b)	C (4b)	1.405 (25)	
	N (2a)	C (5a)	1.506 (23)	N (2a)	C (6a)	1.262 (32)	
	N (2a)	C (7a)	1.517 (29)	N (2a)	C (8a)	1.389 (24)	
	N (2b)	C (5b)	1.504 (25)	N (2b)	C (6b)	1.500 (26)	
	N (2b)	C (7b)	1.407 (25)	N (2b)	C (8b)	1.429 (24)	

Table 4.3.20 287 K FOM での bond lengths [Å]. ()内は標準偏差を表す.

Table 4.3.21 287 K FOM での bond angles [°]. ()内は標準偏差を表す.

atom1 atom3 atom2		angle[°]	atom1 atom3 atom2			angle[°]	
Cl(1a)	Mn (a)	Cl(2a)	111.7(4)	Cl(1a)	Mn (a)	Cl(3a)	109.2(4)
Cl(1a)	Mn (a)	Cl(4a)	108.6(4)	Cl(2a)	Mn (a)	Cl(3a)	109.5(5)
Cl(2a)	Mn (a)	Cl(4a)	106.9(4)	Cl(3a)	Mn (a)	Cl(4a)	110.8(4)
Cl(1b)	Mn (b)	Cl(2b)	111.6(4)	Cl(1b)	Mn (b)	Cl(3b)	109.1(4)
Cl(1b)	Mn (b)	Cl(4b)	108.4(4)	Cl(2b)	Mn (b)	Cl(3b)	109.1(5)
Cl(2b)	Mn (b)	Cl(4b)	108.3(5)	Cl(3b)	Mn (b)	Cl(4b)	110.3(4)
C (1a)	N (1a)	C (2a)	109.9(24)	C (1a)	N (1a)	C (3a)	116.3(27)
C (1a)	N (1a)	C (4a)	112.1(26)	C (2a)	N (1a)	C (3a)	107.0(31)
C (2a)	N (1a)	C (4a)	108.9(33)	C (3a)	N (1a)	C (4a)	102.2(28)
C (1b)	N (1b)	C (2b)	119.3(42)	C (1b)	N (1b)	C (3b)	90.5(27)
C (1b)	N (1b)	C (4b)	95.8(26)	C (2b)	N (1b)	C (3b)	128.9(54)
C (2b)	N (1b)	C (4b)	111.6(37)	C (3b)	N (1b)	C (4b)	104.6(33)
C (5a)	N (2a)	C (6a)	114.3(40)	C (5a)	N (2a)	C (7a)	113.6(33)
C (5a)	N (2a)	C (8a)	111.3(31)	C (6a)	N (2a)	C (7a)	108.8(39)
C (6a)	N (2a)	C (8a)	108.5(36)	C (7a)	N (2a)	C (8a)	99.2(31)
C (5b)	N (2b)	C (6b)	122.8(37)	C (5b)	N (2b)	C (7b)	111.9(31)
C (5b)	N (2b)	C (8b)	113.0(31)	C (6b)	N (2b)	C (7b)	93.3(24)
C (6b)	N (2b)	C (8b)	96.3(25)	C (7b)	N (2b)	C (8b)	117.9(32)

Table 4.3.22 285 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

()内の数字は標準偏差を表す.

	atom	x	у	Z	Ueq
TCM(a)	Mn(a)	2525(2)	4078(1)	1225(1)	500(5)
	Cl(1a)	2603(6)	4083(4)	282(2)	994(19)
	Cl(2a)	2812(6)	5449(4)	1577(2)	1126(22)
	Cl(3a)	259(5)	3506(4)	1515(2)	1136(24)
	Cl(4a)	4505(5)	3260(4)	1548(2)	1079(20)
TCM(b)	Mn(b)	2634(2)	930(2)	3732(1)	543(6)
	Cl(1b)	2609(5)	945(4)	2778(2)	1024(20)
	Cl(2b)	2901(6)	-477(4)	4078(2)	1070(20)
	Cl(3b)	424(5)	1512(4)	4054(2)	1174(23)
	Cl(4b)	4638(5)	1746(4)	4027(2)	1053(19)
TMA(1a)	N (1a)	2602(12)	967(9)	722(5)	724(45)
	C (1a)	2484(23)	949(13)	1356(5)	992(74)
	C (2a)	2270(27)	93(14)	497(7)	1264(91)
	C (3a)	1656(26)	1552(16)	453(7)	1563(104)
	C (4a)	4036(23)	1222(20)	557(8)	1969(121)
TMA(1b)	N (1b)	2534(11)	4032(8)	3257(4)	560(36)
	C (1b)	2509(29)	3734(25)	3769(8)	2189(186)
	C (2b)	2209(29)	4916(16)	3148(7)	1437(110)
	C (3b)	1740(30)	3290(19)	3064(9)	2398(125)
	C (4b)	4033(23)	3844(22)	3153(10)	1865(154)
TMA(2a)	N (2a)	7533(11)	3273(7)	65(4)	493(33)
	C (5a)	7655(25)	2418(13)	343(9)	1223(90)
	C (6a)	6724(28)	3820(20)	317(12)	2446(134)
	C (7a)	7048(39)	3190(20)	-513(10)	2522(159)
	C (8a)	8921(22)	3643(17)	-2(11)	1666(117)
TMA(2b)	N (2b)	7584(13)	1764(10)	2518(5)	768(52)
	C (5b)	7527(22)	2704(13)	2648(8)	1084(76)
	C (6b)	7463(33)	1111(16)	2952(7)	1512(121)
	C (7b)	6292(22)	1480(18)	2250(9)	1642(117)
	C (8b)	8970(22)	1497(17)	2302(9)	1506(110)

Table 4.3.23	285 K FOM での異方性温度因子.	U _{ij} は平均二乗変位	(×10 ⁻⁴	$[Å^{2}])$	を,
()内の数字に	は標準偏差を表す.				

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	551(9)	471(11)	478(9)	36(12)	-10(9)	2(10)
	Cl(1a)	544(9)	582(13)	502(10)	-8(11)	-1(10)	-34(11)
	Cl(2a)	1181(32)	1304(46)	497(20)	-35(35)	4(23)	93(25)
	Cl(3a)	1497(41)	585(36)	1296(38)	40(32)	50(34)	-276(26)
	Cl(4a)	709(24)	1679(59)	1021(35)	-260(29)	147(25)	110(33)
TCM(b)	Mn (b)	965(27)	1262(46)	1010(32)	410(26)	-199(25)	164(29)
	Cl(1b)	1143(31)	1545(49)	383(17)	-38(35)	-43(22)	43(24)
	Cl(2b)	1459(40)	585(34)	1166(34)	117(30)	-102(33)	242(25)
	Cl(3b)	776(25)	1730(57)	1017(33)	398(28)	221(25)	-107(34)
	Cl(4b)	947(27)	1257(43)	956(30)	-370(25)	-194(25)	-234(27)
TMA(1a)	N (1a)	445(55)	832(98)	893(76)	42(66)	12(59)	-247(70)
	C (1a)	1753(157)	952(146)	270(63)	-137(140)	103(98)	92(71)
	C (2a)	1928(195)	1207(169)	655(95)	-233(152)	-176(124)	-451(84)
	C (3a)	2329(201)	1711(215)	648(111)	1029(144)	-425(116)	149(111)
	C (4a)	1676(138)	2870(310)	1358(136)	-1252(150)	1140(101)	-735(166)
TMA(1b)	N (1b)	658(60)	641(77)	380(47)	0(62)	-32(52)	-92(50)
	C (1b)	1316(171)	4809(520)	443(110)	-90(279)	53(115)	169(204)
	C (2b)	2292(227)	1397(219)	623(101)	238(184)	417(132)	401(103)
	C (3b)	3041(216)	3048(255)	1105(171)	-2311(147)	-670(159)	603(161)
	C (4b)	813(123)	3126(391)	1655(215)	555(178)	-119(151)	130(247)
TMA(2a)	N (2a)	484(51)	479(70)	516(53)	-17(49)	-25(50)	133(45)
	C (5a)	1493(168)	610(144)	1567(155)	-35(128)	-186(149)	522(103)
	C (6a)	2466(186)	2656(274)	2216(228)	1695(143)	1134(154)	1(197)
	C (7a)	4443(349)	1074(270)	2048(185)	273(252)	-2094(174)	-485(153)
	C (8a)	1074(120)	1544(213)	2379(256)	-756(108)	-408(155)	-122(189)
TMA(2b)	N (2b)	501(60)	991(121)	812(82)	-24(70)	43(64)	12(75)
	C (5b)	1134(131)	647(125)	1469(142)	-54(106)	111(127)	-479(90)
	C (6b)	2833(278)	1116(211)	588(104)	196(217)	34(159)	263(103)
	C (7b)	1309(132)	1645(280)	1971(169)	194(145)	-1192(109)	-339(165)
	C (8b)	1166(124)	1427(252)	1924(174)	-20(134)	988(112)	-321(155)

		<u> </u>		·
.atom1 atom2		distance[Å]	atom1 atom2	distance[Å]
Mn (a)	Cl(1a)	2.328 (4)	Mn (a) Cl(2a)	2.325 (6)
Mn (a)	Cl(3a)	2.348 (5)	Mn (a) Cl(4a)	2.340 (5)
Mn (b)	Cl(1b)	2.353 (4)	Mn (b) Cl(2b)	2.371 (6)
Mn (b)	Cl(3b)	2.335 (5)	Mn (b) Cl(4b)	2.331 (5)
N (1a)	C (1a)	1.567 (17)	N (1a) C (2a)	1.504 (26)
N (1a)	C (3a)	1.417 (26)	N (1a) C (4a)	1.417 (24)
N (1b)	C (1b)	1.349 (25)	N (1b) C (2b)	1.437 (27)
N (1b)	C (3b)	1.444 (31)	N (1b) C (4b)	1.411 (24)
N (2a)	C (5a)	1.506 (24)	N (2a) C (6a)	1.285 (31)
N (2a)	C (7a)	1.496 (28)	N (2a) C (8a)	1.392 (23)
N (2b)	C (5b)	1.504 (25)	N (2b) C (6b)	1.483 (26)
N (2b)	C (7b)	1.414 (25)	N (2b) C (8b)	1.425 (24)

Table 4.3.24 285 K FOM での bond lengths [Å]. ()内は標準偏差を表す.

Table 4.3.25 285 K FOM での bond angles [°]. ()内は標準偏差を表す.

atoml	atom3	atom2	angle[°]	atom1	atom3	atom2	angle[°]
Cl(1a)	Mn (a)	Cl(2a)	111.4(4)	Cl(1a)	Mn (a)	Cl(3a)	109.4(4)
Cl(1a)	Mn (a)	Cl(4a)	108.6(4)	Cl(2a)	Mn (a)	Cl(3a)	109.5(5)
Cl(2a)	Mn (a)	Cl(4a)	106.9(4)	Cl(3a)	Mn (a)	Cl(4a)	110.9(4)
Cl(1b)	Mn (b)	Cl(2b)	111.8(4)	Cl(1b)	Mn (b)	Cl(3b)	109.1(4)
Cl(1b)	Mn (b)	Cl(4b)	108.3(4)	Cl(2b)	Mn (b)	Cl(3b)	109.0(4)
Cl(2b)	Mn (b)	Cl(4b)	108.4(4)	Cl(3b)	Mn (b)	Cl(4b)	110.3(4)
C (1a)	N (1a)	C (2a)	109.8(23)	C (1a)	N (1a)	C (3a)	116.0(27)
C (1a)	N (1a)	C (4a)	110.7(25)	C (2a)	N (1a)	C (3a)	106.9(30)
C (2a)	N (1a)	C (4a)	109.5(31)	C (3a)	N (1a)	C (4a)	103.7(28)
C (1b)	N (1b)	C (2b)	120.3(43)	C (1b)	N (1b)	C (3b)	91.3(26)
C (1b)	N (1b)	C (4b)	96.5(26)	C (2b)	N (1b)	C (3b)	127.4(50)
C (2b)	N (1b)	C (4b)	111.3(35)	C (3b)	N (1b)	C (4b)	104.6(31)
C (5a)	N (2a)	C (6a)	114.3(38)	C (5a)	N (2a)	C (7a)	112.3(32)
C (5a)	N (2a)	C (8a)	110.9(30)	C (6a)	N (2a)	C (7a)	110.5(38)
C (6a)	N (2a)	C (8a)	107.2(33)	C (7a)	N (2a)	C (8a)	100.8(30)
C (5b)	N (2b)	C (6b)	121.0(35)	C (5b)	N (2b)	C (7b)	112.2(31)
C (5b)	N (2b)	C (8b)	113.3(31)	C (6b)	N (2b)	C (7b)	93.5(23)
C (6b)	N (2b)	C (8b)	97.7(25)	C (7b)	N (2b)	C (8b)	117.4(32)

 Table 4.3.26
 280 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 () 内の数字は標準偏差を表す.

	atom	x	У	Z	Ueq(*10000)
TCM(a)	Mn(a)	2534(2)	4079(1)	1226(1)	499(5)
	Cl(1a)	2625(5)	4083(4)	282(2)	934(18)
	Cl(2a)	2852(6)	5460(4)	1577(2)	1058(20)
	Cl(3a)	237(5)	3531(4)	1509(2)	1098(22)
	Cl(4a)	4476(5)	3240(4)	1555(2)	1062(20)
TCM(b)	Mn(b)	2663(2)	932(2)	3731(1)	521(5)
	Cl(1b)	2638(5)	945(4)	2777(2)	1063(21)
	Cl(2b)	2963(6)	-469(4)	4075(2)	996(19)
	Cl(3b)	433(5)	1494(4)	4057(2)	1109(22)
	Cl(4b)	4651(5)	1768(4)	4027(2)	1002(18)
TMA(1a)	N (1a)	2619(12)	951(9)	727(5)	709(44)
	C (1a)	2454(24)	966(12)	1353(5)	1020(76)
	C (2a)	2253(25)	93(14)	506(7)	1173(86)
	C (3a)	1656(26)	1557(16)	457(7)	1481(99)
	C (4a)	4141(22)	1165(19)	582(9)	1766(117)
TMA(1b)	N (1b)	2539(11)	4030(8)	3253(4)	552(36)
	C (1b)	2477(29)	3680(28)	3775(8)	2529(214)
	C (2b)	2148(27)	4936(16)	3140(7)	1355(105)
	C (3b)	1739(28)	3289(19)	3047(9)	1931(119)
	C (4b)	4068(23)	3860(22)	3152(11)	1868(154)
TMA(2a)	N (2a)	7538(11)	3291(8)	65(4)	506(34)
	C (5a)	7698(26)	2398(13)	343(9)	1229(91)
	C (6a)	6697(26)	3790(18)	363(10)	2072(114)
	C (7a)	6940(32)	3182(20)	-506(9)	2318(131)
	C (8a)	8980(21)	3619(16)	-3(10)	1411(107)
TMA(2b)	N (2b)	7595(12)	1777(10)	2519(5)	709(48)
	C (5b)	7539(22)	2699(13)	2651(8)	1068(75)
	C (6b)	7438(34)	1102(18)	2944(8)	1720(131)
	C (7b)	6372(25)	1467(18)	2232(9)	1690(128)
	C (8b)	8957(24)	1478(17)	2295(10)	1578(117)

.

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn a)	533(9)	501(11)	463(9)	32(11)	-8(9)	8(10)
	Cl(1a)	1105(30)	1216(42)	483(19)	-28(32)	-2(21)	96(24)
	Cl(2a)	1281(35)	593(34)	1301(37)	-49(27)	78(31)	-300(25)
	Cl(3a)	689(23)	1623(55)	982(33)	-286(27)	179(24)	104(32)
	Cl(4a)	975(27)	1236(44)	977(31)	425(25)	-211(24)	158(28)
TCM(b)	Mn b)	524(9)	567(12)	471(9)	-13(10)	-3(10)	-30(10)
	Cl(1b)	1144(31)	1673(53)	372(18)	-26(36)	-49(21)	37(25)
	Cl(2b)	1234(35)	556(32)	1198(34)	53(26)	-62(30)	227(25)
	Cl(3b)	741(24)	1606(54)	978(31)	310(27)	249(24)	-104(32)
	Cl(4b)	923(26)	1157(40)	926(28)	-315(24)	-217(23)	-215(26)
TMA(1a)	N (1a)	477(56)	768(95)	881(77)	71(64)	-7(58)	-163(72)
	C (1a)	2147(183)	652(125)	261(62)	-109(138)	88(102)	35(63)
	C (2a)	1672(174)	1149(165)	696(98)	-280(137)	-57(117)	-428(85)
	C (3a)	2119(187)	1604(205)	719(113)	924(136)	-409(113)	179(109)
	C (4a)	1195(117)	2597(297)	1504(150)	-938(137)	919(103)	-629(174)
TMA(1b)	N 1b)	606(56)	671(80)	377(47)	-2(59)	-23(49)	-41(52)
	C (1b)	1244(165)	5964(612)	381(103)	-424(294)	-42(107)	329(213)
	C (2b)	1976(202)	1440(220)	650(102)	231(171)	360(123)	408(107)
	C (3b)	2398(201)	2328(254)	1069(155)	-1527(151)	-665(141)	444(151)
	C (4b)	798(122)	3071(389)	1735(218)	552(175)	-12(156)	109(253)
TMA(2a)	N (2a)	521(53)	536(73)	463(52)	-41(49)	23(49)	109(46)
	C (5a)	1571(173)	476(137)	1640(163)	-100(121)	-235(152)	466(105)
	C (6a)	2350(168)	1951(241)	1915(176)	1321(133)	1394(123)	412(164)
	C (7a)	3564(241)	1230(267)	2159(158)	213(202)	-2218(124)	-390(147)
	C (8a)	876(112)	1193(197)	2163(229)	-456(106)	-232(147)	-137(173)
TMA(2b)	N 2b)	429(55)	908(110)	791(78)	-43(62)	35(59)	-2(71)
	C (5b)	1121(131)	660(122)	1420(137)	-49(104)	126(123)	-488(88)
	C (6b)	2547(274)	1784(256)	830(125)	227(236)	139(163)	650(123)
	C (7b)	1462(157)	1778(306)	1830(175)	105(167)	-1073(123)	-361(173)
	C (8b)	1354(145)	1461(264)	1919(186)	190(146)	941(127)	-244(163)

Table 4.3.27 280 K FOM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

		- 0			-
atom1 atom2		distance[Å]	atom1	atom2	distance[Å]
Mn (a)	Cl(1a)	2.331 (4)	Mn (a)) Cl(2a)	2.341 (6)
Mn (a)	Cl(3a)	2.354 (5)	Mn (a)) Cl(4a)	2.338 (5)
Mn (b)	Cl(1b)	2.351 (4)	Mn (b)) Cl(2b)	2.364 (6)
Mn (b)	Cl(3b)	2.342 (5)	Mn (b)) Cl(4b)	2.339 (5)
N (1a)	C (1a)	1.552 (18)	N (1a)	C (2a)	1.483 (26)
N (1a)	C (3a)	1.449 (26)	N (1a)	C (4a)	1.461 (23)
N (1b)	C (1b)	1.402 (26)	N (1b)	C (2b)	1.486 (27)
N (1b)	C (3b)	1.457 (30)	N (1b)	C (4b)	1.429 (24)
N (2a)	C (5a)	1.563 (24)	N (2a)	C (6a)	1.312 (28)
N (2a)	C (7a)	1.519 (26)	N (2a)	C (8a)	1.411 (23)
N (2b)	C (5b)	1.477 (25)	N (2b)	C (6b)	1.496 (28)
N (2b)	C (7b)	1.399 (26)	N (2b)	C (8b)	1.427 (25)

Table 4.3.28 280 K FOM での bond lengths [Å].()内は標準偏差を表す.

Table 4.3.29 280 K FOM での bond angles [°]. ()内は標準偏差を表す.

atom1	atom3 a	atom2	angle[°]	atom1	atom1 atom3 atom2		
Cl(1a)	Mn (a)	Cl(2a)	111.2(4)	Cl(1a)	Mn (a)	Cl(3a)	109.2(4)
Cl(1a)	Mn (a)	Cl(4a)	108.8(4)	Cl(2a)	Mn (a)	Cl(3a)	109.5(4)
Cl(2a)	Mn (a)	Cl(4a)	107.2(4)	Cl(3a)	Mn (a)	Cl(4a)	110.8(4)
Cl(1b)	Mn (b)	Cl(2b)	111.7(4)	Cl(1b)	Mn (b)	Cl(3b)	109.4(4)
Cl(1b)	Mn (b)	Cl(4b)	108.3(4)	Cl(2b)	Mn (b)	Cl(3b)	108.8(4)
Cl(2b)	Mn (b)	Cl(4b)	108.4(4)	Cl(3b)	Mn (b)	Cl(4b)	110.2(4)
C (1a)	N (1a)	C (2a)	110.9(23)	C (1a)	N (1a)	C (3a)	113.0(25)
C (1a)	N (1a)	C (4a)	109.3(24)	C (2a)	N (1a)	C (3a)	106.7(29)
C (2a)	N (1a)	C (4a)	109.1(30)	C (3a)	N (1a)	C (4a)	107.7(28)
C (1b)	N (1b)	C (2b)	122.4(45)	C (1b)	N (1b)	C (3b)	89.4(24)
C (1b)	N (1b)	C (4b)	97.2(26)	C (2b)	N (1b)	C (3b)	125.0(45)
C (2b)	N (1b)	C (4b)	112.0(34)	C (3b)	N (1b)	C (4b)	105.9(31)
C (5a)	N (2a)	C (6a)	109.7(32)	C (5a)	N (2a)	C (7a)	109.9(29)
C (5a)	N (2a)	C (8a)	106.9(27)	C (6a)	N (2a)	C (7a)	112.3(34)
C (6a)	N (2a)	C (8a)	112.7(33)	C (7a)	N (2a)	C (8a)	105.0(29)
C (5b)	N (2b)	C (6b)	122.0(39)	C (5b)	N (2b)	C (7b)	114.9(34)
C (5b)	N (2b)	C (8b)	115.6(33)	C (6b)	N (2b)	C (7b)	92.0(24)
C (6b)	N (2b)	C (8b)	97.0(26)	C (7b)	N (2b)	C (8b)	112.0(32)

Table 4.3.30 75 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

()内の数字は標準偏差を表す.

	atom	X	у	Z	Ueq
TCM(a)	Mn(a)	2541(2)	4077(1)	1225(1)	498(5)
	Cl(1a)	2647(5)	4081(4)	278(2)	895(17)
	Cl(2a)	2874(5)	5460(3)	1581(2)	1003(18)
	Cl(3a)	228(5)	3538(4)	1504(2)	1042(20)
	Cl(4a)	4456(5)	3221(3)	1558(2)	1001(18)
TCM(b)	Mn(b)	2685(2)	931(1)	3731(1)	498(5)
	Cl(1b)	2660(5)	945(4)	2779(2)	1042(20)
	Cl(2b)	3007(5)	-462(3)	4072(2)	941(18)
	Cl(3b)	442(5)	1478(4)	4058(2)	1051(20)
	Cl(4b)	4667(5)	1780(3)	4024(2)	982(17)
TMA(1a)	N (1a)	2641(11)	948(9)	735(5)	683(43)
	C (1a)	2450(23)	965(12)	1346(5)	977(72)
	C (2a)	2258(24)	70(14)	503(6)	1171(81)
	C (3a)	1747(27)	1606(17)	461(8)	1752(109)
	C (4a)	4211(21)	1124(20)	613(9)	1747(125)
TMA(1b)	N (1b)	2548(11)	4031(8)	3244(4)	535(34)
	C (1b)	2459(29)	3729(25)	3794(8)	2187(184)
	C (2b)	2145(25)	4917(14)	3128(7)	1235(92)
	C (3b)	1684(25)	3327(16)	3036(8)	1524(105)
	C (4b)	4081(21)	3862(21)	3132(10)	1734(140)
TMA(2a)	N (2a)	7543(11)	3289(8)	69(4)	509(34)
	C (5a)	7726(25)	2394(14)	312(9)	1270(91)
	C (6a)	6724(24)	3794(17)	368(9)	1844(103)
	C (7a)	6869(29)	3179(19)	-489(9)	2219(119)
	C (8a)	9010(19)	3605(14)	-18(9)	1181(90)
TMA(2b)	N (2b)	7608(11)	1771(9)	2514(5)	660(44)
	C (5b)	7556(22)	2697(13)	2676(9)	1153(78)
	C (6b)	7447(33)	1080(19)	2937(8)	1749(132)
	C (7b)	6448(26)	1462(19)	2205(9)	1759(133)
	C (8b)	8971(25)	1478(17)	2285(10)	1579(114)

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn(a)	514(8)	510(11)	470(9)	23(11)	-9(9)	-4(10)
	Cl(1a)	1047(28)	1165(40)	475(18)	-33(30)	-3(20)	85(22)
	Cl(2a)	1137(31)	608(31)	1261(34)	-57(25)	38(29)	-321(23)
	Cl(3a)	665(21)	1536(50)	925(30)	-276(25)	146(22)	81(29)
	Cl(4a)	950(26)	1118(40)	934(29)	376(23)	-210(23)	150(26)
TCM(b)	Mn(b)	518(9)	515(11)	462(9)	-9(9)	-6(9)	-33(10)
	Cl(1b)	1136(31)	1615(51)	376(17)	-33(35)	-48(21)	14(25)
	Cl(2b)	1133(31)	556(30)	1135(31)	49(24)	-30(28)	190(24)
	Cl(3b)	711(23)	1445(49)	996(30)	284(25)	220(23)	-97(30)
	Cl(4b)	886(25)	1126(38)	934(28)	-304(23)	-186(23)	-224(25)
TMA(1a)	N (1a)	484(55)	664(89)	900(77)	48(61)	-14(57)	-56(70)
	C (1a)	1913(164)	706(127)	313(66)	-106(130)	95(98)	33(67)
	C (2a)	1541(158)	1242(162)	728(95)	-323(127)	-131(108)	-464(83)
	C (3a)	2375(196)	2172(236)	709(118)	1368(143)	-422(120)	47(124)
	C (4a)	1003(114)	2664(321)	1572(157)	-712(147)	820(106)	-596(185)
TMA(1b)	N (1b)	594(54)	666(77)	346(44)	-14(57)	-8(46)	0(50)
	C (1b)	1361(172)	4731(515)	468(112)	-335(276)	-50(112)	211(196)
	C (2b)	1694(175)	1291(191)	720(98)	64(149)	311(113)	470(95)
	C (3b)	1854(174)	1596(213)	1122(156)	-980(128)	-331(136)	52(137)
	C (4b)	702(108)	2958(359)	1542(194)	522(158)	69(133)	162(224)
TMA(2a)	N (2a)	540(53)	561(73)	428(49)	-28(49)	-5(48)	89(46)
	C (5a)	1367(160)	648(144)	1798(171)	-36(120)	-124(149)	604(109)
	C (6a)	1897(143)	1848(222)	1786(164)	1124(117)	1145(113)	266(152)
	C (7a)	3162(208)	1177(250)	2317(153)	69(178)	-2204(112)	-316(142)
	C (8a)	682(94)	1001(169)	1860(188)	-277(93)	-135(124)	-161(147)
TMA(2b)	N (2b)	414(53)	738(95)	829(76)	-45(56)	41(56)	-16(66)
	C (5b)	1085(128)	700(128)	1673(152)	-95(104)	172(129)	-558(95)
	C (6b)	2314(257)	1971(271)	963(134)	142(234)	80(163)	750(131)
	C (7b)	1747(183)	1738(310)	1791(173)	194(180)	-1100(132)	-454(172)
	C (8b)	1570(159)	1302(247)	1866(179)	254(145)	955(130)	-213(154)

Table 4.3.31 275 K FOM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

		0 1 1			
atom1 atom2		distance[Å]	atom1 atom2		distance[Å]
Mn (a)	Cl(1a)	2.335 (4)	Mn (a)	Cl(2a)	2.347 (6)
Mn (a)	Cl(3a)	2.358 (5)	Mn (a)	Cl(4a)	2.337 (5)
Mn (b)	Cl(1b)	2.349 (4)	Mn (b)	Cl(2b)	2.350 (6)
Mn (b)	Cl(3b)	2.342 (5)	Mn (b)	Cl(4b)	2.342 (5)
N (1a)	C (1a)	1.515 (18)	N (1a)	C (2a)	1.523 (25)
N (1a)	C (3a)	1.472 (27)	N (1a)	C (4a)	1.477 (22)
N (1b)	C (1b)	1.440 (24)	N (1b)	C (2b)	1.459 (25)
N (1b)	C (3b)	1.440 (27)	N (1b)	C (4b)	1.438 (22)
N (2a)	C (5a)	1.528 (24)	N (2a)	C (6a)	1.307 (26)
N (2a)	C (7a)	1.513 (25)	N (2a)	C (8a)	1.431 (21)
N (2b)	C (5b)	1.498 (24)	N (2b)	C (6b)	1.507 (28)
N (2b)	C (7b)	1.382 (27)	N (2b)	C (8b)	1.431 (26)

Table 4.3.32 275 K FOM での bond lengths [Å]. ()内は標準偏差を表す.

Table 4.3.32 275 K FOM での bond angles [°]. ()内は標準偏差を表す.

atom1	atom3 a	atom2	angle[°]	atom1	atom3 a	atom2	angle[°]
Cl(1a)	Mn (a)	Cl(2a)	111.4(4)	Cl(1a)	Mn (a)	Cl(3a)	109.2(3)
Cl(1a)	Mn (a)	Cl(4a)	108.9(4)	Cl(2a)	Mn (a)	Cl(3a)	109.4(4)
Cl(2a)	Mn (a)	Cl(4a)	107.4(4)	Cl(3a)	Mn (a)	Cl(4a)	110.5(4)
Cl(1b)	Mn (b)	Cl(2b)	111.6(4)	Cl(1b)	Mn (b)	Cl(3b)	109.4(4)
Cl(1b)	Mn (b)	Cl(4b)	108.1(4)	Cl(2b)	Mn (b)	Cl(3b)	108.7(4)
Cl(2b)	Mn (b)	Cl(4b)	108.5(4)	Cl(3b)	Mn (b)	Cl(4b)	110.6(4)
C (1a)	N (1a)	C (2a)	111.2(23)	C (1a)	N (1a)	C (3a)	112.4(26)
C (1a)	N (1a)	C (4a)	108.0(23)	C (2a)	N (1a)	C (3a)	109.3(30)
C (2a)	N (1a)	C (4a)	108.0(28)	C (3a)	N (1a)	C (4a)	107.7(28)
C (1b)	N (1b)	C (2b)	118.8(38)	C (1b)	N (1b)	C (3b)	93.2(23)
C (1b)	N (1b)	C (4b)	100.0(25)	C (2b)	N (1b)	C (3b)	121.2(38)
C (2b)	N (1b)	C (4b)	112.2(32)	C (3b)	N (1b)	C (4b)	108.4(29)
C (5a)	N (2a)	C (6a)	113.0(34)	C (5a)	N (2a)	C (7a)	107.3(28)
C (5a)	N (2a)	C (8a)	105.9(26)	C (6a)	N (2a)	C (7a)	110.5(32)
C (6a)	N (2a)	C (8a)	113.7(31)	C (7a)	N (2a)	C (8a)	106.0(27)
C (5b)	N (2b)	C (6b)	120.2(38)	C (5b)	N (2b)	C (7b)	117.2(36)
C (5b)	N (2b)	C (8b)	116.1(33)	C (6b)	N (2b)	C (7b)	93.3(25)
C (6b)	N (2b)	C (8b)	97.3(26)	C (7b)	N (2b)	C (8b)	109.0(32)

 Table 4.3.34
 270 K FOM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).

 () 内の数字は標準偏差を表す.

	atom	X	у	Z	Ueq
TCM(a)	Mn(a)	2547(2)	4076(1)	1225(1)	487(5)
	Cl(1a)	2666(5)	4081(4)	277(1)	860(16)
	Cl(2a)	2896(5)	5458(3)	1584(2)	952(17)
	Cl(3a)	219(4)	3548(4)	1501(2)	997(19)
	Cl(4a)	4445(5)	3211(3)	1564(2)	970(17)
TCM(b)	Mn(b)	2706(2)	932(1)	3731(1)	483(5)
	Cl(1b)	2681(5)	943(4)	2778(2)	1027(20)
	Cl(2b)	3040(5)	-462(3)	4071(2)	914(17)
	Cl(3b)	453(5)	1470(4)	4058(2)	1011(19)
	Cl(4b)	4678(5)	1791(3)	4023(2)	939(16)
TMA(1a)	N (1a)	2658(11)	946(9)	739(5)	649(41)
	C (1a)	2451(23)	966(12)	1345(5)	992(74)
	C (2a)	2256(23)	78(14)	510(7)	1145(84)
	C (3a)	1771(26)	1613(16)	470(7)	1596(103)
	C (4a)	4243(20)	1144(18)	622(8)	1462(111)
TMA(1b)	N (1b)	2552(11)	4034(8)	3240(4)	555(36)
	C (1b)	2471(28)	3752(26)	3793(7)	2226(184)
	C (2b)	2139(24)	4929(14)	3117(7)	1187(88)
	C (3b)	1683(24)	3324(16)	3023(8)	1365(98)
	C (4b)	4098(20)	3878(20)	3120(9)	1633(129)
TMA(2a)	N (2a)	7550(11)	3288(8)	69(4)	493(33)
	C (5a)	7764(25)	2373(14)	309(10)	1264(94)
	C (6a)	6762(22)	3805(16)	401(8)	1584(92)
	C (7a)	6866(27)	3180(18)	-494(8)	2000(111)
	C (8a)	9017(19)	3626(14)	-17(10)	1231(93)
TMA(2b)	N (2b)	7623(12)	1767(9)	2515(5)	669(45)
	C (5b)	7569(21)	2677(13)	2693(8)	1154(76)
	C (6b)	7442(34)	1099(20)	2935(9)	1998(139)
	C (7b)	6434(26)	1469(18)	2223(10)	1757(130)
	C (8b)	9003(24)	1477(17)	2307(10)	1557(111)

	atom	U ₁₁	U ₂₂	U ₃₃	U_{12}	U ₁₃	U ₂₃
TCM(a)	Mn (a)	494(8)	512(11)	453(9)	20(11)	-9(8)	-2(10)
	Cl(1a)	984(27)	1143(38)	452(18)	-36(29)	-11(19)	77(22)
	Cl(2a)	1067(29)	587(29)	1200(32)	-63(23)	24(27)	-307(22)
	Cl(3a)	638(21)	1471(48)	883(28)	-252(24)	158(21)	73(28)
	Cl(4a)	914(25)	1100(39)	898(28)	354(23)	-208(22)	150(25)
TCM(b)	Mn (b)	502(8)	507(11)	441(8)	-7(9)	-2(9)	-30(9)
	Cl(1b)	1118(30)	1594(51)	368(17)	-19(35)	-56(20)	5(24)
	Cl(2b)	1040(29)	563(30)	1139(31)	48(23)	13(27)	189(24)
	Cl(3b)	689(22)	1372(46)	973(29)	255(24)	219(22)	-97(29)
	Cl(4b)	863(24)	1037(36)	916(27)	-286(22)	-183(22)	-211(24)
TMA(1a)	N (1a)	459(53)	662(86)	826(73)	52(59)	-29(54)	-46(67)
	C (1a)	1969(169)	688(128)	319(66)	-94(131)	103(99)	55(67)
	C (2a)	1437(153)	1247(173)	750(101)	-284(128)	-102(110)	-407(90)
	C (3a)	2279(193)	1740(211)	771(119)	1126(136)	-437(119)	85(116)
	C (4a)	801(105)	2135(279)	1449(155)	-467(132)	563(106)	-346(170)
TMA(1b)	N (1b)	580(54)	729(82)	355(45)	-16(59)	-12(46)	26(52)
	C (1b)	1179(153)	5061(522)	439(105)	-370(265)	-93(102)	323(194)
	C (2b)	1565(162)	1250(184)	747(100)	219(139)	342(108)	471(95)
	C (3b)	1528(154)	1477(204)	1091(146)	-753(121)	-273(124)	-96(128)
	C (4b)	685(104)	2692(324)	1521(187)	523(148)	120(127)	139(209)
TMA(2a)	N (2a)	514(53)	559(72)	408(48)	-29(47)	8(46)	103(45)
	C (5a)	1385(161)	471(139)	1938(187)	-15(114)	-77(157)	500(114)
	C (6a)	1808(138)	1625(202)	1320(130)	981(113)	979(100)	284(127)
	C (7a)	2887(194)	1213(238)	1898(132)	173(169)	-1919(102)	-340(128)
	C (8a)	651(94)	980(170)	2063(204)	-238(94)	-145(128)	-244(152)
TMA(2b)	N (2b)	408(54)	789(99)	810(76)	-33(56)	44(56)	0(67)
	C (5b)	1074(126)	639(115)	1748(151)	-115(98)	248(127)	-610(89)
	C (6b)	2154(256)	2483(290)	1359(157)	253(239)	174(176)	1194(143)
	C (7b)	1730(180)	1665(301)	1876(176)	152(176)	-1135(132)	-427(172)
	C (8b)	1438(149)	1386(239)	1847(180)	346(137)	854(128)	-234(153)

Table 4.3.35 270 K FOM での異方性温度因子. U_{ij} は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

					-
atom1 atom2		distance[Å]	atom1 atom2		distance[Å]
Mn (a)	Cl(1a)	2.337 (4)	Mn (a)	Cl(2a)	2.351 (6)
Mn (a)	Cl(3a)	2.359 (5)	Mn (a)	Cl(4a)	2.337 (5)
Mn (b)	Cl(1b)	2.348 (4)	Mn (b)	Cl(2b)	2.352 (6)
Mn (b)	Cl(3b)	2.345 (5)	Mn (b)	Cl(4b)	2.342 (5)
N (1a)	C (1a)	1.504 (17)	N (1a)	C (2a)	1.512 (25)
N (1a)	C (3a)	1.472 (26)	N (1a)	C (4a)	1.492 (21)
N (1b)	C (1b)	1.435 (23)	N (1b)	C (2b)	1.477 (25)
N (1b)	C (3b)	1.459 (26)	N (1b)	C (4b)	1.449 (21)
N (2a)	C (5a)	1.559 (24)	N (2a)	C (6a)	1.351 (24)
N (2a)	C (7a)	1.528 (23)	N (2a)	C (8a)	1.443 (21)
N (2b)	C (5b)	1.487 (24)	N (2b)	C (6b)	1.477 (30)
N (2b)	C (7b)	1.373 (27)	N (2b)	C (8b)	1.422 (25)

Table 4.3.36 270 K FOM での bond lengths [Å]. ()内は標準偏差を表す

Table 4.3.37 270 K FOM での bond angles [°].()内は標準偏差を表す

atom1 atom3 atom2			angle[°]	atom1 atom3 atom2			angle[°]
Cl(1a)	Mn (a)	Cl(2a)	111.4(4)	Cl(1a)	Mn (a)	Cl(3a)	109.2(3)
Cl(1a)	Mn (a)	Cl(4a)	109.0(3)	Cl(2a)	Mn (a)	Cl(3a)	109.4(4)
Cl(2a)	Mn (a)	Cl(4a)	107.3(4)	Cl(3a)	Mn (a)	Cl(4a)	110.5(4)
Cl(1b)	Mn (b)	Cl(2b)	111.4(4)	Cl(1b)	Mn (b)	Cl(3b)	109.4(3)
Cl(1b)	Mn (b)	Cl(4b)	108.1(3)	Cl(2b)	Mn (b)	Cl(3b)	108.6(4)
Cl(2b)	Mn (b)	Cl(4b)	108.8(4)	Cl(3b)	Mn (b)	Cl(4b)	110.5(4)
C (1a)	N (1a)	C (2a)	111.0(23)	C (1a)	N (1a)	C (3a)	111.4(25)
C (1a)	N (1a)	C (4a)	107.9(22)	C (2a)	N (1a)	C (3a)	109.5(30)
C (2a)	N (1a)	C (4a)	110.1(28)	C (3a)	N (1a)	C (4a)	106.8(27)
C (1b)	N (1b)	C (2b)	118.3(37)	C (1b)	N (1b)	C (3b)	94.9(23)
C (1b)	N (1b)	C (4b)	100.9(24)	C (2b)	N (1b)	C (3b)	120.5(37)
C (2b)	N (1b)	C (4b)	111.2(30)	C (3b)	N (1b)	C (4b)	108.5(27)
C (5a)	N (2a)	C (6a)	112.5(31)	C (5a)	N (2a)	C (7a)	107.1(27)
C (5a)	N (2a)	C (8a)	106.1(26)	C (6a)	N (2a)	C (7a)	113.7(31)
C (6a)	N (2a)	C (8a)	110.8(28)	C (7a)	N (2a)	C (8a)	106.2(26)
C (5b)	N (2b)	C (6b)	117.7(38)	C (5b)	N (2b)	C (7b)	116.8(35)
C (5b)	N (2b)	C (8b)	116.0(33)	C (6b)	N (2b)	C (7b)	92.4(26)
C (6b)	N (2b)	C (8b)	97.2(28)	C (7b)	N (2b)	C (8b)	112.9(33)

4.4 変位型モデルを用いての電子密度分布計算

電子分布の全体像を把握するために各温度で得られた FOM の最終結果より Fobsの スケール合わせ及び符号あわせを行った後,フーリエ合成(F合成)を行い,電子密度分布を求めた.

F合成にはAXS89システムを構成するプログラム群の一つであるSYFRを用いた. Fig. 4.4.1~Fig. 4.4.4 に I 相の 293K 及びⅢ相の各温度における TCM(1a)に属する Cl(2a), Cl(3a), Cl(4a)まわりの電子密度の*c*軸に垂直な面 z=0.15 での断面図を示す.

292 K

Fig. 4.4.1 293 K(I相)及び 292 K における TCM(1a)近傍の断面 z=0.15(I相においては z=0.30) での電子密度分布図

等高線間隔は 1.0e /Å³. Cl(2a), Cl(3a), Cl(4a)の各原子と Mn の一部分が確認できる.

Fig. 4.4.2 291 K, 290 K 及び 289 K における TCM(1a)近傍の断面 z=0.15 での電子密度分布図 等高線間隔は 1.0e /Å³. Cl(2a), Cl(3a), Cl(4a)の各原子と Mn の一部分が確認できる. 負の値を持つ領域は白色で示している.

Fig. 4.4.3 287 K, 285 K 及び 280 K における TCM(1a)近傍の断面 z=0.15 での電子密度分布図 等高線間隔は 1.0e /Å³. Cl(2a), Cl(3a), Cl(4a)の各原子と Mn の一部分が確認できる. 負の値を持つ領域は白色で示している.

Fig. 4.4.4 275 K 及び 270 K における TCM(1a)近傍の断面 *z*=0.15 での電子密度分布図 等高線間隔は 1.0e /Å³. Cl(2a), Cl(3a), Cl(4a)の各原子と Mn の一部分が確認できる. 負の値を持つ領域は白色で示している.

Fig.4.4.1~Fig.4.4.4 の各図において Cl(2a), Cl(3a), Cl(4a)の各分子と Mn の一部分が 確認できる. 292K 以下では一見すると FOM が示すように、Cl(2a)は x=1/4 にある *c*-glide 面より変位し. Cl 原子よりなる三角形が温度降下とともに *c* 軸に垂直で Mn を 通る軸を中心に回転しているように見える. しかし各 Cl 原子の電子密度分布の形状 をみると Fig. 4.4.1 や Fig. 4.4.2 に示されるようなⅢ相の転移点に近い温度では非対称 になっており、それが温度降下に伴い次第に対称形になっているいくようにも見える.

そこで Fig.4.4.1~Fig.4.4.4 における Cl(2a)のピーク位置である y=0.54 における y 軸 に垂直な電子密度の断面図を各温度について求めた. これを Fig.4.4.5~Fig.4.4.7 に示 す.

Fig. 4.4.5 292 K, 291 K、290 K および 289 K における Cl(2a)原子近傍の断面 y=0.54 (Fig.4.4.1 等におけるピーク位置) での電子密度分布図. 等高線間隔は 1.0e /Å³. 負の値を持つ領域は白色 で示している.

Fig. 4.4.6 287 K, 285 K、280 K および 275 K における Cl(2a)原子近傍の断面 y=0.54 (Fig.4.4.1 等 におけるピーク位置) での電子密度分布図. 等高線間隔は 1.0e /Å³. 負の値を持つ領域は白色で示 している.

Fig. 4.4.7 270 K における Cl(2a)原子近傍の断面 y=0.54 (Fig.4.4.1 等におけるピーク位置) での電子密度分布図. 等高線間隔は 1.0e /Å³. 負の値を持つ領域は白色で示している.

Fig.4.4.5~Fig.4.4.7 からわかるように, Cl(2a)の電子密度は単純に温度降下とともにその位置が移動するというような描像ではなく、転移点直下においては複数のピークの重ね合わせであったものが温度降下とともに一方が成長し、他方が消滅していくことがわかる.

そこで、その Cl(2a)近傍の形状の温度変化を定量的に詳しく知るために、Cl(2a)原 子を表すピークが温度変化とともにその位置やそのピーク強度や積分強度、半値幅等 がどのように温度変化するかの定量的な分析を試みた. 具体的には *z*=0.15 の面での Cl(2a)の位置する *y*=0.55 での *a* 軸に沿っての強度分布を調査した. 実際には *y*=0.55 を 中心に Δy =0.04、 Δz =0.02 の範囲内の電子密度を積算した. その理由は Cl(2)原子が *y* 及び *z* 方向に変位してもその影響を抑えるためである.

得られた Cl(2)まわりの電子分布の a 軸に沿っての一次元分布の様子を Fig. 4.4.8 に示す. さらに, Fig. 4.4.9 に, 各温度でのピーク位置の c-glide 面(x=0.25) からの変位と ピーク幅の温度変化を示す.

Fig. 4.4.8 Ⅲ相内の典型的な温度での Cl(2a) 原子近傍の *a* 軸に沿っての 1 次元の電子密度分 布. *y*=0.55 を中心に *∆y*=0.04, *∆z*=0.02 の範囲内の電子密度を積算した.

Fig. 4.4.9 Cl(2a)近傍ピークの *c*-glide 面(x=0.25)からの変位とピーク幅の温度変化

これらの図よりピークは FOM での解析結果が示すように, *c* 軸に平行で Mn を通る軸 回りに温度降下にともない連続的に回転しているが, ピーク形状は温度降下に伴って シャープになっていくことがわかる.尚, Fig. 4.4.9の実線はピークシフトΔ_iを

$$\Delta_i = D_i (T_c - T)^{\beta_\Delta} \tag{4.3}$$

でフィットした図で、ここで $T_c=293$ K、 $\beta_{\Delta}=0.38$ となる.

さて、転移点に近い温度においては、Cl(2a)のピーク形状は非対称な形状になっており、複数のピークからなっていると考えられる.

そこでまず 289K でのピークを、最小二乗法で(4.4) 式のように 2 つの Gaussian Peak に分離を試みた.

$$I = m_1 \cdot \exp\{-m_2 \cdot (x - 0.25 - m_4)^2\} + m_3 \cdot \exp\{-m_2 \cdot (x - 0.25 + m_4)^2\}$$
(4.4)

ここでは m_1 から m_4 までを最小二乗法の変数とし、計算の簡単のため2つのピークに おける m_2 で表される分散と、 m_4 で表される *c*-glide 面からのピーク位置のシフト量 は共通の値をとるとして最小二乗計算を行った. Fig.4.4.10 にその結果を示す.

Fig.4.4.10 289 K での Cl(2a)ピークの分離. ピーク分離は (4.4) 式に示すように 2 つの Gaussian peak よりなるものとした. ここで Peak1 は温度降下に伴い強度が増加するピークであり、Peak 2 は温度降下に伴い強度が減少するピークである.

図からわかるように、非対称なピークは明確な2つのピークからなっていることが わかる.そこで全ての温度でピーク分離の最小二乗計算を試みた.その結果を Fig. 4.4.11 および Fig. 4.4.12 に示す.

ここで occupation probability p_i は2つのピークの強度比で、(4.5) 式で表される m_1 と m_3 を用いて

$$p_{j} = \frac{m_{1}}{m_{1} + m_{3}} \tag{4.5}$$

と定義できる.

図より *p*_j が温度効果に伴って超格子反射強度の温度依存性と同様の振る舞いをしな がら増加していくこと, すなわち温度降下に伴って major なピーク (Peak1)が成長し, minor なピーク (Peak2) が消失していく様子がわかる.

Fig. 4.4.9 に示すように、Peak1 のピーク強度は温度降下とともに増加するのに対し、 2 つのピークよりなる全ピークの積分強度は温度変化をせず一定の値をとることもこ の考えを支持している.

ここで Fig. 4.4.11 中の曲線は式

$$p_{i} = 0.5 + A_{i} (T_{c} - T)^{\beta}$$
(4.6)

でフィットしたもので、ここで β =0.27となった.

このように簡単な近似であるが Cl(2)ピークが複数のピークからなること,および その存在比が超格子反射強度の温度依存性と同様の振る舞いをすること,すなわちこ の存在比がこの相の秩序化を決定づける秩序変数である可能性が示された.

またここで注目すべきは Fig. 4.4.11 にみられるように、major peak (Peak1)が温度降下とともにその位置を連続的が動いていくことは、この相転移が変位型相転移の性格を併せ持つことを示しており大変興味深い.

次節においてはこの存在比を最小二乗法の変数としたモデルを用いて解析を進める.

Fig.4.4.11 Peak 1 の位置の温度変化と(4.5)式で定義された Occupation probability の温度変化

Fig.4.4.12 Peak 1 のピーク強度の温度変化と全ピークの積分強度の温度変化 それぞれ 292 K での値で規格化している.

同様の電子密度分布図を2種の TMA 四面体基に関して示す.転移点直上の I相(293 K)及びⅢ相の典型的な温度点について TMA(1a)近傍を Fig.4.4.13 及び 14 に, TMA(2a) 近傍を Fig.4.4.15 及び 16 にそれぞれ z 軸に垂直な断面での電子密度分布図を示す.

Fig. 4.4.13 293 K(I相:転移点直上)及び 292 K(Ⅲ相:転移点直下)における TMA(1a)近傍の断面 z=0.05 (I相では z=0.10)での電子密度分布図.等高線間隔は 0.275e /Å³. 負の値を持つ領域は白色で示している.

Fig. 4.4.14 285 K 及び 270 K における TMA(1a)近傍の断面 z=0.05 での電子密度分布図. 等高線間隔は 0.275e /Å³. 負の値を持つ領域は白色で示している.

Fig. 4.4.15 293 K(I相:転移点直上)及び 292 K(Ⅲ相:転移点直下)における TMA(2a)近傍の断面 z=0.04(I相では z=0.08)での電子密度分布図.等高線間隔は 0.25e /Å³. 負の値を持つ領域は白色で示している.

Fig. 4.4.16 285 K 及び 270 K における TMA(2a)近傍の断面 z=0.04(I 相では z=0.08)での電子密度分 布図. 等高線間隔は 0.25 e /Å³. 負の値を持つ領域は白色で示している.

Fig.4.4.13~Fig.4.4.16に見られるように2種類のTMA四面体基の電子密度分布も、 TCM 四面体基と同様、I相内においてミラー面を挟んで等価な確率で配置されてい たものが、Ⅲ相内においても依然存在し、温度降下に伴いその一方は成長し、他方が 減少していくと考えられる結果が得られた.そこでTCM 四面体基と同様,TMA 四面 体基においてもその占有確率を変数とした構造解析を次節で行う.

なお Fig.4.4.13~Fig.4.4.16 でみられるようにⅢ相における、軽い原子で構成される TMA 四面体基の電子密度分布の形状は、重い原子で構成される TCM 四面体基の形状 に比べ若干いびつな形状をしていることがわかる.その原因として、この節で論じた 電子密度分布計算は、Fig.2.3.3 に示したように2つの monoclinic ドメインからの回折 X 線強度を混在のまま使って F 合成を実行していることが理由として考えられる.そ こでそれに起因する問題点の検討と対策を第5章で行っている.

4.5 秩序-無秩序型モデル

(Partially-Ordered Model)

以降,前章で見いだした2つのピークの占有確率すなわち occupation probability p_j をパラメータとした解析を行うが、その占有確率をどの四面体基に適用するかの観点から以下の2つのモデルを仮定し、解析を行った.

- (1) Partially-Ordered Model (POM)
 - TCM, TMA1, TMA2の全ての四面体基に占有確率を適用するモデル
- (2) 混合モデル(Mixed Model) TCM 四面体基は 4.3 章の FOM を適用し, TMA1 および TMA2 四面体基には 占有確率を適用するモデル

※ここで組み合わせの観点からすると、もう一つ考えられるモデルとして、「TCM 四面体基には occupation probability p_j を適用し、TMA1 及び TMA2 は FOM を適用す る」モデルを考慮する必要性があるように思われる. ところが Fig. 3.3.6 で示された 原型相(I相)における電子密度分布から、TMA 四面体基は Order-Disorder 型相転移 をすることが期待されるので、ここでは occupation probability p_j を適用するモデルと しては上記(1)、(2)の2つのモデルのみを考えることにする.

本章では上記(1)のPartially-Ordered Model(POM)について解析を行い,(2) の混合モデル(Mixed Model)については次章で解析を行う.

前述のドメイン比 X_{DM} が構造因子に対して(2.3)式で寄与するものと定義したの に対し, occupation probability *p*_jを考慮に入れる解析では,原子モデルより計算される 構造因子 *F*_{cal}(*hkl*)に対し

$$F_{cal}(hkl) = \sum_{j} p_{j} \exp(-W_{j}) \exp\{2\pi i [hx_{j} + ky_{j} + lz_{j}]\}$$
(4.7)

の形で寄与するものとする. ここで x_j , y_j , z_j および p_j は *j* 番目の原子の座標および occupation probability を表す.

このモデルを考えることにより, I-Ⅲ相転移においては Disordered Model (I相), Partially-Ordered Model (Ⅲ相)を一連の相転移機構と考えることができる. すなわち Order-Disorder 型の相転移機構を持つものとする.

他方, 前述の Fully-Ordered Model は I 相の Displacive model に連なる機構であり,

すなわち Displacive 型の相転移機構を持つということができる.

POM の解析においてまず各原子の occupation probability に何ら束縛条件を設けない モデルを考え,これを POM'と名付ける.POM'においては j 番目の原子は 2 つの 位置座標(x_j, y_j, z_j)と(x_j', y_j', z_j')の 2 つの位置をそれぞれの occupation probability $p_j \ge p_j'$ = $1-p_j$ を伴って定義され,これらを最小二乗法のパラメータとする.ここで POM' においては各原子の p_j には何ら制約を設けない,すなわち各原子は自由に p_j の値をと ることができる.以下, $p_j > 1/2$ となる原子(または原子基)を major な原子(原子基) と呼び,他方を minor な原子(原子基)と呼ぶ.これは split atom の手法であり,従 って Partially-split atom の手法を用いることによりⅢ相の部分的な秩序構造を表現す ることになる.POM'においては最小二乗計算のパラメータ数は 572 個となる.

次に前述の *p*_jに拘束条件をつけたモデルを **POM** とする.その拘束条件とは,同一の四面体基に属する *p*_jは同一の値をとるものとするという条件である.その結果 POMの計算においてパラメータ数は POM'に比較して少なくなり 548 個となる.

Table 4.5.1 に各温度における POM'と POM の最終 R 因子等の比較を FOM のそれ とともに示す. 表からわかるように POM と POM'の R を比較すると POM'のほうが 小さい値をとる. にもかかわらず原子によっては無意味と思われる座標値や多重度値 を示す原子が見いだされた. これらの原子は, split される major と minor の原子対の 間隔が各原子の熱振動の平均2 乗変位から導かれる熱振動振幅と比べ小さい値をと る原子である. すなわち major と minor のお互いの電子雲がほとんど重なり合ってし まっている状態にある原子対であり, このような原子対に split-atom method を適用し occupation probability *p*_iを最小二乗計算のパラメータとすることは無意味である.

従って POM を Partially-Disordered モデルでの解析とする. POM と FOM について Hamilton 検定⁵⁾を適用させると 99.5%の確からしさで POM が支持された.

Tomporatura (K)	number of	R-factor (%)				
Temperature (K)	reflections N	POM'	POM	FOM		
292	3013	7.36	7.36 7.46			
291	3206	7.46	7.45	8.69		
290	3335	7.36	7.45	8.45		
289	3456	7.22	7.29	8.41		
287	3595	7.03	7.19	8.17		
285	3664	7.12	7.14	8.06		
280	3880	6.69	7.30	8.28		
275	3991	6.32	6.69	7.94		
270	4105	6.73	7.00	7.95		

 Table 4.5.1 POM, POM'および FOM の各温度における最終 R 因子と解析に用いた反射の個数

また各温度及び POM 及び FOM についての最終的に得られたドメイン比を Table 4.5.2 に示す. その値は 0.49~0.51 までをとり, そのことから今回の実験では monoclinic ドメインは凍結されていると考えられる. Table 4.5.3 以降に各温度における POM での原子座標等の最終解析結果を示す.

Table 4.5.2 POM 及び FOM における各温度でのドメイン比

Temperature (K)	Domain ratio(%)				
Temperature (K)	FOM	РОМ			
292	0.51351	0.50704			
291	0.51057	0.50033			
290	0.51504	0.5098			
289	0.50618	0.49769			
287	0.51114	0.50872			
285	0.51132	0.50882			
280	0.51037	0.51187			
275	0.509	0.51044			
270	0.51112	0.51097			

Fig.4.5.1 および Fig.4.5.2 に 289K での POM で得られた結晶構造図を示す. この構造は基本的には Fig.4.3.1 で示された FOM での解析結果と同様であるが図からわかるように熱振動を表す各原子の楕円体は FOM に比べて小さい.

Fig. 4.5.3 は POM での各四面体基に関する occupation probability の温度変化を示す. 各四面体基は同様な挙動を示すことがわかり、ここでグラフ中の実線は

 $p_{j} \sim (T_c - T)^{\beta}$, (4.8) でフィットしたものである. ここで TCM(a)に関しては β =0.32 であり, TCM(b)に関し ては β =0.37 であった.

Fig.4.5.1 289 K における POM で得られた結晶構造(1)

z=1/8 近傍および z=3/8 近傍の *c* 軸投影図. POM における major な原子のみが描かれ,各原子の異 方性温度因子は楕円体で表現されている.

 Fig.4.5.2 289 K における POM で得られた結晶構造(2)
 a 軸投影図. POM における major な原子のみが描かれ,各原子の異方性温度因子は 楕円体で表現されている.

Fig.4.5.3 POM での occupation probability の温度変化

Table 4.5.3 289 K POM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴) および占有 確率.() 内の数字は標準偏差を表す.

	atom	х	у	z	Ueq	р
TCM(a)	Mn(a)	2525(3)	4061(2)	1209(1)	481(7)	0.776(4)
	Win(a)	2496(9)	4165(6)	1306(3)	500(26)	0.224
	CL1a	2666(6)	4083(5)	285(2)	860(21)	
	CITA	2203(21)	4055(17)	317(7)	883(79)	
	C1.2a	2853(7)	5458(5)	1582(3)	994(25)	
	CI Za	2197(23)	5493(17)	1505(10)	1020(91)	
		245(6)	3478(5)	1502(2)	1018(28)	
	CISa	4711(19)	3279(17)	1490(8)	982(94)	
	C1.4a	4457(6)	3282(5)	1572(3)	1049(26)	
	CI 4a	506(2)	3450(15)	1649(9)	1053(83)	
TCM(b)	Mn(h)	2659(3)	922(2)	3723(1)	485(7)	0.750(4)
	MII(0)	2394(8)	973(6)	3757(3)	485(22)	0.250
	CLIN	2582(7)	1009(5)	2770(2)	956(25)	
	CITO	2594(22)	710(15)	2779(6)	972(80)	
	CL2b	2966(7)	-462(5)	4077(3)	967(24)	
	CI 20	2299(21)	-449(13)	4089(7)	922(68)	
	Cl 2h	355(6)	1452(5)	4045(3)	1027(28)	
	CI 30	4709(20)	1413(17)	4035(8)	1121(97)	
	Cl 4b	4605(6)	1802 (5)	4020(3)	957(23)	
	CI 40	610(18)	1821(15)	4039(8)	1034(75)	
TMA(1a)	$N(1_2)$	2608(14)	929(12)	748(7)	816(64)	0.793(20)
		2366(51)	935(41)	667(17)	678(178)	0.207
	C(1a)	2474(32)	1023(16)	1347(6)	1069(101)	
	C(1a)	2564(77)	783(44)	1435(20)	604(206)	
	C(2a)	2209(28)	76(15)	507(7)	993(90)	
		2967(88)	93(52)	487(24)	875(276)	
	C(3a)	1648(32)	1595(19)	449(10)	1416(126)	
		2939(87)	1722(63)	379(26)	1120(331)	
	C(4a)	4057(26)	1181(25)	535(10)	1826(165)	
	C(+u)	1180(112)	1099(109)	435(38)	1753(743)	
TMA(1b)	N(1b)	2541(14)	4021(9)	3241(4)	479(39)	0.793
		2452(57)	3952(37)	3324(22)	658(192)	0.207
	C(1h)	2551(32)	3819(25)	3780(9)	1616(166)	
		2582(95)	2519(63)	3739(34)	926(360)	
	C(2b)	2204(33)	4927(17)	3160(8)	1341(111)	
		2975(184)	4521(139)	3225(37)	2980(1118)	
	C(3b)	1545(33)	3374(21)	3080(10)	1611(139)	
		2695(90)	2918(84)	3058(30)	2059(474)	
	C(4b)	4058(24)	3818(23)	3166(11)	1458(145)	
		1344(90)	3839(57)	3533(43)	1844(355)	
TMA(2a)	N(2a)	7573(16)	3293(10)	78(5)	512(48)	0.718(19)
		7390(36)	3292(22)	101(14)	467(108)	0.202
	C(5a)	7750(32)	2385(18)	315(12)	1194(116)	
		7219(71)	2406(44)	331(28)	1157(263)	
	C(6a)	6746(29)	3792(22)	405(11)	1445(124)	
		8182(55)	3784(40)	427(21)	1116(196)	
	C(7a)	6893(37)	3201(22)	-536(11)	1665(142)	
		81/6(/4)	3315(43)	-526(19)	1486(236)	
	C(8a)	9065(23)	301/(18)	-6(11)	1011(104)	
Th (A (21)		2818(42)	3524(37)	2(23)	(40(50)	0.710/10\
IMA(2b)	N(2b)	/588(16)	1/83(11)	2511(7)	040(58)	0.718(19)
	·	/439(41)	1840(33)	24//(12)	/56(164)	0.202
	C(5b)	7021(30)	20/4(19)	2092(13)	1258(122)	
		/323(54)	2/0/(36)	2585(20)	/44(176)	
	C(6b)	7433(38)	1054(23)	2918(10)	1383(143)	
		/084(128)	019(08)	2434(30)	1090(347)	
	C(7b)	0208(20)	1300(23)	2208(12)	1393(130)	
		8026(20)	1/34(31)	2209(32)	1390(330)	
	C(8b)	8930(30)	1452(24)	2290(13)	1430(1/4)	
		0804(110)	1053(77)	2238(23)	2210(333)	

(), 1 24, 1 (atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	537(11)	487(14)	417(11)	31(15)	-5(12)	-40(12)
	Cl(1a)	928(34)	1124(50)	527(25)	-60(37)	58(27)	83(29)
	Cl(2a)	1110(40)	551(44)	1320(48)	-15(32)	-99(38)	-243(34)
	Cl(3a)	673(29)	1520(68)	862(40)	-270(34)	82(30)	106(38)
	Cl(4a)	940(34)	1183(56)	1024(42)	415(32)	-130(32)	252(35)
TCM(b)	Mn (b)	482(12)	517(15)	456(12)	25(13)	66(13)	-19(13)
	Cl(1b)	1142(40)	1356(59)	371(22)	6(44)	-31(30)	50(29)
	Cl(2b)	1097(42)	620(44)	1185(44)	73(34)	-56(38)	252(34)
	Cl(3b)	714(32)	1390(69)	976(42)	132(36)	227(32)	-104(42)
	Cl(4b)	910(32)	1026(49)	936(39)	-413(29)	-211(31)	-116(35)
TMA(1a)	N (1a)	369(66)	786(131)	1293(126)	32(82)	-178(81)	143(107)
	C (1a)	2152(237)	809(175)	246(77)	-26(196)	6(149)	113(81)
	C (2a)	1561(192)	919(165)	499(96)	-227(148)	-114(124)	-377(85)
	C (3a)	2006(230)	1411(255)	832(158)	823(168)	-422(151)	124(144)
	C (4a)	977(137)	3272(441)	1229(179)	-893(187)	749(125)	-653(229)
TMA(1b)	N (1b)	655(72)	550(83)	232(46)	-27(75)	-42(62)	71(53)
	C (1b)	1218(186)	3257(449)	374(111)	33(271)	-12(128)	-54(190)
	C (2b)	2152(244)	1396(210)	476(92)	550(193)	478(136)	543(96)
	C (3b)	2064(234)	2023(306)	747(167)	-1176(183)	-426(156)	266(164)
	C (4b)	686(124)	2328(355)	1359(220)	571(158)	168(150)	128(228)
TMA(2a)	N (2a)	521(74)	585(105)	430(70)	-63(74)	101(71)	82(65)
	C (5a)	1172(197)	778(196)	1633(213)	-161(155)	-188(184)	664(138)
	C (6a)	1456(167)	1742(284)	1137(176)	921(147)	799(129)	145(172)
	C (7a)	2735(274)	876(278)	1383(172)	-218(213)	-1490(145)	-25(157)
	C (8a)	599(108)	976(195)	1459(221)	-456(103)	-66(142)	-66(170)
TMA(2b)	N (2b)	427(72)	543(117)	951(112)	-110(75)	62(84)	114(86)
	C (5b)	985(171)	789(202)	2000(253)	-196(150)	229(198)	-648(155)
	C (6b)	1861(273)	1535(295)	753(151)	175(261)	141(192)	514(151)
	C (7b)	757(134)	1928(367)	1493(227)	401(166)	-639(143)	-84(224)
	C (8b)	878(168)	1899(413)	1592(273)	331(196)	345(189)	-137(258)

Table 4.5.4 289 K POM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

atom1 atom2		distance Å]	atom1 atom2	distance Å]	
Mn (a)	Cl(1a)	2.288 (5)	Mn (a) Cl(2a)	2.389 (8)	
Mn (a)	Cl(3a)	2.371 (6)	Mn (a) Cl(4a)	2.314 (7)	
Mn (b)	Cl(1b)	2.361 (5)	Mn (b) Cl(2b)	2.352 (8)	
Mn (b)	Cl(3b)	2.383 (7)	Mn (b) Cl(4b)	2.353 (7)	
N (1a)	C (1a)	1.491 (24)	N (1a) C (2a)	1.506 (30)	
N (1a)	C (3a)	1.545 (33)	N (1a) C (4a)	1.468 (29)	
N (1b)	C (1b)	1.370 (25)	N (1b) C (2b)	1.463 (30)	
N (1b)	C (3b)	1.413 (34)	N (1b) C (4b)	1.422 (26)	
N (2a)	C (5a)	1.545 (33)	N (2a) C (6a)	1.351 (32)	
N (2a)	C (7a)	1.643 (30)	N (2a) C (8a)	1.459 (26)	
N (2b)	C (5b)	1.463 (35)	N (2b) C (6b)	1.525 (36)	
N (2b)	C (7b)	1.383 (30)	N (2b) C (8b)	1.435 (33)	

Table 4.5.5 289 K POM での bond lengths [Å]. ()内は標準偏差を表す.

Table 4.5.6 289 K POM での bond angles [°]. ()内は標準偏差を表す.

atom1	atom3 -	- atom2	angle[°]	atoml	atom3 -	- atom2	angle[°]
Cl(1a)	Mn (a)	Cl(2a)	111.3(5)	Cl(1a)	Mn (a)	Cl(3a)	111.1(5)
Cl(1a)	Mn (a)	Cl(4a)	110.7(5)	Cl(2a)	Mn (a)	Cl(3a)	110.1(5)
Cl(2a)	Mn (a)	Cl(4a)	103.8(5)	Cl(3a)	Mn (a)	Cl(4a)	109.7(5)
Cl(1b)	Mn (b)	Cl(2b)	110.7(7)	Cl(1b)	Mn (b)	Cl(3b)	106.7(4)
Cl(1b)	Mn (b)	Cl(4b)	107.4(4)	Cl(2b)	Mn (b)	Cl(3b)	107.4(5)
Cl(2b)	Mn (b)	Cl(4b)	109.5(6)	Cl(3b)	Mn (b)	Cl(4b)	110.3(5)
C (1a)	N (1a)	C (2a)	117.4(32)	C (1a)	N (1a)	C (3a)	111.3(31)
C (1a)	N (1a)	C (4a)	113.8(33)	C (2a)	N (1a)	C (3a)	105.8(33)
C (2a)	N (1a)	C (4a)	108.1(35)	C (3a)	N (1a)	C (4a)	98.6(30)
C (1b)	N (1b)	C (2b)	111.0(37)	C (1b)	N (1b)	C (3b)	96.5(30)
C (1b)	N (1b)	C (4b)	93.9(27)	C (2b)	N (1b)	C (3b)	121.4(49)
C (2b)	N (1b)	C (4b)	113.6(39)	C (3b)	N (1b)	C (4b)	114.9(40)
C (5a)	N (2a)	C (6a)	111.2(41)	C (5a)	N (2a)	C (7a)	108.0(34)
C (5a)	N (2a)	C (8a)	106.1(33)	C (6a)	N (2a)	C (7a)	113.3(38)
C (6a)	N (2a)	C (8a)	113.5(37)	C (7a)	N (2a)	C (8a)	104.2(31)
C (5b)	N (2b)	C (6b)	120.9(51)	C (5b)	N (2b)	C (7b)	113.0(43)
C (5b)	N (2b)	C (8b)	116.3(47)	C (6b)	N (2b)	C (7b)	91.7(30)
C (6b)	N (2b)	C (8b)	92.8(31)	C (7b)	N (2b)	C (8b)	118.6(43)

Table 4.5.7 292 K POM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴) および占有 確率. () 内の数字は標準偏差を表す.

	atom	x	У	Z	Ueq	р
TCM(a)	Mn(a)	2562(4)	4061(2)	1211(1)	493(9)	0.648(4)
		2404(7)	4139(4)	1258(2)	495(17)	0.352
-	Cl 1a	2684(9)	4065(6)	284(3)	852(28)	
		2256(15)	4068(11)	303(5)	852(54)	
-	Cl 2a	2855(9)	5448(6)	1590(3)	950(31)	
		2184(16)	5471(11)	1569(6)	949(57)	
-	Cl 3a	226(8)	3485(7)	1491(3)	1030(38)	
		4766(14)	3418(13)	1478(6)	1029(71)	
-	Cl 4a	4450(8)	3263(6)	1567(3)	1006(35)	
		542(15)	3319(11)	1582(6)	997(63)	
TCM(b)	Mn(b)	2637(3)	921(2)	3733(1)	502(9)	0.637(4)
10.1(0)	(0)	2399(6)	973(4)	3726(2)	503(17)	0.363
-	Cl 1h	2569(10)	994(7)	2756(3)	1042(35)	
	0.10	2505(17)	824(12)	2810(4)	1030(62)	
-	Cl 2h	2923(9)	-462(7)	$\frac{2010(1)}{4062(4)}$	1043(37)	
	0120	2246(17)	-476(12)	4062(7)	1045(64)	
-	Cl 3h	365(9)	1449(7)	4072(4)	$\frac{1019(01)}{1088(42)}$	
	0150	4644(15)	1423(14)	4080(7)	1126(76)	
-	C1 4b	4591 (9)	1789(6)	4028(3)	939(31)	
	01 10	481(15)	1760(11)	4027(6)	955(57)	
TMA(1a)	N(1a)	2609(20)	965(14)	750(9)	853(78)	0.669(21)
11012 (14)	II(III)	2316(39)	1047(29)	693(11)	773(135)	0.331
-	C(1a)	2380(38)	1013(22)	1363(8)	1015(130)	0.551
	C(Ta)	2731(66)	889(42)	1369(16)	886(228)	
-	C(2a)	$\frac{2731(00)}{2220(42)}$	$\frac{113(23)}{113(23)}$	477(10)	1305(141)	
	C(2a)	2220(42)	240(38)	482(20)	1469(236)	
· -	C(3n)	$\frac{2632(02)}{1631(43)}$	1521(24)	$\frac{+62(20)}{433(12)}$	1534(161)	
	C(3a)	3118(60)	1521(24) 1580(44)	433(12) 308(21)	1286(254)	
-	C(4n)	4039(30)	1263(30)	531(13)	1451(196)	
	C(4a)	1090(50)	1340(60)	485(22)	1/08(300)	
TMA(1b)	N(1b)	2535(10)	4050(13)	3243(5)	523(54)	0.660(21)
IMA(10)	N(10)	2333(19)	4030(13)	3243(3)	525(54)	0.009(21)
-	C(1b)	2434(41)	2205(55)	3260(13)	2600(408)	0.551
	C(10)	2510(40)	3393(33)	3709(12)	1228(210)	
-	C(2h)	2014(111)	4026(24)	3/02(10)	1328(310)	
	C(20)	2130(40)	4920(24)	3133(10) 3103(20)	2017(510)	
-	C(2b)	$\frac{2093(90)}{1591(41)}$	2210(28)	$\frac{3193(20)}{3073(12)}$	1600(176)	
	C(30)	2010(96)	3319(20)	3073(12)	1099(170)	
-	C(4b)	4052(34)	2821(22)	3182(16)	1660(207)	
	C(40)	1108(100)	3031(52)	3200(45)	2110(488)	
$TN(A(2_{\tau}))$	NI(2-)	7550(22)	2207(15)	7((9)	2119(488)	0 (08(20)
TMA(2a)	N(Za)	7339(23)	3297(13)	70(8)	002(72) 828(124)	0.008(20)
-	$O(5_{-})$	7430(37)	2424(20)	251(12)	072(125)	0.392
	C(5a)	7366(41)	2424(20)	331(13) 261(10)	7/2(123) 061(197)	
-	$C(f_{\alpha})$	6762(34)	2922(27)	406(12)	1160(152)	
	C(0a)	0702(34)	2820(22)	400(13)	1042(166)	
-	C(7-)	6957(42)	2221(20)	<u>419(10)</u> 525(14)	1625(180)	
	C(7a)	8177(43)	3231(29)	-323(14)	1023(100) 1862(220)	
-	C(0-)	01/(01)	2620(24)	-317(19)	075(120)	
	C(8a)	5020(41)	2501(24)	Z(14)	9/3(139)	
Th (A ()L)	N(0L)	7602(20)	170((12)	4(21)	559((204)	0.608(20)
1 MA(20)	IN(2D)	7602(20)	1747(13)	2314(8)	338(08)	0.008(20)
-	0(0)	7412(32)	1/4/(18)	2527(10)	451(85)	0.392
	C(5b)	7009(40)	2733(23)	2003(15)	102/(145)	
-	0(0)	/326(48)	2/19(28)	2584(12)	/12(139)	
	C(6b)	/492(47)	1192(37)	2973(13)	1963(241)	
-		/518(100)	/89(49)	2613(37)	2233(424)	
	C(7b)	6488(61)	1500(40)	2223(17)	2166(324)	
-		8666(74)	1667(45)	2244(27)	1473(321)	
	C(8b)	8942(39)	1423(31)	2303(18)	1433(217)	
		6077(44)	1463(39)	2330(26)	1174(264)	

Table 4.5.8 292 K POM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁴ [Å²])を, ()内の数字は標準偏差を表す.

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U23
TCM(a)	Mn (a)	532(15)	485(18)	464(15)	87(22)	35(19)	-59(15)
	Cl(1a)	942(47)	1115(66)	499(32)	-67(51)	95(38)	40(38)
	Cl(2a)	1139(55)	530(53)	1180(55)	-2(42)	-158(48)	-272(38)
	Cl(3a)	615(37)	1539(92)	935(57)	-277(45)	87(40)	216(52)
	Cl(4a)	906(45)	1092(75)	1021(58)	376(43)	-161(43)	210(48)
TCM(b)	Mn (b)	473(16)	553(20)	478(15)	72(20)	2(19)	-61(17)
	Cl(1b)	1120(53)	1639(88)	367(29)	-45(68)	-3(44)	88(41)
	Cl(2b)	1069(59)	621(66)	1440(69)	58(46)	0(55)	276(51)
	Cl(3b)	729(45)	1498(100)	1038(62)	94(54)	209(46)	-103(59)
	Cl(4b)	954(46)	1026(67)	839(50)	-384(41)	-188(42)	-142(43)
TMA(1a)	N (1a)	398(87)	577(138)	1583(171)	145(105)	-253(118)	-379(121)
	C (1a)	1566(249)	1214(283)	265(103)	-38(259)	38(188)	164(125)
	C (2a)	1940(299)	1528(273)	447(123)	-699(239)	103(195)	-481(122)
	C (3a)	2526(324)	1218(297)	860(202)	988(207)	-728(187)	92(172)
	C (4a)	648(154)	2743(522)	960(223)	-524(222)	437(158)	-203(266)
TMA(1b)	N (1b)	518(87)	783(123)	266(62)	-57(112)	18(93)	-136(75)
	C (1b)	551(175)	10252(1478)	294(139)	-108(529)	38(172)	689(384)
	C (2b)	2388(364)	1467(319)	377(124)	537(295)	338(206)	481(137)
	C (3b)	2110(283)	2372(395)	614(209)	-1501(222)	-437(189)	334(205)
	C (4b)	806(178)	2576(493)	1626(338)	816(216)	219(227)	187(343)
TMA(2a)	N (2a)	521(101)	691(158)	593(112)	-94(119)	117(118)	120(99)
	C (5a)	1326(246)	382(183)	1207(218)	-267(180)	-140(227)	390(142)
	C (6a)	1041(191)	1523(354)	942(223)	666(183)	531(162)	134(215)
	C (7a)	2327(298)	1082(397)	1465(219)	-211(256)	-1559(166)	-3(208)
	C (8a)	590(145)	1134(287)	1201(268)	-465(149)	-3(178)	-120(214)
TMA(2b)	N (2b)	414(91)	439(131)	822(127)	-83(100)	88(113)	-92(95)
	C (5b)	1183(243)	393(233)	1504(279)	-143(190)	227(247)	-102(183)
	C (6b)	1154(277)	3911(639)	827(195)	170(415)	110(252)	1159(246)
	C (7b)	2674(536)	2951(763)	870(277)	-431(503)	-720(295)	-383(337)
	C (8b)	955(228)	1598(475)	1744(387)	445(244)	300(264)	-94(326)

Table 4.5.9 291 K POM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴) および占有確率. () 内の数字は標準偏差を表す.

	atom	x	v	7	Uea	n
TCM(a)	Mn(a)	2524(3)	4057(2)	1204(1)	486(-8)	0.692(4)
i Civi(a)	ivin(a)	2324(-3)	4057(-2)	1288(-3)	405(10)	0.092(4)
-	C1(1 a)	$\frac{2404(7)}{2678(-8)}$	$\frac{4102(-5)}{4075(-5)}$	$\frac{1286(-3)}{286(-2)}$	929(25)	0.508
	CI(Ta)	2078(8)	4073(3)	200(2)	858(25)	
-	01(0)	2241(10)	4033(13)	299(3)	805(39)	
	CI (2a)	2857(8)	5456(5)	1591(3)	967(28)	
-		2218(18)	54/1(12)	1558(/)	969(63)	
	Cl(3a)	222(7)	3499(6)	1487(3)	1063(35)	
-		4768(15)	3396(14)	1464(7)	1045(78)	
	Cl(4a)	4448(8)	3274(5)	1571(3)	976(29)	
		526(16)	3352(11)	1602(7)	952(63)	
TCM(b)	Mn(b)	2653(3)	927(2)	3728(1)	487(8)	0.681(4)
_		2392(7)	964(5)	3737(3)	486(18)	0.319
	Cl(1b)	2568(9)	1023(6)	2769(2)	974(30)	
_		2551(19)	724(12)	2786(5)	978(67)	
	Cl(2b)	2942(8)	-473(6)	4063(3)	1007(32)	
_		2271(17)	-460(12)	4066(7)	988(65)	
	Cl 3b)	362(7)	1447(6)	4062(3)	1030(34)	
_		4640(16)	1443(14)	4085(7)	1096(80)	
	Cl(4b)	4606(8)	1796(6)	4025(3)	973(28)	
		516(16)	1822(13)	4045(6)	1041(65)	
TMA(1a)	N(1a)	2577(16)	931(13)	732(6)	661(62)	0.733(21)
		2194(102)	1153(64)	671(44)	2193(545)	0.267
-	C(1a)	2360(33)	980(20)	1368(8)	1036(119)	
		2919(99)	917(47)	1351(20)	1102(327)	
-	C(2a)	2193(34)	132(19)	485(9)	1094(112)	
		3151(87)	261(50)	472(22)	2025(261)	
-	C(3a)	1674(37)	1578(22)	454(11)	1539(147)	
		3094(73)	1596(46)	393(22)	1160(246)	
-	C(4a)	4038(29)	1217(28)	543(11)	1532(179)	
		1095(55)	1165(76)	471(24)	1531(500)	
TMA(1b)	N(1b)	2533(16)	4024(11)	3243(5)	487(46)	0.733(21)
		2444(43)	4031(29)	3271(17)	558(135)	0.267
-	C(1b)	2469(39)	3842(23)	3789(9)	1271(144)	
		2560(65)	2659(78)	3740(21)	1793(539)	
-	C(2b)	2197(38)	4930(20)	3157(8)	1279(136)	
		3102(194)	4674(106)	3205(35)	3073(997)	
-	C(3b)	1532(39)	3311(27)	3078(11)	1780(176)	
		3022(127)	3047(90)	3063(32)	2527(627)	
-	C(4b)	4093(29)	3784(28)	3196(14)	1781(186)	
	. ,	1008(78)	3907(71)	3397(47)	1835(501)	
TMA(2a)	N(2a)	7576(19)	3291(11)	65(6)	472(51)	0.652(20)
	()	7386(34)	3312(26)	83(14)	642(130)	0.348
-	C(5a)	7633(41)	2380(21)	365(13)	1139(136)	
	- ()	7491(57)	2595(28)	374(21)	847(168)	
-	C(6a)	6802(32)	3831(25)	411(11)	1235(139)	
	0(01)	8146(50)	3830(39)	422(17)	1082(195)	
-	C(7a)	6886(39)	3229(29)	-520(13)	2003(174)	
	0(14)	8044(71)	3284(43)	-529(20)	2008(239)	
-	C(8a)	9061(26)	3583(22)	1(12)	993(130)	
	2(04)	5891(41)	3537(36)	15(19)	797(193)	
TMA(2h)	N(2h)	7602(10)	1801(15)	2515(8)	722(78)	0.652(20)
11/1/20)	11(20)	7408(36)	1805(27)	2518(11)	650(128)	0 348
-	C(5b)	7622(37)	2725(22)	2668(14)	1147(140)	0.540
	C(30)	7340(58)	2723(22) 275 $A(3A)$	2581(14)	806(174)	
-	C(64)	7/11(15)	1102(20)	2301(10)	1507(194)	
	C(00)	7722(100)	705(52)	2940(12)	1372(184)	
-	C(71-)	(100)	1584(35)	2313(30)	1/30(432)	
	U(70)	0514(34)	1384(23)	2227(10)	15/0(104)	
-	C(01.)	8045(22)	1/38(49)	2234(30)	1272(192)	
	C(8D)	8743(32)	1094(27)	2283(10)	13/3(183)	
		0399(/2)	1080(30)	2328(23)	2010(338)	

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	553(14)	504(17)	402(13)	49(20)	14(15)	-81(13)
	Cl(1a)	942(41)	1081(58)	491(28)	-65(44)	62(32)	76(33)
	Cl(2a)	1120(48)	567(49)	1215(52)	-19(37)	-152(43)	-299(36)
	Cl(3a)	660(35)	1615(86)	913(51)	-263(42)	94(36)	194(47)
	Cl(4a)	932(40)	953(60)	1044(50)	353(36)	-147(38)	240(40)
TCM(b)	Mn (b)	468(14)	510(18)	482(14)	26(16)	46(16)	-36(15)
	Cl(1b)	1128(47)	1382(72)	412(27)	-21(54)	-24(37)	73(35)
	Cl(2b)	1009(48)	632(57)	1379(60)	54(40)	29(47)	232(44)
	Cl(3b)	712(38)	1363(81)	1013(52)	132(43)	205(39)	-163(49)
	Cl(4b)	961(40)	1135(61)	824(44)	-466(36)	-172(37)	-113(40)
TMA(1a)	N (1a)	387(74)	1034(149)	563(85)	95(100)	-48(77)	-81(97)
	C (1a)	1575(223)	1245(261)	289(99)	-45(222)	88(153)	101(119)
	C (2a)	1694(234)	1027(210)	561(124)	-431(179)	-56(156)	-361(108)
	C (3a)	2285(276)	1550(293)	783(187)	1114(189)	-418(178)	99(166)
	C (4a)	814(154)	2882(481)	900(188)	-610(211)	417(146)	-412(233)
TMA(1b)	N (1b)	543(76)	484(95)	434(68)	-43(86)	1(79)	33(68)
	C (1b)	1690(247)	1808(341)	313(107)	87(278)	-73(159)	-66(152)
	C (2b)	2138(295)	1425(266)	273(96)	236(248)	176(163)	396(112)
	C (3b)	2190(286)	2503(403)	648(188)	-1356(238)	-450(183)	358(199)
	C (4b)	774(150)	2788(443)	1780(305)	882(186)	358(197)	485(305)
TMA(2a)	N (2a)	534(85)	342(97)	541(87)	71(84)	71(91)	159(67)
	C (5a)	1478(261)	610(223)	1329(222)	-56(215)	-218(231)	459(154)
	C (6a)	1311(194)	1569(326)	825(177)	724(176)	613(142)	126(184)
	C (7a)	2495(255)	1259(398)	2255(227)	100(240)	-2117(150)	-332(216)
	C (8a)	532(127)	1236(282)	1210(240)	-394(138)	-48(159)	-80(201)
TMA(2b)	N (2b)	411(87)	714(163)	1040(147)	127(100)	86(107)	62(118)
	C (5b)	1135(215)	623(235)	1681(274)	-207(181)	238(230)	-371(177)
	C (6b)	1723(311)	2266(419)	789(180)	260(341)	167(238)	775(192)
	C (7b)	1120(195)	1158(331)	1849(312)	562(180)	-676(208)	-249(250)
	C (8b)	669(164)	1405(387)	2045(355)	201(189)	288(220)	-362(284)

Table 4.5.10 291 K POM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

Table 4.5.11 290 K POM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴) および占有確率.

() 内の数字は標準偏差を表す...

	atom	x	у	z	Ueq	р
TCM(a)	Mn(a)	2558(3)	4054(2)	1219(1)	490(7)	0.739(4)
		2386(8)	4175(5)	1243(3)	493(22)	0.261
-	Cl(1a)	2671(7)	4067(5)	283(2)	859(23)	
	· /	2224(19)	4054(15)	302(6)	880(70)	
-	Cl(2a)	2848(7)	5441(5)	1591(3)	982(27)	
	. ,	2234(21)	5499(14)	1542(8)	1014(77)	
-	Cl(3a)	237(6)	3472(6)	1492(3)	1017(30)	
		4750(17)	3322(16)	1471(7)	1034(90)	
-	Cl(4a)	4459(7)	3274(5)	1563(3)	1000(27)	
	()	492(19)	3397(13)	1603(8)	965(69)	
TCM(b)	Mn(h)	2643(3)	926(2)	3718(1)	485(8)	0.725(4)
1011(0)	1111(0)	2613(9) 2417(8)	959(5)	3779(3)	492(21)	0 275
-	Cl(1b)	2587(8)	1003(6)	2773(2)	966(27)	0.2.10
	0.(10)	2542(21)	718(14)	2781(6)	973(75)	
-	Cl 2h)	2965(7)	-462(5)	4069(3)	984(28)	
	0.20)	2277(20)	-497(13)	4063(8)	968(69)	
-	Cl(3h)	361(7)	1450(6)	4060(3)	1044(31)	
	01(00)	4674(19)	1366(17)	4065(8)	1160(95)	
-	Cl(4h)	4598(7)	1799(5)	4030(3)	981(25)	
	01(10)	583(18)	1789(14)	4051(7)	1028(71)	
TMA(1a)	N(1a)	2614(16)	940(13)	749(8)	795(67)	0.758(20)
11017 (12)	14(14)	2286(50)	1063(41)	683(15)	1030(197)	0.750(20)
	C(1a)	2430(32)	925(18)	1357(7)	1034(107)	0.242
	C(14)	2430(32)	1022(57)	1380(22)	976(327)	
	C(2a)	2095(95)	96(19)	1380(22)	1196(111)	
	C(2a)	3030(89)	269(45)	469(22)	1/32(2/8)	
	C(2n)	1630(36)	1536(22)	409(22)	1503(143)	
	C(3a)	3100(80)	1632(55)	411(25)	1320(310)	
	C(4n)	4071(28)	1032(33)	546(11)	1540(164)	
	C(4a)	$\frac{4071(20)}{1148(82)}$	1214(20)	340(11)	1638(507)	
TMA(1b)	N(1h)	2544(16)	4028(11)	2249(5)	544(48)	0.758(20)
IWA(10)	N(10)	2344(10)	4026(11)	3240(3)	405(122)	0.738(20)
	C(1b)	2441(40)	4030(31)	3243(13)	2266(277)	0.242
	C(10)	2555(54)	3463(44)	3775(10)	3200(377)	
	C(21-)	23/9(113)	4022(10)	3760(22)	1240(124)	
	C(20)	2193(30)	4932(19)	3133(8) 2212(46)	1240(124)	
	C(2h)	2910(152)	4098(104)	3213(40)	1405(145)	
	C(30)	1364(33)	3328(22) 2024(75)	3080(10)	1493(143)	
	C(41-)	2/98(85)	2924(75)	3048(27)	2129(415)	
	U(40)	4034(20)	3001(21)	31/1(12) 3/78(51)	1/44(1/3)	
T144(2)	N(0-)	1210(99)	2201(10)	34/0(31)	2007(303)	0 606(10)
1MA(2a)	N(2a)	/5/8(1/)	3291(10)	07(0)	4/1(48)	0.080(19)
	Cler	7(27(25)	22(5(20)	95(17)	1102(180)	0.314
	U(5a)	/03/(33)	2303(20)	330(12)	741(120)	
	<u> </u>	/453(68)	2528(31)	415(19)	/41(186)	
	C(6a)	0/80(31)	3832(22)	410(10)	1320(126)	
		818/(54)	3816(39)	414(20)	114/(194)	
	U(a)	08/1(3/)	3209(27)	-524(13)	2089(161)	
	0/0 \	8116(105)	3293(68)	-513(36)	1/03(542)	
	C(8a)	9054(24)	3603(20)	-8(12)	987(117)	
	31/21	5895(42)	3560(33)	4(20)	6/6(166)	0.0000
TMA(2b)	N(2b)	7574(16)	1782(11)	2524(7)	520(52)	0.686(19)
		7453(40)	1859(34)	2505(13)	818(182)	0.314
	C(5b)	7647(35)	2684(21)	2651(12)	1137(127)	
		7294(56)	2721(34)	2600(16)	782(160)	
	C(6b)	7460(41)	1101(28)	2937(11)	1622(176)	
		7671(131)	863(66)	2580(38)	2046(571)	
	C(7b)	6309(30)	1570(24)	2222(13)	1376(154)	
		8486(101)	1715(53)	2232(32)	1603(404)	
	C(8b)	8947(31)	1428(25)	2291(15)	1371(170)	
		6588(80)	956(60)	2309(20)	2387(349)	

Table 4.5.12 290 K POM での異方性温度因子. U_{ij} は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

.,							
	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	524(13)	468(15)	476(12)	52(16)	13(14)	-18(13)
	Cl(1a)	943(37)	1125(55)	511(27)	-70(41)	54(29)	88(32)
	Cl(2a)	1111(44)	596(48)	1238(49)	0(36)	-128(40)	-258(35)
	Cl(3a)	674(31)	1518(74)	858(43)	-274(37)	88(32)	112(41)
	Cl(4a)	925(37)	1080(60)	996(45)	372(34)	-135(34)	237(37)
TCM(b)	Mn (b)	485(13)	530(16)	441(12)	27(15)	71(14)	-44(14)
	Cl(1b)	1122(43)	1395(66)	381(24)	-6(49)	-37(32)	53(33)
	Cl(2b)	1069(45)	595(49)	1290(51)	42(36)	-32(43)	233(39)
	Cl(3b)	707(34)	1425(76)	1001(47)	131(39)	232(35)	-124(46)
	Cl(4b)	922(35)	1085(55)	937(42)	-437(32)	-220(34)	-128(37)
TMA(1a)	N (1a)	362(70)	772(138)	1251(132)	110(87)	-183(88)	-151(115)
	C (1a)	1844(227)	987(210)	271(90)	-129(209)	62(152)	114(100)
	C (2a)	1583(213)	1400(227)	605(122)	-566(172)	-5(147)	-476(111)
	C (3a)	2421(270)	1678(298)	680(153)	1061(193)	-609(152)	58(153)
	C (4a)	959(152)	2646(434)	1040(178)	-649(195)	627(132)	-373(219)
TMA(1b)	N (1b)	609(79)	565(102)	458(69)	-15(86)	17(76)	-61(71)
	C (1b)	744(169)	8719(1113)	336(131)	-143(431)	40(132)	552(325)
	C (2b)	2089(269)	1222(236)	412(103)	225(220)	332(151)	400(108)
	C (3b)	2070(256)	1692(309)	723(174)	-1020(195)	-398(169)	265(165)
	C (4b)	637(125)	3219(442)	1377(245)	859(171)	235(161)	331(276)
TMA(2a)	N (2a)	533(78)	335(92)	546(82)	-55(74)	93(80)	112(64)
	C (5a)	1211(214)	822(201)	1512(208)	35(182)	-42(198)	714(138)
	C (6a)	1554(190)	1525(284)	882(165)	885(157)	700(134)	172(167)
	C (7a)	2789(250)	1059(353)	2420(218)	-68(221)	-2293(144)	-134(201)
	C (8a)	479(110)	1115(242)	1367(232)	-362(122)	18(148)	-59(192)
TMA(2b)	N (2b)	435(73)	348(98)	778(99)	-5(74)	140(81)	-134(73)
	C (5b)	1322(219)	775(232)	1313(213)	-236(184)	353(195)	-368(155)
	C (6b)	1605(278)	2438(416)	825(171)	185(314)	190(210)	798(188)
	C (7b)	970(165)	1543(349)	1614(255)	482(174)	-694(168)	-78(237)
	C (8b)	807(168)	1495(372)	1809(310)	313(186)	278(205)	-230(262)

 Table 4.5.13
 287 K POM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴) および占有確

 率.()
 内の数字は標準偏差を表す.

	atom	х	у	Z	Ueq	р
TCM(a)	Mn(a)	2562(2)	4067(2)	1224(1)	492(6)	0.826(4)
		2304(11)	4157(8)	1243(4)	496(32)	0.174
	Cl(1a)	2658(6)	4079(4)	289(2)	838(19)	
	~ /	2168(26)	4025(22)	326(8)	935(106)	
	C1 (2a)	2856(6)	5443(4)	1589(2)	981(22)	
	()	2201(28)	5506(21)	1488(13)	1042(114)	
	Cl(3a)	242(5)	3481(5)	1495(2)	989(24)	
	01(54)	4728(24)	3280(22)	1473(10)	991(121)	
	C1(4a)	4463(.6)	3260(4)	1562(2)	1026(23)	
	CI (14)	437(27)	3489(18)	1657(10)	998(96)	
TCM(b)	Mn(h)	2638(2)	937(2)	3713(1)	484(-6)	0.798(4)
ICM(0)	$\operatorname{MII}(0)$	2006(10)	908(7)	3713(1) 3813(4)	512(28)	0.790(4)
	<u>C1(1b)</u>	2506(10)	907(5)	$\frac{3813(4)}{2767(2)}$	036(22)	0.202
	CI(10)	2530(0)	557(3)	2767(2)	930(22)	
	(1(01))	2023(20)		2707(7)	998(98)	
	CI(26)	2976(6)	-462(4)	4075(3)	946(22)	
	(1/01)	2318(25)	-502(16)	4070(9)	907(79)	
	CI(3b)	379(6)	1453(5)	4055(2)	1017(24)	
		4666(24)	1345(22)	4040(10)	1215(124)	
	CI(4b)	4620(6)	1801(4)	4025(2)	977(20)	
		642(24)	1811(18)	4043(9)	1080(95)	
TMA(1a)	N(1a)	2613(13)	948(10)	750(6)	640(48)	0.828(19)
		2173(82)	1138(50)	584(39)	1235(336)	0.172
	C(1a)	2424(28)	998(15)	1351(6)	1004(91)	
		2734(74)	706(55)	1338(27)	621(253)	
	C(2a)	2251(26)	80(15)	499(7)	1035(86)	
		3191(141)	261(84)	497(34)	1926(480)	
	C(3a)	1664(30)	1585(18)	460(9)	1658(114)	
		2930(90)	1708(75)	376(29)	1520(371)	
	C(4a)	4103(24)	1170(22)	565(9)	1616(136)	
		1146(100)	1067(139)	459(35)	2238(959)	
TMA(1b)	N(1b)	2540(13)	4032(9)	3247(5)	550(42)	0.828(19)
		2456(58)	4068(50)	3225(18)	700(223)	0.172
	C(1b)	2530(30)	3816(22)	3798(8)	1427(139)	
		2595(105)	2574(81)	3729(38)	1005(466)	
	C(2b)	2217(30)	4919(16)	3148(7)	1245(100)	
		2829(323)	4227(192)	3265(78)	3532(1880)	
	C(3b)	1588(31)	3318(20)	3066(9)	1480(128)	
		2798(**)	2907(80)	3066(34)	1395(420)	
	C(4b)	4051(23)	3813(24)	3150(10)	1702(157)	
		1233(99)	3862(64)	3488(59)	1893(492)	
TMA(2a)	N(2a)	7555(13)	3268(9)	67(4)	443(39)	0.767(18)
	- ()	7396(49)	3245(40)	218(23)	1043(205)	0.233
	C(5a)	7671(30)	2363(16)	303(11)	1254(106)	
	0(04)	7456(84)	2509(42)	414(26)	761(251)	
	<u>((6a)</u>	6762(26)	3812(19)	401(9)	1227(108)	
	C(Ua)	8203(57)	3785(46)	407(21)	683(218)	
	C(7n)	6888(37)	3206(21)	-528(10)	1864(123)	
	C(a)	81/0(27)	3370(11)	-526(10)	1065(246)	
	C(0-)	0044(21)	2617(17)	-525(18)	1108(105)	
	C(oa)	5964(21)	3017(17)	-2(11)	684(200)	
Th (A (01)	NI/OL V	3804(48)	3324(41)	2508(5)	520(14)	0.7(7(10)
1MA(2b)	N(2b)	/585(14)	1/01(9)	2508(5)	520(44)	0.767(18)
		/453(50)	1909(56)	2490(18)	1328(335)	0.233
	C(5b)	7645(30)	2666(18)	2688(12)	1289(119)	
		7244(61)	2755(38)	2598(19)	719(169)	
	C(6b)	7461(32)	1016(20)	2920(10)	1299(122)	
		7701(118)	769(72)	2367(30)	1510(490)	
	C(7b)	6348(27)	1564(20)	2256(11)	1335(131)	
		8440(123)	1752(66)	2327(40)	1409(493)	
					10(0(100)	
	C(8b)	8966(27)	1459(20)	2303(11)	1268(130)	

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	504(10)	495(13)	477(10)	40(13)	9(11)	-26(11)
	Cl(1a)	980(31)	1050(43)	483(21)	-59(33)	34(23)	73(25)
	Cl(2a)	1098(36)	565(39)	1280(42)	-6(29)	-129(34)	-230(30)
	Cl(3a)	698(26)	1428(58)	841(35)	-288(30)	59(26)	66(33)
	Cl(4a)	950(31)	1127(52)	1001(38)	382(30)	-156(29)	195(32)
TCM(b)	Mn (b)	515(11)	532(14)	404(10)	4(12)	41(11)	-33(11)
At	Cl(1b)	1102(35)	1322(53)	385(20)	31(39)	-18(26)	-5(27)
	Cl(2b)	1076(37)	609(39)	1154(39)	51(30)	-42(34)	262(30)
	Cl(3b)	677(27)	1360(58)	1013(38)	202(30)	238(28)	-113(37)
	Cl(4b)	912(29)	1073(44)	945(34)	-419(26)	-195(28)	-205(30)
TMA(1a)	N (1a)	449(62)	601(99)	871(87)	43(69)	-97(65)	-24(79)
	C (1a)	1919(202)	746(165)	347(82)	47(168)	87(127)	41(83)
	C (2a)	1555(177)	1016(164)	534(93)	-278(139)	-140(115)	-367(82)
	C (3a)	2329(208)	1852(230)	792(148)	1388(141)	-450(139)	25(138)
	C (4a)	974(127)	2652(352)	1221(163)	-776(160)	681(117)	-503(193)
TMA(1b)	N (1b)	566(65)	660(92)	424(58)	-74(70)	-10(59)	-58(61)
	C (1b)	1241(173)	2563(362)	478(115)	60(228)	-2(119)	50(162)
	C (2b)	2010(222)	1172(183)	556(92)	105(172)	394(124)	539(88)
	C (3b)	2016(224)	1583(267)	841(163)	-909(171)	-310(157)	133(151)
	C (4b)	661(118)	3193(411)	1252(202)	643(171)	122(140)	306(239)
TMA(2a)	N (2a)	466(61)	506(83)	358(56)	-60(60)	58(58)	142(51)
	C (5a)	1279(189)	716(165)	1770(196)	46(147)	-9(176)	776(119)
	C (6a)	1363(161)	1436(244)	883(140)	611(139)	543(118)	-47(139)
	C (7a)	2859(220)	993(259)	1740(148)	-10(182)	-1922(113)	-199(139)
	C (8a)	539(97)	1087(197)	1698(227)	-416(99)	-176(136)	51(175)
TMA(2b)	N (2b)	438(61)	369(85)	751(84)	-59(60)	141(65)	-56(63)
	C (5b)	1282(186)	580(191)	2003(239)	-96(149)	357(195)	-454(147)
	C (6b)	1501(210)	1344(252)	1055(163)	55(205)	81(169)	599(144)
	C (7b)	1147(161)	1414(299)	1443(202)	357(162)	-661(148)	-48(188)
	C (8b)	988(153)	1426(299)	1390(202)	219(158)	456(149)	-207(183)

Table 4.5.14 287 K POM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表す.

Table 4.5.15 285 K POM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴) および占有確率.

() 内の数字は標準偏差を表す

					* *	
	atom	X	<u>y</u>	Z	Ueq	p
TCM(a)	Mn(a)	2561(2)	4072(2)	1226(1)	494(6)	0.863(4)
-	()	2259(13)	4139(10)	1250(5)	495(40)	0.137
	Cl(1a)	2655(6)	4068(4)	288(2)	869(18)	
_		2179(34)	4069(26)	328(10)	905(123)	
	Cl(2a)	2855(6)	5457(4)	1583(2)	994(21)	
_		2249(37)	5527(29)	1400(16)	1119(155)	
	C(3a)	248(5)	3510(5)	1504(2)	1057(24)	
-		4404(36)	3705(37)	1572(14)	1421(218)	
	$C^{1}(4a)$	4501(5)	3230(4)	1555(2)	991(20)	
	C1(+ <i>a</i>)	411(34)	3552(25)	1685(12)	1060(130)	
TCM(b)	Mn(b)	2639(2)	937(2)	3711(1)	482(6)	0.829(4)
_	NIII(0)	2580(12)	890(8)	3831(4)	530(34)	0.171
	Cl(1b)	2612(6)	881(4)	2763(2)	902(19)	
_	CI(10)	2623(32)	1306(22)	2804(8)	1090(124)	
	Cl(2b)	2985(6)	-463(4)	4080(2)	922(20)	
	CI(20)	2295(28)	-451(17)	4097(9)	836(87)	
-	C1(2b)	376(5)	1473(4)	4045(2)	987(22)	
	CI(50)	4197(27)	1911(24)	4015(12)	1193(128)	
-	C1(4b)	4702(5)	1737(4)	4019(2)	915(19)	
	UI(40)	681(27)	1828(22)	4049(10)	1046(111)	
TMA(1a)	NI(1-)	2615(12)	940(10)	745(5)	633(45)	0.865(19)
	IN(18)	2303(115)	1139(78)	576(44)	1103(471)	0.135
-	0(1)	2416(25)	997(15)	1358(6)	1074(90)	
	C(Ia)	3067(115)	953(66)	1303(31)	640(337)	
-		2250(24)	99(14)	492(7)	1018(79)	
	C(2a)	3179(181)	307(111)	494(47)	1994(630)	
-		1724(28)	1611(17)	454(8)	1582(106)	
	C(3a)	2917(102)	1699(72)	378(35)	822(339)	
-	~	4114(22)	1155(19)	578(9)	1569(116)	
	C(4a)	1258(141)	1216(148)	461(51)	1686(1034)	
TMA(1b)		2533(11)	4035(8)	3238(4)	477(34)	0.865(19)
	N(1b)	2538(99)	4035(64)	3463(41)	827(361)	0.135
-		2590(28)	3673(37)	3777(9)	3420(330)	01122
	C(1b)	2372(117)	4015(63)	3794(33)	651(300)	
-		2194(29)	4938(15)	3151(7)	1225(97)	
	C(2b)	3799(471)	4151(190)	3426(104)	3881(2528)	
-		1564(29)	3358(19)	3067(9)	1494(126)	
	C(3b)	2711(124)	2796(81)	3044(37)	1173(399)	
-		4057(23)	3825(23)	3137(9)	1676(149)	
	C(4b)	1440(122)	3806(77)	3632(51)	1453(425)	
TMA(2a)		7539(13)	3262(8)	68(4)	439(37)	0.792(19)
1111/1(2a)	N(2a)	7479(64)	3123(58)	253(24)	1997(200)	0.72(13)
-		7787(28)	2400(15)	307(10)	1247(102)	0.200
	C(5a)	7144(79)	2210(13)	231(28)	1052(250)	
-		6841(25)	3817(18)	426(9)	1293(100)	
	C(6a)	8117(55)	3780(43)	425(22)	676(104)	
-		6025(20)	3178(21)	-537(0)	1744(123)	
	C(7a)	8255(87)	3316(52)	-552(7)	012(284)	
-		9052(20)	3630(16)		1100(100)	
	C(8a)	5052(20)	3562(41)	-0(11)	619(216)	
TNAA(2L)		7509(14)	174((0)	2512(()	592(46)	0.702(10)
TMA(20)	N(2b)	7780(14)	1/40(9)	2313(0)	550(1(2)	0.792(19)
-	· · · ·	7489(40)	1829(30)	2455(17)	339(103)	0.208
	C(5b)	7307(30)	2048(10)	2/41(13)	1341(117)	
-		/463(52)	2/0/(32)	2544(15)	32/(136)	
	C(6b)	/457(36)	1029(21)	2890(10)	1632(140)	
-	. ,	7686(112)	/44(81)	2293(24)	1550(517)	
	C(7b)	6338(26)	1540(20)	2245(10)	1347(131)	
-	/	8570(126)	1678(71)	2248(33)	1708(471)	
	C(8b)	8990(25)	1486(19)	2307(11)	1285(127)	
	- (00)	6413(80)	1075(68)	2373(28)	2098(335)	

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	496(10)	507(12)	478(10)	51(12)	9(10)	-35(10)
	Cl(1a)	525(10)	521(13)	401(10)	10(12)	23(11)	-37(10)
	Cl(2a)	1002(30)	1122(43)	484(21)	-6(32)	17(22)	68(24)
	Cl(3a)	1178(36)	580(36)	1224(38)	-50(28)	-89(32)	-248(26)
	Cl(4a)	681(25)	1657(62)	833(34)	-252(30)	89(25)	41(33)
TCM(b)	Mn (b)	917(28)	1046(43)	1010(34)	397(25)	-182(26)	189(28)
	Cl(1b)	1097(33)	1220(46)	388(19)	9(35)	-17(24)	-53(24)
	Cl(2b)	1032(34)	611(36)	1124(36)	36(27)	-61(31)	239(28)
	Cl(3b)	693(25)	1193(50)	1075(36)	214(27)	249(27)	-111(33)
	Cl(4b)	734(25)	1139(44)	871(30)	-295(25)	-191(24)	-164(28)
TMA(1a)	N (1a)	429(57)	742(98)	729(73)	41(67)	-56(58)	141(71)
	C (1a)	546(57)	614(76)	272(42)	-49(60)	-34(49)	98(49)
	C (2a)	440(56)	574(83)	304(50)	-5(57)	-14(52)	135(48)
	C (3a)	501(64)	460(92)	789(85)	-69(62)	81(68)	-50(66)
	C (4a)	1728(177)	1174(192)	320(75)	-91(163)	218(109)	145(88)
TMA(1b)	N (1b)	1527(162)	927(146)	598(92)	-298(123)	-171(108)	-330(78)
	C (1b)	2279(200)	1638(208)	830(139)	1240(133)	-398(135)	64(127)
	C (2b)	1061(122)	2071(282)	1572(168)	-717(139)	837(115)	-595(175)
	C (3b)	786(144)	9120(974)	355(112)	-5(360)	67(107)	482(288)
	C (4b)	2147(215)	1040(179)	490(87)	147(165)	455(115)	351(88)
TMA(2a)	N (2a)	1795(204)	1776(274)	910(162)	-853(167)	-200(151)	172(153)
	C (5a)	742(121)	3181(394)	1104(179)	564(177)	-4(131)	97(220)
	C (6a)	1337(188)	735(160)	1671(183)	-209(135)	-233(164)	731(114)
	C (7a)	1424(148)	1422(222)	1033(140)	731(125)	671(111)	82(134)
	C (8a)	2554(216)	1306(270)	1370(137)	-102(190)	-1530(112)	-202(139)
TMA(2b)	N (2b)	544(94)	895(177)	1889(224)	-299(95)	-143(135)	-181(164)
	C (5b)	1372(187)	330(158)	2321(254)	-64(132)	166(210)	-412(140)
	C (6b)	2045(271)	1694(274)	1159(168)	102(245)	-63(192)	826(148)
	C (7b)	1129(158)	1571(311)	1342(183)	176(168)	-643(138)	28(179)
	C (8b)	952(145)	1393(283)	1512(213)	288(150)	312(157)	-115(184)

 Table 4.5.16
 285 K POM での異方性温度因子. Uij は平均二乗変位 (×10⁻⁴ [Å²])を,

 ()内の数字は標準偏差を表す.

Table 4.5.17 280 K POM での原子座標 (×10⁴) と等価等方性温度因子 (×10⁴) および占有 確率. () 内の数字は標準偏差を表す.

	atom	x	v	Z	Ueq	p
TCM(a)	Mn(a)	2528(2)	4074(1)	1219(1)	478(5)	0.899(4)
()		2636(21)	4292(16)	1356(8)	716(78)	0.101
-	Cl(1a)	2663(5)	4064(4)	283(1)	884(16)	
	,,	2150(41)	4003(35)	322(12)	983(172)	
-	Cl(2a)	2869(5)	5464(3)	1582(2)	993(18)	
	01(24)	2556(48)	5370(35)	1237(13)	1119(179)	
-	Cl(3a)	216(4)	3533(4)	1511(2)	1043(21)	
	01(54)	4628(39)	3472(38)	1572(17)	1164(215)	
-	Cl(4a)	4451(5)	3215(3)	1556(2)	997(18)	
	CI(1a)	609(39)	3356(29)	1542(16)	1089(148)	
TCM(b)	Mn(b)	2683(2)	924(1)	3727(1)	479(5)	0.897(4)
1011(0)	mi(0)	2376(18)	1090(14)	3769(7)	645(65)	0.103
-	Cl(1b)	2645(5)	911(4)	$\frac{3739(1)}{2772(1)}$	957(18)	0.105
	CI(10)	2631(70)	2251(50)	2772(1) 2878(15)	1770(316)	
-	Cl(2b)	3002(5)	-467(3)	4077(2)	920(17)	
	CI(20)	2327(39)	-420(23)	4100(13)	733(115)	
-	Cl(3h)	$\frac{2327(37)}{474(4)}$	$\frac{1420(23)}{1487(4)}$	4057(2)	1016(19)	
	CI(50)	4235(61)	527(60)	4037(2) 4074(16)	2491(401)	
-	C1(4b)	4664(5)	1773(3)	4024(2)	931(16)	
		467(58)	3019(53)	4024(19)	1842(310)	
TMA(1a)	N(1a)	2613(11)	965(8)	734(4)	638(30)	0.928(18)
1101/1(14)	N (1 <i>a</i>)	1522(179)	1235(127)	518(65)	867(739)	0.920(10)
-	C(1a)	2415(21)	965(12)	$\frac{316(05)}{1357(5)}$	936(67)	0.072
	C(1a)	3051(241)	846(106)	1333(52)	925(677)	
-	C(2n)	2223(23)	126(13)	524(7)	1154(82)	
	C(2a)	3427(94)	1398(63)	397(36)	105(246)	
-	C(3a)	1703(26)	1570(14)	456(7)	1432(96)	
	C(3a)	2781(117)	1/01(86)	312(44)	284(350)	
-	C(4n)	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>	171(00)	581(8)	1503(108)	
	C(4a)	1183(115)	1738(94)	537(46)	331(382)	
TMA(1b)	N(1b)	2534(10)	4043(8)	3250(4)	554(33)	0.028(18)
IMA(ID)	N(10)	1860(81)	3837(51)	3250(4)	136(210)	0.928(18)
-	C(1b)	2585(24)	3624(26)	$\frac{3754(32)}{3761(7)}$	2462(195)	0.072
	C(10)	2505(24)	2250(44)	3738(30)	1(152)	
	C(2h)	2031(70)	4047(15)	3104(7)	$\frac{-1(152)}{1312(.96)}$	
	C(20)	2000(24)	4868(184)	3103(65)	1081(1074)	
-	C(2h)	1616(24)	3370(17)	3077(9)	1870(115)	
	C(30)	2703(123)	3045(74)	2046(44)	249(314)	
-	C(4b)	4115(10)	3038(20)	3150(9)	1678(128)	
	C(40)	945(130)	4066(83)	3759(43)	378(325)	
TMA(2a)	N(2n)	7550(11)	3310(7)	58(4)	494(34)	0.853(17)
IWA(2a)	N(2a)	7507(129)	2634(121)	440(57)	434(34)	0.855(17)
-	C(5n)	7743(23)	2382(14)	342(9)	1240(88)	0.147
	C(3a)	6970(76)	2302(14) 2204(53)	410(33)	647(250)	
-	Clean	6712(24)	3814(16)	378(8)	1500(05)	
	C(0a)	8787(77)	3608(58)	312(30)	721(265)	
-	C(7a)	6906(29)	3222(20)	-525(8)	1960(135)	
	C(7a)	8507(169)	3669(97)	-267(57)	1441(715)	
-	C(8n)	0020(10)	3623(14)	-207(37)	1110(85)	
	Cloa	5859(59)	3541(47)	$\frac{-7}{24}$	366(194)	
TMA(2b)	N(2h)	7629(11)	1777(8)	2534(4)	576(40)	0.853(17)
11111(20)	11(20)	7351(17)	1018(37)	2337(7)	307(127)	0.000(17) 0.147
-	C(5b)	7561(23)	2654(13)	2661(8)	1150(74)	0.14/
	C(30)	7206(04)	203+(13) 2725(61)	2588(27)	712(282)	
-	CIGN	7/80(20)	1135(17)	200(27)	1460(110)	
		7855(115)	407(88)	2271(7) 2418(44)	1333(/10)	
-	C(7h)	6351(77)	1564(10)	2710(44)	1632(110)	
	U(10)	8140(102)	1852(61)	2223(3) 2061(32)	1082(117)	
-	C(Ph)	9027(24)	1407(10)	2314(10)	1465(126)	
		6993(110)	652(82)	2257(28)	994(460)	
		0775(110)	002(02)	2231(20)	77T(TUU)	

	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	532(8)	478(10)	425(8)	33(11)	-17(8)	-31(9)
	Cl(1a)	960(26)	1203(40)	491(18)	1(29)	10(19)	101(22)
	Cl(2a)	1232(32)	576(30)	1171(32)	-74(25)	32(28)	-300(22)
	Cl(3a)	647(21)	1611(52)	872(29)	-239(26)	151(22)	68(29)
	Cl(4a)	948(25)	1099(39)	946(29)	397(23)	-191(23)	150(25)
TCM(b)	Mn (b)	494(8)	479(11)	464(9)	5(9)	16(9)	-25(9)
	Cl(1b)	1067(28)	1457(45)	347(16)	29(31)	-28(19)	42(22)
	Cl(2b)	1020(29)	613(30)	1127(31)	47(23)	-45(26)	198(24)
	Cl(3b)	678(22)	1394(46)	976(29)	247(24)	241(22)	-97(29)
	Cl(4b)	848(23)	1038(36)	906(26)	-307(21)	-209(22)	-174(24)
TMA(1a)	N (1a)	429(49)	853(89)	633(58)	53(59)	-30(47)	-121(61)
	C (1a)	1723(143)	844(131)	242(55)	-35(121)	127(86)	27(64)
	C (2a)	1584(159)	908(152)	969(114)	-53(125)	-193(119)	-403(88)
	C (3a)	2303(203)	1075(169)	918(120)	673(131)	-354(124)	294(98)
	C (4a)	785(99)	2363(272)	1359(147)	-558(125)	505(102)	-423(163)
TMA(1b)	N (1b)	560(51)	713(75)	389(44)	-46(55)	-11(46)	-128(48)
	C (1b)	971(131)	6086(565)	330(90)	-288(255)	-13(90)	-11(198)
	C (2b)	1833(175)	1412(202)	691(109)	515(148)	254(116)	306(106)
	C (3b)	1695(156)	2183(250)	1734(182)	-1116(139)	-862(137)	792(160)
	C (4b)	665(100)	2665(316)	1704(199)	443(146)	53(131)	-174(216)
TMA(2a)	N (2a)	507(54)	424(68)	552(58)	-47(47)	35(51)	16(48)
	C (5a)	1072(139)	751(144)	1898(174)	-70(110)	-64(141)	721(108)
	C (6a)	1818(147)	1661(201)	1292(145)	1106(114)	825(114)	301(136)
	C (7a)	2696(217)	1818(317)	1366(132)	-113(213)	-1521(112)	148(152)
	C (8a)	682(94)	960(158)	1688(180)	-333(89)	31(121)	-238(138)
TMA(2b)	N (2b)	406(52)	729(88)	591(63)	52(54)	22(51)	-131(57)
	C (5b)	1207(138)	602(105)	1666(141)	-146(102)	319(128)	-653(78)
	C (6b)	2236(229)	1379(209)	768(115)	482(185)	228(143)	515(107)
	C (7b)	1223(130)	2118(296)	1553(157)	577(147)	-980(108)	-391(168)
	C (8b)	971(136)	1766(293)	1656(200)	218(152)	354(147)	-279(181)

Table 4.5.18 280 K POM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

Table 4.5.19 275 K POM での原子座標 (×10⁻⁴)と等価等方性温度因子 (×10⁻⁴)および占有確率.

() 内の数字は標準偏差を表す.

	atom	х	У	z	Ueq	р
TCM(a)	Mn(a)	2541(2)	4073(1)	1224(1)	496(4)	0.937(4)
_		2635(35)	2988(24)	1234(11)	791(113)	0.063
	Cl(1a)	2664(4)	937(3)	2780(1)	1031(16)	
		-2119(86)	2498(54)	3041(24)	843(282)	
	Cl(2a)	3017(4)	-454(3)	4077(2)	929(14)	
		2042(48)	-321(41)	3980(27)	634(207)	
-	Cl(3a)	439(4)	1478(3)	4057(2)	1041(16)	
		4742(75)	-409(97)	4011(29)	1827(605)	
-	C (4a)	4667(4)	1783(3)	4023(2)	979(14)	
		373(87)	2958(72)	4052(26)	1171(369)	
TCM(b)	Mn(b)	2684(2)	927(1)	3732(1)	489(4)	0.954(4)
	. ,	2700(37)	-288(32)	3710(11)	757(151)	0.046
-	Cl(1b)	2648(4)	4074(3)	276(1)	875(13)	
		2544(85)	2553(53)	396(20)	1330(335)	
-	Cl(2h)	2881(4)	5459(3)	1589(2)	983(14)	
	0.(20)	2562(63)	6574(50)	1366(28)	1153(290)	
-	Cl(3h)	230(4)	3536(3)	1506(2)	1015(16)	
	0.(00)	4310(76)	1382(65)	1485(28)	1716(387)	
-	C1(4h)	4458(4)	3221(3)	1561(2)	985(14)	
	01(10)	2484(58)	2220(45)	1231(20)	984(220)	
TMA(1a)	N(1a)	2627(9)	967(7)	741(4)	626(31)	0.963(16)
11011 (14)	11(14)	1453(111)	1567(71)	718(42)	-1(269)	0.037
-	C(1a)	2419(22)	1025(12)	$\frac{1341(4)}{1341(4)}$	$\frac{-1(20)}{1294(79)}$	0.037
	C(1a)	$\frac{2419(22)}{862(102)}$	1025(12) 1034(142)	1353(67)	280(556)	
-	C(2n)	2263(19)	102(12)	496(5)	$\frac{230(330)}{1188(72)}$	
	C(2a)	4219(130)	816(89)	361(40)	22(325)	
-	C(2n)	1749(22)	1628(13)	464(-6)	$\frac{22(323)}{1507(00)}$	
	C(3a)	1749(22)	1626(15)	248(80)	242(640)	
-	C(4n)	4261(16)	1124(17)	636(7)	1800(106)	
	C(4a)	4201(10)	750(04)	425(52)	1899(100) 56(266)	
TN(A(11-)	NI(1b)	2548(0)	4056(7)	423(33)	<u> </u>	0.062(16)
IMA(10)	N(10)	2548(9)	4056(7)	3237(3)	618(31)	0.963(16)
-	0(11)	1356(137)	4425(101)	3099(56)	1/2(399)	0.037
	C(1b)	2486(21)	3954(15)	3804(6)	1552(106)	
-	G(21)	2905(121)	2836(82)	3/91(47)	4(296)	
	C(2b)	2150(20)	49/3(12)	3126(5)	1283(74)	
-		4/2/(241)	50/1(1/9)	3368(83)	459(769)	
	C(3b)	1644(20)	3365(13)	3022(7)	1454(86)	
-		3648(196)	2778(129)	2999(66)	217(504)	
	C(4b)	4108(16)	3885(16)	3113(7)	1563(105)	
		1115(210)	3982(245)	3458(106)	737(1159)	
TMA(2a)	N(2a)	7542(9)	3268(6)	69(3)	453(26)	0.895(15)
-		7553(249)	3858(159)	149(40)	3348(1291)	0.105
	C(5a)	7799(22)	2381(13)	244(8)	1419(93)	
-		7318(128)	2134(78)	94(30)	/29(390)	
	C(6a)	6836(20)	3861(14)	409(7)	1778(80)	
-		7938(134)	4182(97)	239(58)	1696(512)	
	C(7a)	6808(24)	3176(16)	-487(7)	2007(97)	
-		8386(160)	3349(105)	-469(54)	1045(649)	
	C(8a)	9059(15)	3606(12)	-28(8)	1183(75)	
		5827(65)	3489(45)	24(26)	219(182)	
TMA(2b)	N(2b)	7617(10)	1746(7)	2511(4)	601(34)	0.895(15)
_		7431(198)	2330(154)	2666(82)	2453(1330)	0.105
	C(5b)	7604(19)	2672(11)	2723(8)	1338(69)	
-		6871(107)	2646(56)	2845(37)	614(298)	
_	C(6b)	7450(33)	1163(17)	2953(7)	1951(138)	
_		7994(151)	484(107)	2295(34)	1151(600)	
-	C(7b)	6387(21)	1517(15)	2229(8)	1665(104)	
		7652(105)	1264(83)	2188(36)	1323(377)	
-	C(8b)	8993(20)	1489(15)	2299(8)	1482(98)	
		6916(139)	696(107)	2253(49)	996(616)	

	atom	U ₁₁	U ₂₂	U ₃₃	U_{12}	U ₁₃	U ₂₃
TCM(a)	Mn (a)	516(7)	498(9)	473(7)	21(9)	-9(7)	-14(8)
	Cl(1a)	1022(22)	1125(31)	479(15)	-26(24)	-5(16)	83(18)
	Cl(2a)	1166(26)	619(25)	1164(26)	-61(20)	-7(23)	-307(18)
	Cl(3a)	648(17)	1478(39)	920(24)	-276(20)	160(18)	61(23)
	Cl(4a)	921(20)	1097(32)	938(24)	375(19)	-219(18)	134(21)
TCM(b)	Mn (b)	519(7)	501(9)	447(7)	-1(7)	-7(7)	-31(7)
	Cl(1b)	1167(25)	1549(40)	377(14)	-21(28)	-43(17)	16(19)
	Cl(2b)	1082(24)	599(25)	1105(25)	51(19)	-32(22)	218(19)
	Cl(3b)	690(18)	1436(39)	995(25)	258(20)	202(18)	-107(24)
	Cl(4b)	906(20)	1101(30)	931(22)	-307(19)	-188(18)	-211(20)
TMA(1a)	N (1a)	517(44)	616(66)	744(53)	42(47)	-16(42)	57(50)
	C (1a)	2395(174)	1246(155)	242(55)	-18(146)	147(91)	8(66)
	C (2a)	1561(131)	1207(152)	796(86)	-86(113)	-276(93)	-321(79)
	C (3a)	2349(173)	1677(183)	766(99)	953(125)	-282(105)	212(95)
	C (4a)	865(86)	3308(278)	1521(130)	-858(119)	664(89)	-757(160)
TMA(1b)	N (1b)	653(47)	848(72)	354(37)	-75(52)	5(39)	15(44)
	C (1b)	1235(121)	2562(273)	859(110)	45(167)	-35(95)	159(141)
	C (2b)	1862(148)	1281(149)	708(77)	281(121)	373(92)	499(75)
	C (3b)	1790(145)	1359(171)	1213(129)	-721(108)	-231(115)	-147(108)
	C (4b)	695(87)	2551(268)	1442(144)	203(129)	116(101)	30(163)
TMA(2a)	N (2a)	496(42)	427(53)	436(40)	-29(37)	-24(38)	139(35)
	C (5a)	1438(152)	917(161)	1904(170)	-192(118)	-31(143)	627(114)
	C (6a)	1991(121)	2012(173)	1331(119)	1297(94)	885(90)	112(113)
	C (7a)	2998(172)	1291(209)	1731(109)	-124(148)	-1843(88)	-179(111)
	C (8a)	617(75)	1187(150)	1744(151)	-285(80)	-101(99)	-301(121)
TMA(2b)	N (2b)	445(45)	675(75)	683(57)	7(46)	43(45)	-7(50)
	C (5b)	1121(114)	733(102)	2158(143)	-87(88)	273(120)	-830(78)
	C (6b)	3132(290)	1910(270)	813(123)	279(245)	-10(165)	459(130)
	C (7b)	1467(132)	1631(237)	1896(159)	480(131)	-983(114)	-398(149)
	C (8b)	1205(120)	1334(214)	1906(165)	112(120)	692(116)	-288(138)

Table 4.5.20 275 K POM での異方性温度因子. Uij は平均二乗変位 (×10⁻⁴ [Å²]) を, ()内の数字は標準偏差を表す.

T Table 4.5.21 270 K POM での原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴) および占有確率. () 内の数字は標準偏差を表す.

· · · · · · · · · · · · · · · · · · ·	atom	x	v	Z	Uea	p
TCM(a)	Mn(a)	2548(2)	4076(1)	1224(1)	473(4)	0.941(4)
	~ /	2683(37)	2978(28)	1227(11)	793(133)	0.059
-		2664(4)	4070(3)	277(1)	839(14)	
	CI(1a)	3517(91)	3871(49)	-1196(24)	1073(298)	
-		2905(4)	5457(3)	1588(2)	929(14)	
	CI(2a)	2463(63)	5544(55)	1236(18)	1098(282)	
-	Cl(3a)	222(4)	3543(3)	1495(2)	1049(18)	
	. ,	2508(64)	2211(43)	1230(20)	791(202)	
-	Cl(4a)	4446(4)	3210(3)	1565(2)	942(15)	
		211(59)	3655(37)	1687(22)	1107(176)	
TCM(b)	Mn(b)	2707(2)	931(1)	3731(1)	471(4)	0.952(4)
		2539(56)	2441(38)	2891(17)	955(206)	0.048
-	Cl(1b)	2682(5)	934(4)	2777(1)	1110(19)	
		2710(66)	895(42)	2795(22)	652(178)	
-	Cl(2b)	3043(4)	-461(3)	4077(2)	899(14)	
		2680(69)	-28(43)	3769(21)	673(195)	
-	C (3b)	452(4)	1469(3)	4059(2)	1085(18)	
_		4823(87)	-634(111)	3999(36)	2233(668)	
	Cl(4b)	4679(4)	1788(3)	4023(2)	937(14)	
		380(55)	1443(33)	4030(25)	544(165)	
TMA(1a)	N(1a)	2652(10)	961(8)	731(4)	644(35)	0.979(16)
_		1104(196)	921(154)	415(74)	-1(468)	0.021
	C(1a)	2463(20)	974(11)	1347(5)	1055(68)	
-		4518(246)	1739(158)	1567(93)	-5(562)	
	C(2a)	2268(21)	77(13)	505(6)	1297(79)	
-		4202(235)	855(168)	353(88)	-2(552)	
	C(3a)	1753(22)	1603(13)	477(7)	1447(86)	
-	0(1-)	2850(245)	1560(154)	317(91)	-1(5/3)	
	C(4a)	4251(17)	1121(10)	031(8)	1585(98)	
TMA(1h)	N(1h)	2544(0)	4057(7)	2244(2)	-4(387)	0.070(16)
IMA(10)	N(10)	1295(215)	4365(140)	3244(3) 3031(79)	-1(511)	0.979(10)
-	C(1b)	2571(23)	3822(20)	3794(7)	2007(144)	0.021
	0(10)	4674(250)	3473(159)	3902(92)	-4(582)	
-	C(2b)	2126(20)	4950(12)	3116(6)	1171(72)	
	-()	3061(243)	5316(155)	3225(95)	-2(575)	
-	C(3b)	1645(20)	3355(13)	3013(7)	1306(83)	
	-()	2692(459)	2865(314)	3204(171)	400(1350)	
-	C(4b)	4127(17)	3893(17)	3120(8)	1543(106)	
		1512(244)	3663(161)	3476(92)	-2(584)	
TMA(2a)	N(2a)	7550(10)	3286(6)	66(3)	511(29)	0.959(15)
_		7383(123)	4235(78)	91(45)	82(308)	0.041
	C(5a)	7774(20)	2359(12)	289(8)	1276(79)	
_		7201(147)	2110(92)	117(52)	73(348)	
	C(6a)	6790(21)	3827(16)	404(8)	1957(99)	
-		7247(146)	4498(95)	-237(50)	75(350)	
	C(7a)	6816(23)	3192(15)	-483(7)	1831(92)	
-		8475(139)	3354(90)	-457(52)	47(341)	
	C(8a)	9032(16)	3633(12)	-45(8)	1169(78)	
		5896(128)	3505(81)	13(48)	-1(305)	0.000
TMA(2b)	N(2b)	7622(10)	1756(8)	2517(4)	647(37)	0.959(15)
-	C(51)	7502(22)	2001(02)	2525(57)	-1(2/0)	0.041
	U(30)	(373(22) 6642(154)	2033(12)	2/13(0)	119(205)	
-	C(6b)	7478(21)	1110(15)	2003(02)	1760(110)	
	U(00)	8011(131)	2506(82)	2930(7)	1/07(117) 8(202)	
-	C(7b)	6443(24)	1480(17)	2226(9)	2022(127)	
	0(70)	7481(251)	733(176)	2254(75)	457(775)	
. –	C(8b)	9027(22)	1490(15)	2312(9)	1655(104)	
	· (· · ·)	6658(168)	1363(103)	2787(63)	158(412)	

<u></u>	atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
TCM(a)	Mn (a)	481(7)	497(9)	440(7)	17(9)	-11(7)	-3(8)
	Cl(1a)	967(23)	1098(32)	452(15)	-17(24)	-13(16)	62(19)
	Cl(2a)	1070(25)	590(25)	1125(27)	-65(20)	7(23)	-285(19)
	Cl(3a)	661(19)	1627(46)	859(25)	-273(23)	174(19)	27(26)
	Cl(4a)	886(21)	1070(33)	870(23)	339(20)	-220(19)	139(21)
TCM(b)	Mn (b)	496(7)	487(9)	429(7)	-5(8)	-3(8)	-26(8)
	Cl(1b)	1210(29)	1741(48)	380(16)	-19(33)	-60(19)	-4(23)
	Cl(2b)	1046(25)	595(25)	1056(26)	58(20)	-23(23)	209(20)
	Cl(3b)	723(21)	1521(45)	1009(27)	253(23)	231(21)	-98(27)
	Cl(4b)	868(21)	1040(31)	902(23)	-295(19)	-174(19)	-201(21)
TMA(1a)	N (1a)	500(46)	756(77)	677(55)	42(52)	-18(44)	-36(56)
	C (1a)	1902(145)	910(132)	353(61)	-101(121)	107(87)	42(66)
	C (2a)	1636(147)	1510(167)	742(87)	-306(126)	-144(100)	-474(82)
	C (3a)	2091(165)	1302(165)	948(111)	768(115)	-379(108)	201(96)
	C (4a)	817(88)	2308(247)	1628(139)	-528(115)	656(92)	-497(153)
TMA(1b)	N (1b)	624(48)	781(73)	391(41)	-47(53)	-20(41)	-37(47)
	C (1b)	1110(124)	4258(400)	652(107)	-292(207)	-115(93)	263(170)
	C (2b)	1665(144)	1041(138)	807(86)	127(115)	299(95)	477(75)
	C (3b)	1495(133)	1114(164)	1309(134)	-523(101)	-369(110)	-82(109)
	C (4b)	671(88)	2560(269)	1397(148)	348(130)	0(104)	-85(168)
TMA(2a)	N (2a)	542(47)	539(63)	454(44)	-26(42)	-3(41)	109(40)
	C (5a)	1209(125)	522(116)	2098(167)	-106(91)	-183(129)	582(98)
	C (6a)	1801(127)	2480(227)	1590(142)	1213(114)	911(101)	-17(139)
	C (7a)	2679(161)	1240(202)	1574(103)	38(142)	-1664(83)	-199(106)
	C (8a)	598(77)	1090(153)	1819(160)	-228(82)	-68(103)	-188(128)
TMA(2b)	N (2b)	398(45)	840(85)	703(60)	-17(48)	20(46)	-42(55)
	C (5b)	1396(141)	781(116)	1983(147)	-108(106)	273(133)	-774(85)
	C (6b)	3397(290)	1214(185)	697(99)	438(200)	115(148)	444(91)
	C (7b)	1940(169)	1808(291)	2316(180)	316(167)	-1406(126)	-536(169)
	C (8b)	1384(131)	1406(217)	2176(185)	339(122)	832(124)	-286(147)

Table 4.5.22 270 K POM での異方性温度因子. U_{ij}は平均二乗変位 (×10⁻⁴ [Å²])を, ()内の数字は標準偏差を表す.

4.6 混合モデル (Mixed Model)

本章では前章に引き続き, occupation probability p_j を考慮するモデルである混合モデルについて解析を行う.

すなわち前章で述べたように、「TCM 四面体基は FOM を適用し、TMA 四面体基は POM を適用するという、FOM と POM の混合モデル」である.

すなわちこのモデルの相転移機構としては、TCM 四面体基は Displacive 型の、TMA は Order-Disorder 型相転移機構を持つという物質中に異なる相転移機構が存在するというモデルである.

また TMA 四面体基に適用する POM は前章で述べた同一の四面体基には同一の occupation probability p_j を割り当てるものとする. 解析に用いられるパラメータ数は p_j も含めて 456 個である.

Table 4.6.1 に Mixed Model 得られた最終 *R* 因子を FOM と POM の比較とともに示 す. 表から判るように Mixed Model での値はちょうど FOM と POM の中間の値をと ることがわかる. Table 4.6.2 に 289K における POM での原子座標等の最終解析結果を 示す.

しかし第 4.4 章の議論において TCM 四面体基も Order-Disorder 型である可能性が示唆されていることから次節では構造の議論として典型的なモデルである①**Displacive** 型:DP(I相)-FOM(Ⅲ相)と② **Order-Disorder** 型:OD(I相)-POM (Ⅲ相)の 2つについて検討を行う.

Table 4.6.1: Mixed Model 得られた各温度での最終 *R* 因子. 各温度における反射個数 と FOM および POM の最終 R-facor の値を比較のため示す.

	number of	R-factor (%)				
Temperature (K)	reflections N	Mixed Model	РОМ	FOM		
292	3013	8.02	7.46	8.58		
291	3206	8.06	7.45	8.69		
290	3335	7.91	7.45	8.45		
289	3456	7.91	7.29	8.41		
287	3595	7.74	7.19	8.17		
285	3664	7.12	7.14	8.06		
280	3880	7.67	7.30	8.28		
275	3991	7.85	6.69	7.94		
270	4105	7.73	7.00	7.95		

·····	atom	X	У	Z	Ueq	р
TCM(a)	Mn(a)	0.25183(21)	0.40794(14)	0.12261(8)	0.05014(56)	1.000
	Cl(1a)	0.25788(58)	0.40757(40)	0.02858(16)	0.10150(206)	
	Cl(2a)	0.27484(70)	0.54538(41)	0.15733(23)	0.12205(249)	
	Cl(3a)	0.02905(51)	0.34825(44)	0.15281(21)	0.11875(259)	
-	Cl(4a)	0.45261(52)	0.32935(39)	0.15509(21)	0.11031(216)	
TCM(b)	Mn(b)	0.26018(21)	0.09316(15)	0.37321(8)	0.05627(64)	1.000
	Cl(1b)	0.25822(56)	0.09389(41)	0.27754(16)	0.10397(209)	
	Cl(2b)	0.28323(69)	-0.04778(40)	0.40778(22)	0.11892(237)	
	C (3b)	0.04099(52)	0.15443(46)	0.40468(22)	0.12990(273)	
	Cl(4b)	0.46314(52)	0.17282(41)	0.40265(21)	0.11237(217)	•
TMA(1a)	N(1a)	0.26096(144)	0.09212(118)	0.07477(71)	0.07879(623)	0.793(20)
		0.23763(488)	0.09090(416)	0.06713(176)	0.06660(1798)	0.204
	C(1a)	0.24684(321)	0.10364(154)	0.13508(62)	0.10622(1005)	-
		0.25721(776)	0.07766(425)	0.14358(183)	0.05968(2026)	
	C(2a)	0.21986(281)	0.00799(161)	0.05099(74)	0.10009(938)	-
		0.29973(836)	0.00728(538)	0.04904(243)	0.09158(2717)	
	C(3a)	0.16734(322)	0.15944(195)	0.04509(96)	0.13987(1291)	-
		0.29744(795)	0.17036(562)	0.03944(267)	0.10545(2767)	
	C(4a)	0.40649(260)	0.11717(257)	0.05323(103)	0.18226(1664)	-
		0.11451(733)	0.09725(961)	0.04424(280)	0.16898(5509)	
TMA(1b)	N(1b)	0.25394(140)	0.40171(92)	0.32407(42)	0.04812(404)	0.793(20)
		0.24458(634)	0.39298(375)	0.33292(244)	0.07490(2125)	0.204
	C(1b)	0.25642(326)	0.38328(260)	0.37763(84)	0.16789(1742)	
		0.25688(761)	0.24861(615)	0.37383(245)	0.08706(3284)	
	C(2b)	0.22394(321)	0.49365(174)	0.31630(77)	0.12881(1104)	
		0.30726(2176)	0.42652(1698)	0.32162(454)	0.35571(14416)	_
	C(3b)	0.15173(316)	0.33774(220)	0.30791(98)	0.16667(1412)	
		0.26565(893)	0.29338(862)	0.30510(321)	0.16065(5087)	
	C(4b)	0.40498(249)	0.37868(232)	0.31621(111)	0.15060(1490)	
		0.13842(898)	0.38421(571)	0.35611(413)	0.18727(3454)	
TMA(2a)	N(2a)	0.75761(162)	0.32911(108)	0.00756(54)	0.05328(514)	0.718(19)
		0.73781(365)	0.32849(240)	0.00971(155)	0.05242(1214)	0.282
	C(5a)	0.77693(311)	0.23841(179)	0.03176(113)	0.11600(1123)	
		0.71858(663)	0.23937(443)	0.03369(259)	0.11858(2476)	_
	C(6a)	0.67607(287)	0.37954(220)	0.04090(106)	0.14440(1261)	
		0.81781(572)	0.37753(408)	0.04423(209)	0.10596(2040)	-
	C(7a)	0.69279(381)	0.31883(236)	-0.05417(108)	0.16960(1505)	
		0.82378(707)	0.33202(460)	-0.05122(193)	0.13891(2435)	
	C(8a)	0.90489(231)	0.36222(175)	-0.00053(117)	0.10480(1073)	
		0.58117(456)	0.35308(380)	0.00033(242)	0.07656(2100)	
TMA(2b)	N(2b)	0.75813(159)	0.17834(109)	0.25172(67)	0.06054(568)	0.718(19)
		0.74419(424)	0.18310(324)	0.24823(126)	0.07808(1569)	0.282
	C(5b)	0.76245(304)	0.26731(187)	0.26978(130)	0.11834(1201)	
		0.73336(488)	0.27178(341)	0.25706(160)	0.06691(1522)	
	C(6b)	0.74464(381)	0.10313(222)	0.29134(96)	0.13303(1402)	
		0.77178(1293)	0.08514(716)	0.24380(366)	0.19123(5795)	
	C(7b)	0.62436(246)	0.15514(222)	0.22748(115)	0.12937(1408)	
		0.84733(1053)	0.17587(485)	0.22634(316)	0.14377(3807)	
	C(8b)	0.89452(291)	0.14585(238)	0.22953(130)	0.13930(1681)	
		0.68575(1123)	0.09941(788)	0.22544(253)	0.22543(5525)	

Table 4.6.2 Mixed Model における 289 K での原子座標
4.7 まとめ

前述のように一連のⅠ-Ⅲ相転移を

① **Displacive** 型:DP(I相)-FOM(Ⅲ相)

② Order-Disorder 型:OD(I相)-POM (Ⅲ相)

の2つの型に大別することができる.

ここでまず2つの型の構造の温度変化の特徴を TCM 四面体基の重心位置及び四面体基の c 軸に平行な軸に関する回転角の温度変化から考察する.

Fig. 4.7.1 は, FOM と POM で解析した TCM(a)四面体基と TCM(b)四面体基の重心, すなわち Mn(a)と Mn(b)の *c*-glide 面からの *a* 軸方向の変位を I 相の OD におけるそれ と対比して記したものである. FOM ではこれらは同一の式

$$\Delta_i = D_i (T_c - T)^{\beta_\Delta} \tag{4.9}$$

でフィットでき,ここでβ_Δはそれぞれ 0.52 (TCM(a))及び 0.41 (TCM(b))である.フィットした結果を図中の実線および点線で示してある.この傾向は F 合成図の分析で 得られた Fig. 4.4.2 と同一である.

Fig. 4.7.1 POM 及び FOM における TCM 四面体基の重心位置の *a* 軸方向への *c*-glide 面 からのシフト. 図中(a)は TCM(a)を, (b)は TCM(b)を表している. OD は I 相におけ Disordered model での TCM 四面体基の重心位置を表している. また各値のエラーバーは図中のシンボルより小さい. 実線および点線は式(4.9)でフィットした曲線を 表す.

一方 POM で得られた結果は Mn(a)の変位は小さく、やや値にばらつきがある. Mn(b)に関しては I 相の order-disorder モデルの値よりも大きな値をとる. OD の値が 一定になるのに対し、相転移点で有限の跳びを示し、かつ温度降下に伴って値が増加 している.

Fig. 4.7.2 に FOM と POM で解析した, TCM(a)四面体基と TCM(b)四面体基の回転の 温度依存性を示す. これらの値はAXS89システム内の剛体振動解析プログラム RSMV を用いて計算され, その際, I相においては DP モデルの位置を, Ⅲ相においては FOM における TCM 四面体基の位置を基準値とした.

FOM においては TCM(a)および TCM(b)とも、同一の式、

$$\Theta_{i} = E_{i} (T_{c} - T)^{\beta_{\Theta}}$$

$$(4.10)$$

でフィットされる温度降下に伴う単調増加を示しており、ここで β_{Θ} はそれぞれ 0.34 (TCM(a))及び 0.31 (TCM(b))である.

他方 POM において、回転角は図中に示されている I 相の order-disorder モデルでの それとほぼ変わらず一定の値を示しているといえる.

Fig. 4.7.2 POM 及び FOM における TCM 四面体基の重心位置の c 軸方向に平行な軸回りの回転.
 転. 図中(a)は TCM(a)を, (b)は TCM(b)を表している. OD は I 相における order-disorder model での回転角を表している. 実線および点線は式 (4.10) でフィットした曲線を表す.

これらの関係から FOM および POM の両モデルを使って TMATC-Mn のⅢ相の構造の秩序化過程を考察する.

FOM では Fig. 4.7.1 および Fig. 4.7.2 に示されるように,四面体基の重心位置と回転角の温度降下に伴う連続的な増加が見られる. したがって FOM では TMATC-Mn のⅢ 相における構造の秩序化は I 相においてミラー面上におかれていた四面体基がⅢ相に入ると x 方向に変位し始め,同時に四面体基が c 軸に平行な軸に関して回転をし,温度降下とともにその回転角が増加していくことにより超格子構造の秩序化が進行し,Fig. 4.1.1 で示された超格子反射強度の温度変化が説明できると結論づけられる.

しかし FOM で一連の相転移の説明を試みると4.4節で得られた非対称な Cl(2a)原 子回りの電子密度分布は説明できない.

他方②に示されたように一連の相転移を Order-Disorder 型で考えるとどうであろう か. I相においては TCM および TMA 四面体基ともミラー面を挟んで等価な位置に 等確率で配置される. ところがⅢ相に入ると I 相においては等価であった占有確率の バランスが崩れ I 相でのミラー面が *c*-glide 面となる. そこで Fig. 4.5.3 で示されたよ うに存在確率が温度降下に伴い増加するのに伴い, Ⅲ相の構造が秩序化されていくと 考えることができる.

またその占有確率のバランスの変化で major と minor な原子の感じるポテンシャル が変わり、その結果、両原子の平衡位置がずれる、すなわち Fig. 4.7.1 で表される POM での重心の変位も説明できる.

また今回は major と minor の一対の TCM 四面体基は十分離れていないので4.4節 で議論したように F 合成図では各 Cl 原子の一対の major と minor の電子分布は一つの ピークとして観測される.そこで温度降下に伴い,連続的に major が成長し minor が 消失していく過程においてこれらが非対称な分布となり,従って重心の移動が生じ, そのことがピークの回転として表出すると考えると POM で FOM の挙動を無理なく 説明することができる.

次に 3.2 節で論じた Cl(2)原子の温度因子 U₁₁の温度変化について考察する.今,ある原子が split atom で表現できる状態にいるとする.付録 A に示すように,その原子が x₁ と x₂の位置にそれぞれ p と 1-p の確率でいると表現できるならば, x 方向の温度因子は

$$\left\langle \left(x - \left\langle x\right\rangle^2\right) = \left\langle x^2\right\rangle_0 + 4pd^2(1-p)$$
(4.12)

と書ける. ここで 2 つに split したサイトの間隔が $2d = x_1 - x_2$ であり, その原子が split 状態にないときの広がりを< $x^2 >_0$ とした.

いま理想的な OD モデルを考え, 多重度のみが Fig. 4.5.3 のように温度依存性を示す と考えると, 理想的な Order-Disorder 型相転移を Displacive 型と解釈して解析した場 合 Fig. 4.7.3 のような平均二乗変位の温度依存性が考えられる.

Fig. 4.7.3 split された一対の原子を一つの原子でおいた場合の温度因子の挙動 ただし原子の平均二乗変位は温度変化せず一定の値をとるものとする

次に一段階,現実の系に近づけ, occupation probability の温度依存性に加え,原子 1 個の平均二乗変位 $\langle x^2 \rangle_0$ が

$$\langle x^2 \rangle_0 \propto k_B T$$
 (4.11)

のように絶対温度に比例していると考えると, Fig. 4.7.4 のような温度依存性を示すで あろう.

Fig. 4.7.4 split された一対の原子を一つの原子でおいた場合の温度因子の挙動 ただし原子の平均二乗変位は(4.12)式で表される温度依存性を示すものとする

そこで今回得られた Cl(2a)と C(2a)の a 軸方向の異方性温度因子 U₁₁の温度依存性の グラフを Fig. 4.7.5 に示す. どちらのグラフにおいても POM は相転移の前後で特に大 きな変化はなく,絶対温度に比例した直線上にのっていることがわかる.

Fig. 4.7.5 U₁₁の温度変化 (a)C(2a) (b) Cl(2)

それに対し FOM での解析結果は転移温度 T_c 以下では緩やかな下降を伴いながら POM の値に近づく傾向を示している. 図中の点線は OD の d および $\langle x^2 \rangle_0$ 値を式(4.11) に代入したものであり, FOM の挙動とよい一致を見ている.

さてここで Fig. 4.7.5 で示された Displacive モデルでの I 相での温度因子の挙動に ついて論じる. 図中白抜きの赤丸で示された DP の挙動について比較すると, C(2)が 温度降下に伴い転移点に向かって減少しているのに対し, Cl(2a)は相転移点に向かっ て上昇をしておりなにか臨界的挙動のようにも見える. この様子を模式的に書くと Fig.4.7.6 のようになる.

Fig.4.7.6 DP-FOM における U₁₁の温度変化 (a)Cl(2) (b)C(2)

研究者によってはこの Fig. Fig.4.7.6(a)に示されるような原型相における温度降下に 伴う相転移点近傍での温度因子の上昇を,「変位型相転移の相転移近傍における臨界 的ゆらぎ」として,温度因子がこの挙動を示すことが変位型相転移の特色であるとし ている¹⁾.

この論点について検討を行ってみよう.まず今回のような結晶構造解析おいては, このような臨界的揺らぎの影響はX線散漫散乱として観測されるはずで,散漫散乱を 考慮していない構造解析で得られる温度因子にはその影響は出ないはずである.では 上図に見られる挙動はどのように整理したらよいであろうか.

ここで第3章のI相の解析で得られた各四面体基を構成する原子の変位についての グラフ(Fig. 3.3.2)を再掲する.

(再掲) Fig. 3.3.2 D-2 モデルにおける各四面体基の重心と Cl(2),C(2), C(6)原子の mirror 面からの変位の温度変化

この図を見るとわかるように、Cl(2)原子は温度降下に伴って転移点に向かって、 OD の等価な位置の間隔がミラー面を挟んで増加していることがわかる. Displacive 型ではこの一対の原子対をミラー面上に固定した1個の原子と見なすので、その split の増加を温度因子 U₁₁の増加として表現したため、Fig. 4.7.6(a)で示したような増加と して示される.

他方, 4.7.5(b)に示される C(2)は Fig. 3.3.2 で示されるように Cl(2)とは逆に温度降下 に伴ってその split 幅 Δx が減少すなわち,一対の原子対がミラー面に近づく.従って Displacive 型では Cl(2a)とは逆に転移点に向かって U_{11} は減少傾向になるはずでそれ が Fig.4.7.5(a)における計算で得られた曲線よりも急な角度での温度因子の減少の理 由になっていると考えられる.

このように

(1)Hamilton 検定で POM が支持された

(2)非対称な電子密度分布の存在

- (3)Order-Disorder 型相転移としたときの相転移点近傍の原子の平均二乗変位に特に異常がなく絶対温度に比例している.
- (4)Displacive 型相転移としたときの温度因子の異常な振る舞いは特別な考えを導入することなく, Order-Disorder 型相転移での温度因子および原子の変位から無理なく 導くことができる.

この事実から TMATC-Mn の I - III相相転移の機構は Order-Disorder 型であると

結論できる.

一方 Cl(2)や C(2)原子で見られたこのような変位は Displacive 型(変位型)の特徴 とも言え、このように相転移機構の本質は Order-Disorder 型でありながらも Displacve 的な要素を含んでいることが今回の研究で明らかになった.

参考文献

- 1) N. Koshiji and H. Mashiyama: J. Phys. Soc. Japan 80 (2011) No.6.
- 2) H. Mashiyama and N. Koshiji: Acta Crystallographica B45 (1989) 467.
- 3) N. Koshiji and H. Mashiyama: J. Phys. Soc. Japan 69 (2000) 3853.
- 4) K. Gesi and K. Ozawa: J. Phys. Soc. Jpn. 53 (1984) 627.
- 5) IUC: International Tables for Crystallography. (Kluwer Academic Publisher, 1999, Dordrecht) Vol. C.
- 6) H. Mashiyama: J. Phys. Soc. Jpn. 60 (1991) 180.
- 7) M. N. Burnett and C. K. Johnson: ORTEP-III (Oak Ridge Nat. Lab. 1996).
- 8) W. C. Hamilton: Acta Cryst. 18 (1965) 502
- 9) K. Itoh: J. of the Crystallographic Society of Japan 28 (1986) 247 (in Japanease)
- 10) K. Itoh: J. Phys. Soc. Jpn. 53 (1984) 2049.

,

第5章 最大エントロピー法による強 弾性相(Ⅲ相)の電子密度分布の推定

この章では第4章で行った電子密度分布についてドメインの影響について 詳細な検討を行う.すなわち TMATC-Mn の強弾性相(Ⅲ相)では stripe 状の twin 構造となるため,得られた X 線回折データによる電子密度計算,すなわ ちF合成はそのままでは twin の平均像を与えてしまう.しかし twin の影響は 超格子反射のみに現れるという特殊性があるので,第4章ではそのままフー リエ合成を行い,電子密度分布を導いて議論した.この密度分布は概ね,twin を考慮した最小二乗法の結果と矛盾するものではなかったが,密度を詳細に 議論する上では疑問が残る.

この章では CCD カメラを備えた X 線回折計 (Merculy-CCD)で新たにⅢ相 の典型的な温度点数点で X 線回折強度を測定した.そしてドメイン比を考慮 して最小二乗法解析を行い,その結果から計算された結晶構造因子 F_c を利用 し,実測された強度より single-domain の X 線回折強度を見積もる.さらに single-domain として見積もられた X 線回折強度を用いて電子密度分布を計算 する.この結果を,twin のままで計算した電子密度分布と比較検討する.特 に,前章で議論した特徴的な原子近傍の電子密度分布が秩序化でどうなるか, 2つの結果の比較・検討を行う.

5.1 目的

第4-4章で議論したように今回の研究では電子密度分布を詳細に検討することにより非対称な電子密度分布を見いだし、それが強弾性相(Ⅲ相)での POM での解析につながった.

その際,用いた電子密度分布図(F合成図)は FOM による解析結果から符号を決定した構造因子 Fobsをそのままフーリエ合成することによって得られたものである.

しかし実際にはⅢ相は単斜相であり, Fig. 2.3.2 のように単斜ドメインが存在し,構造解析においては式(2.3)で示すようにドメイン比もパラメータの一つとして最小二乗法計算を行なった.従って第4-4章で議論したF合成図は実際には2つのドメインからのX線の重ね合わせからそのまま導かれたものである.そこではドメインの存在を無視してF合成を行ったが,厳密な議論を行うためには,2つのドメインからの寄与を分離して, single-domain からのX線回折強度のみで得られた電子密度で議論をする必要がある.

そこで今回,新たにⅢ相内の典型的な温度について X線データを再収集し,前回と

同様そのままの F_{obs}からのデータで得られた電子密度分布と,以降の章で述べる手法 を用いて見積もった single ドメインからのX線回折強度を用いて計算した電子密度分 布の比較・検討を行った.

電子密度分布計算には、出発モデルへの依存性が出ぬよう、最大エントロピー法 (Maximum Entropy Method: MEM)を用いた.次節では最大エントロピー法の概略も 述べる.

5.2 実験および解析

今回解析に用いたデータは新たに半径 0.12 mm の球形試料を切り出し,これをガラ スキャピラリーに封入し, Mercury CCD を用いて,Ⅲ相の転移点直下,領域中頃,領 域低温部分の各温度である 292 K, 286 K, 276 K の各温度でデータを収集した.

Fig. 5.2.1 実験に使用した山口大学機器分析センター所有の Mercury CCD

前章で行った最小二乗法で構造の精密化を行う際は、2つのドメインからの寄与を

$$F_{cal}^{2} = x_{DM} \cdot F_{c} (hkl)^{2} + (1 - x_{DM}) \cdot F_{c} (hk\bar{l})^{2}$$
(5.1)

で計算し,これと実測の Fobs とあうようにドメイン比 XDM および原子座標,温度因子をパラメータとして最小二乗計算を行った.

そこでこの考えを逆に考えることにより、ドメイン比を考慮して収束した構造解析 計算において一組の $F_{c}(hkl)^{2} \geq F_{c}(hk\bar{l})^{2}$ の大きさの比を見いだすことが可能となる. この比を対応する指数の実測の F_{obs} の組を用いて単分域からのX線強度 $F_{o}(hkl)$ を再 構成することが可能である.すなわち

$$F_{o}(hkl)^{2} \propto F_{obs}^{2} \times F_{c}(hkl)^{2} / (F_{cal}^{2})$$
(5.2)

である.

次に,この単分域からのF_o(*hkl*)を用いて最小二乗法計算プログラムでスケールあわ せと F_oに位相を付加し,この単分域 F_oを用いて MEM 解析 (Maximum Entropy Method:最大エントロピー法解析)を行う.そしてドメイン混在を無視して行った MEM 解析の結果と,単分域にした MEM 解析の結果を比較する.

次に MEM 解析についてその概略を説明する¹⁾. 元来X線構造解析とは単位包中の 電子密度を求めることである. そのために結晶構造因子の二乗である情報量である積 分強度を測定している.

ここで従来のフーリエ合成では単位包中の電子密度分布を得る方法は、測定した結 晶構造因子をフーリエ係数とするフーリエ級数の和をとることにより行われる.すな わち得られた像からもとの基本構造を得ている.ところがこの議論には制約があり、 この議論は無限個のフーリエ係数が全て正しいとこのみ成り立ち、実際はある程度誤 差を含んだ有限個の結晶構造因子のみが得られることに問題があり、そこでゴースト や負の電子密度の値を持つ領域が出現する等の問題が生じる.

これに対して MEM では正定値の電子密度のフーリエ変換は結晶構造因子であることを常に正しく反映している.

第2の特徴は MEM 解析では構造モデルを仮定することなく測定されたデータのみ で推定を行い反復法により測定の精度を高めていることである.ただし MEM あくま で推定法であり必ずしも真の解を得るための方法であることは保証されていない.

具体的には、James²⁾ により導入された条件付きエントロピーS

$$S = -\sum_{r} \rho'(r) \ln \frac{\rho'(r)}{\rho_0'(r)}$$
(5.1)

を後述の束縛条件下で極値を取らせる. ここに

$$\rho'(r) = \rho(r) / \left[\rho(r) dr \right]$$
(5.2)

$$\rho_0'(r) = \rho_0(r) / \int \rho_0(r) dr$$
 (5.3)

であり、 $\rho(r)$ は実際の電子密度、 $\rho_0(r)$ は基準となる状態の電子密度である. 束縛関数 G は

$$G = \frac{1}{N} \sum_{H} \frac{\left|F_{cal}(H) - F_{obs}(H)\right|^{2}}{\sigma_{H}^{2}}$$
(5.4)

で定義される. ここに $F_{obs}(H)$ は実験により求められた結晶構造因子であり, N はその数, σ_H はその観測誤差である. ここで $F_{cal}(H)$ は上述のように MEM 計算の要である「電子密度分布のフーリエ変換は結晶構造因子である」ことを用いた MEM の計算により得られる構造因子であり,

$$F_{cal}(H) = V \int \rho(r) \exp(-2\pi i r \cdot H) dr$$
(5.5)

のように表される.

この束縛条件下で,エントロピーSを最大にする密度分布を求めればよい. (5.1)式と(5.4)式により束縛を受けたエントロピー *Q*(*λ*)として次式が求められる.

$$Q(r) = -\sum_{r} \rho'(r) \ln \frac{\rho'(r)}{\rho_0'(r)} - \frac{\lambda}{2}(G-1)$$
(5.6)

ここに λ はラグランジュの未定乗数であり, (5.6)式を最大にする条件 $\frac{\partial Q(r)}{\partial r} = 0$ (5.7)

下でラグランジェ未定乗数法による反復計算により,束縛条件を満たし,エントロピーが最大の電子密度分布を得ることができる.

本章の MEM 解析には,泉富士夫氏らが開発した MEM プログラムである PRIMA の Ver. 3.5.6^{3,4)} を用いた.行ったドメインを考慮した MEM 解析の一連の計算の流れ を Fig. 5.2.2 に示す.

Fig. 5.2.2 分域混在のままの電子密度計算と、単分域の強度を見積もっての 電子密度計算の流れ

5.3 まとめ

Fig. 5.3.1 に転移点直下の 292K で得られた電子密度分布(Isosurface=1.58 e/Å³)の うち,

(a) twin のままの解析結果から得られたもの

(b) single-domain として見積もった構造因子から得られたもの

を示す. 描画には門馬綱一氏らが開発した VESTA Ver.2.1.2 ⁵⁾ を用いた. ほぼ同じように見えるが, (b)の方が表面はなめらかである.

(b) Single

Fig. 5.3.1 292K における, (a)twin のままの解析, (b)single ドメインのみを抽出 したデータを用いての解析結果. isosurface=1.58の様子を表している.

そこでこの電子密度の分布を詳細に検討するため, TCM(a)四面体基および TMA(2a)四面体基の*c*軸に垂直な断面における電子密度分布の等高線分布を, (1) twin のまま, (2)single domain からの2つについて比較した. 292K での様子を Fig. 5.3.2 に, 286K での様子を Fig. 5.3.3 に, 276K での様子を Fig. 5.3.4 に示す

重い原子から構成されている TCM(a)四面体基については、秩序化がほぼ完了する

276K では twin でみられていた等高線の ripple が消え、よりきれいな等高線形状が得られたが、各温度において本質的なピーク形状には差異が見られなかった.

一方軽い原子よりなる TMA(2a)四面体基では single ドメインでの解析によるピーク 形状の向上は顕著で, 転移点直下の 292K においても C6(a)原子における一対のピーク を明確に見いだすことができた.そして温度降下に伴って一方(major)が成長し, 他方(minor)が消失していく過程を明確に確認することができた.

結論としてドメインを考慮した最大エントロピー法による電子密度分布計算においては, single ドメインからの寄与のみを抽出することにより,重い原子からなる TCM 四面体基はもちろん,軽い原子からなる TMA 四面体基においても,秩序化の過程を明確に示すことができ,Ⅲ相内での四面体基の秩序化過程を議論するのに有効な 手法であることを見いだせた.

Fig. 5.3.2 292K での TCM(a)近傍及び TMA(2a)近傍の *c* 軸に垂直な面の電子密度分布 ・TCM(a)について(contour = 1.5[e/Å³])

0.5

у

(c)

1. 0.1

1.0

0.1

У

(d)

0.5

(a) twin のままでの解析結果, (b) single ドメインを抽出したデータからの解析結果 ・TMA(2a)について(contour = 0.2[e/Å³])

(c) twin のままでの解析結果, (d) single ドメインを抽出したデータからの解析結果

Fig. 5.3.3 286K での TCM(a)近傍及び TMA(2a)近傍の *c* 軸に垂直な面の電子密度分布 ・TCM(a)について(contour = 1.5[e/Å³])

(a) twin のままでの解析結果, (b) single ドメインを抽出したデータからの解析結果
 TMA(2a)について(contour = 0.2[e/Å³])

(c) twin のままでの解析結果, (d) single ドメインを抽出したデータからの解析結果

TMA(2a)

Fig. 5.3.4 276K での TCM(a)近傍及び TMA(2a)近傍の *c* 軸に垂直な面の電子密度分布 ・TCM(a)について(contour = 1.5[e/Å³])

(a) twin のままでの解析結果, (b) single ドメインを抽出したデータからの解析結果 ・TMA(2a)について(contour = 0.2[e/Å³])

(c) twin のままでの解析結果, (d) single ドメインを抽出したデータからの解析結果

参考文献

- 1) 坂田誠, 高田昌樹: 日本結晶学会 32 175 (1990)
- 2) E. T. James: Presented at the Fourth Annual Workshop on Bayesian/Maximum Entropy Methods in Geophysical Inverse Problems, University of Calgary, August (1987)
- 3) F. Izumi and R. A. Dilanian, "Recent Research Developments in Physics," Vol. **3**, Part II, Transworld Research Network, Trivandrum (2002), pp. 699-726. (ISBN 81-7895-046-4)
- 4) F. Izumi and K. Momma : "Three-dimensional visualization in powder diffraction," Solid State Phenom., **130**, 15-20 (2007).
- 5) K. Momma and F. Izumi, "VESTA: a three-dimensional visualization system for electronic and structural analysis," J. Appl. Crystallogr. **41**, 653–658 (2008).

- 192 -

第6章 TMATC-Zn の結晶構造

我々は TMATC-Mn と同じく,同じ TMATC-M 族に属する {N(CH₃)₄}₂ZnCl₄(以下 TMATC-Zn と表す)の各相構造解析を行った¹⁾. その解析の結果について述べ,その 構造の特徴や TMATC-Mn との結晶構造の比較を行う.

6.1 相転移系列

まず, Fig.6.1.1 に TMATC-Zn の大気圧下での相転移系列について示す.

Fig.6.1.1 TMATC-Znの大気圧下での相転移

TMATC-Zn 単結晶は水溶液蒸発法によって得られ, Mn 塩と同様, bond 法を用いて それぞれ半径 0.32mm(I及びⅢ相), 0.20mm(IV及びV相)の球形試料に整形され, 測定に用いられた. 測定は RIGAKU AFC-5R を用いて行われた.

使用した X 線は Mo K α線であるが. 第Ⅲ相のみはその超格子構造が Fig.6.1.1 に示 すように 5 倍の整合構造という長周期の整合構造をとるため, X 線回折にかかる逆格 子空間内の超格子反射点が密になってしまう. そこで超格子反射間の間隔をより広く とるため, Mo K α線に比較して波長の長い Cu K α線(λ=1.5418Å)を用いた.

TMATC-Zn の各相の構造解析は各相の典型的な温度で行った. 測定にかかる試料の 温度は,高温測定においては温度コントロールされた熱しられた空気の吹きつけ(± 0.3℃)により行い,低温実験においては温度コントロールされた窒素ガス吹きつけ(± 0.2℃)により行った.

各温度で得られた X 線強度について吸収補正, LP 補正を行ったのち, $F_{obs} > 3\sigma(F_{obs})$ の強い反射強度のみ解析に用いた. ここで F_{obs} と $\sigma(Fobs)$ はそれぞれ観測された強度

より求めた構造因子とその標準偏差である.解析に当たって,等価な反射は平均化して解析に用いた.

最小二乗計算はブロック対角化最小二乗プログラム UNICSⅢ²⁾を用いて行った. ブロック対角近似最小二乗計算においては

$$R_{w}^{2} = \sum_{hkl} w(hkl) \{ |F_{obs}(hkl)| - |F_{cal}(hkl)| \}^{2} / \sum_{hkl} w(hkl) |F_{obs}(hkl)|^{2}$$
(6.1)

で求められる重みのついた R 因子 Rw を重み w=1 の条件のもと最小にするよう計算が 行われる.

今回の解析においては水素原子を考慮していない. 原子散乱因子は International Tables for X-ray Crystallography³⁾の値を用いた.

計算の収斂の状態は以下の式で定義されるR因子

$$R = \sum_{hkl} \left\| F_{obs}(hkl) \right\| - \left| F_{ave}(hkl) \right\| / \sum_{hkl} \left| F_{obs}(hkl) \right|$$
(6.2)

により評価される.

6.2 原型相(|相)

I相の空間群は Pmcn (Z=4).でその対称操作は以下の8つである.

(i) x, y, z (ii) 1/2+x, -y, -z (iii) -x, 1/2+y, 1/2-z (iv) 1/2-x, 1/2-y, 1/2+z

(V) -x, -y, -z $(Vi) \frac{1}{2}-x, y, z$ $(Vii) x, \frac{1}{2}-y, \frac{1}{2}+z$ $(Viii)\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}-z$

TMATC-Mn と同様, TMATC-Zn も ZnCl₄四面体基(以下 TCZ 四面体基) とこれと 同一の c 軸に垂直な layer 内に配置される. そして, TCZ 四面体とネットワーク構造 をとる {N(CH₃)}₄ 四面体基(TMA 1 四面体基)及び, この $z\approx 1/4$ と $z\approx 3/4$ 近傍に配置さ れる layer をつなぐ位置に配置されるもう一種の {N(CH₃)}₄ 四面体基(TMA 2 四面体 基)より構成される.

TMATC-Zn I 相の構造として,上記対称性を満足するために TMATC-Mn と同様, 2.3 章で述べたように(1) Displacive モデルと(2) Disordered モデルの2つのモデ ルが提唱された. Displacive モデルにおいては,先行する解析結果のパラメータ⁴⁾を 最小二乗法の出発パラメータとした. Disordered モデルにおいては, Displacive モデル で解析した結果を参考に,出発パラメータをつくった.

30℃,60℃,90℃の3つの温度でデータ収集を行い,2つのモデルでの解析を行った. Table 6.2.1 に3つの温度における各モデルで得られた最終 R 因子の値を示す.

Table 6.2.1 TMATC-Zn の I 相の 2 つのモデルに対する最終 R 因子の値 [%]

	30 °C	60 °C	90 °C
Displacive model	7.02	7.51	6.81
Order-disorder model	6.47	6.75	5.77

2 つのモデルに関する Hamilton 検定(付録 A2 参照)の結果, 99.5%の確からしさで, Order-Disorder モデルが優位との結論を得た.

解析結果の一例として,30℃における Order-Disorder モデルでの解析結果のうち Table 6.2.2 に原子座標を,Table 6.2.3 に異方性温度因子の値を示す. さらに Fig. 6.2.1 に得られた結晶構造を示す.

atom	х	у	Z
Mn	2500(*)	4070(1)	2459(1)
Cl(1)	2313(46)	3809(3)	629(3)
Cl(2)	2818(13)	5412(3)	3138(4)
Cl(3)	315(5)	3526(3)	3056(4)
Cl(4)	4419(5)	3250(3)	3066(4)
N (1)	2500(*)	956(6)	1493(7)
N (2)	2500(*)	8294(6)	4920(7)
C (1)	2269(140)	996(14)	2670(13)
C (2)	2110(72)	81(12)	1093(17)
C (3)	4041(24)	1185(19)	1141(22)
C (4)	1601(31)	1650(16)	972(21)
C (5)	2861(74)	7384(14)	4428(24)
C (6)	1930(45)	8862(17)	4166(19)
C (7)	4045(19)	8547(13)	5193(18)
C (8)	1506(32)	8830(17)	5862(12)

Table 6.2.2 TMATC-Znの30 ℃ Order-Disorderd モデルでの原子座標 (×10⁻⁴).

()内の数字は標準偏差を表す.()内が*印の座標はそれが固定されたことを示す.

Table 6.2.3 294 K TMATC-Zn の 30 ℃ order-disorderd モデルでの異方性温度因子. Uij は平均 二乗変位 (×10⁴ [Å²])を,()内の数字は標準偏差を表す.()内が*印の値はそれが固定さ れたことを示す.

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Mn	589(6)	509(5)	529(6)	0(*)	0(*)	15(7)
Cl(1)	927(185)	1325(32)	507(16)	-29(50)	-13(34)	56(20)
Cl(2)	1080(105)	586(20)	1191(32)	-61(29)	-104(37)	-248(21)
Cl(3)	675(29)	983(33)	1100(35)	-113(26)	187(27)	67(30)
Cl(4)	807(29)	800(28)	1044(33)	176(25)	-261(28)	147(26)
N (1)	652(56)	719(57)	594(50)	0(*)	0(*)	8(51)
N (2)	559(24)	647(55)	656(56)	0(*)	0(*)	108(47)
C (1)	2540(737)	1645(176)	596(105)	109(409)	655(403)	-40(115)
C (2)	1957(705)	766(109)	1384(168)	-386(224)	203(203)	-368(110)
C (3)	652(134)	2328(294)	1741(244)	-486(174)	357(157)	91(225)
C (4)	2088(318)	1363(193)	1525(219)	773(202)	-431(207)	213(175)
C (5)	3909(1049)	867(139)	2317(277)	-205(267)	421(386)	-889(169)
C (6)	2745(667)	1739(220)	1287(178)	1135(314)	-826(271)	46(173)
C (7)	521(101)	1060(142)	1423(175)	-230(105)	-279(116)	70(133)
C (8)	2319(325)	1638(222)	1322(189)	-588(222)	1215(207)	-217(174)

(b)

Fig.6.2.1 TMATC-Zn I相の結晶構造 (Order-Disorder モデル). (a) a 軸投影図, (b) c 軸投影図. 太字で描かれた四面体のうち,大きな四面体が TCZ 四面体基を,小さな四面体が TMA1 四面体基を表す. 細字で描かれた小さな四面体基が TCM 2 四面体基を表している. ミラー対称 で関連づけられる一対の Order-Disorder 構造のうち一方のみを表している.

6.3 強誘電相(|||相)

Ⅲ相は *c* 軸方向に5倍の超格子構造を持つ整合相であり、その空間群は *P2*₁*cn* 、その対称操作は以下の4つである.

(i) *x*, *y*, *z* (ii) 1/2+*x*, -*y*, -*z* (iii) *x*, 1/2-*y*, 1/2+*z* (iv) 1/2+*x*, 1/2+*y*, 1/2-*z*. そこで 5.5 ℃においてデータ収集を行い,結晶構造解析を試みた.

前節の Table 6.2.2 および Table 6.2.3 に示した I 相の解析結果を初期パラメータとして、また各四面体基の占有確率も変数とした最小二乗計算を行った.

計算は R=0.144 で収束し,得られた占有確率の値は一つの TMA2 四面体基を除くと 0.80 以上であった.5 倍の整合構造という多くの独立した原子を扱うため,以降の計算では Zn および Cl 原子のみ異方性とし,N および C 原子は等方性として扱った.その結果計算は R=0.081 で収束した.Table 6.3.1~Table 6.3.4 に得られた原子座標や温度 因子の一覧を示す.ここでは major な原子のみを示す.それぞれの四面体基の占有確率は Table 6.3.5

に示す. 占有確率の c 軸に沿っての空間分布を

 $P(z) = P_0 + A_1 \cos(4\pi z) + B_1 \sin(4\pi z) + A_2 \cos(2\pi z) + B_2 \sin(2\pi z)$ (6.3)

Table 6.3.1 TMATC-Zn のⅢ相(5.5℃)の TCZ 基を構成する原子の原子座標 (×10⁻⁴).

式で, Table 6.3.6 で得られた係数で fitting したものが Fig.6.3.1 である.

atom	х	У	Z	atom	х	У	Z
Zn1	2750(5)	4060(5)	496(1)	Zn4	2609(9)	4075(1)	6494(1)
C111	2612(46)	3981(3)	125(3)	Cl41	2266(46)	4077(3)	6126(3)
C112	3097(13)	5385(3)	639(4)	C142	2701(13)	5430(3)	6630(4)
Cl13	590(5)	3451(3)	620(4)	Cl43	679(5)	3292(3)	6649(4)
C114	4592(5)	3169(3)	590(4)	C144	4716(5)	3428(3)	6599(4)
Zn2	2380(5)	4055(1)	2488(1)	Zn5	2340(8)	4071(1)	8488(1)
Cl21	2173(46)	4042(3)	2123(3)	C151	2310(46)	4183(3)	8127(3)
C122	1938(13)	5397(3)	2621(4)	C152	2455(13)	5436(3)	8626(4)
Cl23	415(5)	3217(3)	2624(4)	C153	271(5)	3380(3)	8603(4)
Cl24	4599(5)	3590(3)	2596(4)	C154	4394(5)	3511(3)	8636(4)
Zn3	2655(7)	4063(1)	4491(1)				
C131	2697(46)	4028(3)	4121(3)				
C132	2953(13)	5396(3)	4632(4)				
C133	313(5)	3598(3)	4585(4)				
C134	4337(5)	3137(3)	4625(4)				

() 内の数字は標準偏差を表す.

atom	U11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Znl	600(30)	534(27)	442(18)	-5(29)	1(28)	4(25)
Cl11	1071(111)	1201(117)	460(73)	-125(115)	-107(86)	53(77)
Cl12	867(87)	411(60)	846(86)	-46(63)	-131(74)	-206(57)
C113	585(79)	858(101)	1082(104)	-173(72)	188(68)	247(84)
Cl14	690(121)	648(74)	892(84)	233(68)	-150(71)	-4(68)
Zn2	577(26)	518(26)	519(29)	8(25)	30(16)	-17(23)
Cl21	860(78)	799(82)	411(49)	-57(71)	28(55)	63(54)
Cl22	971(96)	448(64)	1071(101)	-10(63)	-186(79)	-187(68)
Cl23	728(80)	719(77)	949(82)	-124(68)	260(71)	160(73)
C124	589(70)	872(81)	882(84)	265(64)	20(66)	156(73)
Zn3	452(27)	503(26)	534(15)	-17(32)	-59(26)	-23(23)
Cl31	717(93)	1131(108)	392(48)	78(104)	120(68)	59(68)
C132	477(70)	559(69)	810(82)	-73(60)	-62(60)	-207(59)
C133	465(70)	870(101)	772(82)	49(71)	-25(66)	79(73)
C134	750(92)	564(80)	936(101)	312(73)	-185(79)	38(73)
Zn4	551(31)	626(29)	574(29)	8(47)	-1(32)	36(23)
Cl41	550(88)	997(98)	392(66)	-55(90)	26(68)	157(68)
Cl42	1758(200)	484(74)	1277(137)	-76(147)	-357(179)	-359(86)
C143	935(123)	897(116)	841(102)	-191(100)	34(95)	156(91)

964(119)

654(27)

437(48)

987(101)

1023(119)

939(101)

Cl44

Zn5

Cl51

C152

C153

C154

563(88)

553(35)

757(83)

1293(119)

987(123)

561(29)

716(75)

611(78)

692(95) 1170(137)

390(64) 1003(109)

220(88)

33(36)

56(83)

-126(129)

-286(96)

321(71)

-9(84)

13(34)

46(68)

-19(129)

311(92)

-121(66)

-22(95)

50(27) 60(54)

-94(73)

178(99)

153(84)

Table 6.3.2 TMATC-Zn のⅢ相 (5.5℃)の TCZ 四面体基を構成する各原子の異方性温度因子. U_{ii} は平均二乗変位 (×10⁴ [Å²])を, ()内の数字は標準偏差を表す.

Table 6.3.3 TMATC-Zn のⅢ相(5.5℃)の TMA1 四面体基を構成する各原子の原子座標 (×10⁴) と等価等方性温度因子 (×10⁴).()内の数字は標準偏差を表す.これらの原子は解析では等方 性原子として解析を行った.

atom	Х	У	Z	Ueq
N11	2571 (48)	909 (30)	297 (8)	686 (132)
C11	2216 (67)	1124 (40)	537 (10)	748 (175)
C12	1962 (91)	152 (54)	164 (14)	1116 (277)
C13	4126 (87)	1099 (53)	172 (13)	1060 (253)
C14	2029 (76)	1820 (44)	198 (12)	911 (214)
N21	2265 (45)	822 (26)	2291 (7)	645 (108)
C21	2165 (102)	756 (59)	2548 (16)	1550 (342)
C22	2941 (56)	38 (31)	2246 (8)	588 (128)
C23	3314 (60)	1571 (35)	2157 (10)	726 (160)
C24	786 (50)	957 (31)	2258 (8)	552 (123)
N31	2472 (48)	1027 (28)	4296 (7)	556 (113)
C31	2191 (60)	1066 (36)	4540 (9)	573 (139)
C32	2203 (70)	32 (42)	4228 (11)	704 (179)
C33	4226 (87)	1303 (50)	4237 (13)	964 (242)
C34	1674 (98)	1741 (55)	4230 (15)	1088 (284)
N41	2292 (38)	990 (21)	6302 (6)	437 (81)
C41	2366 (65)	950 (38)	6535 (10)	834 (174)
C42	2305 (58)	43 (35)	6225 (9)	716 (149)
C43	3471 (69)	1517 (41)	6154 (11)	960 (208)
C44	1036 (113)	1385 (70)	6216 (18)	1822 (432)
N51	2522 (35)	966 (21)	8295 (5)	377 (78)
C51	2236 (93)	859 (55)	8542 (14)	1261 (14)
C52	2401 (78)	90 (48)	8176 (13)	1045 (237)
C53	3803 (70)	1536 (40)	8210 (11)	840 (193)
C54	1027 (76)	1312 (45)	8247 (12)	937 (213)

Table 6.3.4 TMATC-Zn のⅢ相 (5.5℃)の TMA 2 四面体基を構成する各原子の原子座標 (×10⁻⁴) と等価等方性温度因子 (×10⁻⁴).()内の数字は標準偏差を表す. これらの原子は解析では等方性原子として解析を行った.

atom	X	У	Z	Ueq
N12	2594 (54)	8224 (31)	992 (8)	698 (136)
C15	2690 (57)	7503 (34)	814 (9)	528 (134)
C16	2277 (65)	8953 (38)	795 (9)	655 (156)
C17	3951 (56)	8703 (32)	1072 (8)	495 (129)
C18	1545 (80)	8151 (47)	1151 (13)	917 (222)
N22	2437 (45)	8209 (26)	2297 (7)	560 (110)
C25	2006 (79)	7383 (46)	2881 (12)	944 (231)
C26	3416 (93)	8680 (53)	2854 (15)	1222 (292)
C27	3166 (100)	7960 (59)	3182 (16)	1341 (319)
C28	757 (65)	8475 (39)	3017 (10)	742 (171)
N32	2719 (36)	8245 (21)	4982 (5)	390 (81)
C35	2610 (69)	7245 (38)	4951 (10)	817 (187)
C36	2946 (104)	8810 (62)	4826 (16)	1546 (338)
C37	3691 (69)	8264 (40)	5158 (11)	845 (189)
C38	1382 (55)	8536 (33)	5151 (9)	602 (136)
N42	2546 (71)	8324 (40)	6980 (11)	605 (177)
C45	2636 (97)	7289 (55)	6957 (14)	654 (244)
C46	3235 (160)	8921 (98)	6857 (26)	1483 (543)
C47	3849 (181)	8444 (98)	7073 (28)	1607 (621)
C48	884 (84)	8425 (50)	7061 (14)	522 (204)
N52	2513 (49)	8271 (28)	8971 (7)	479 (113)
C55	2235 (80)	7397 (45)	8886 (12)	712 (193)
C56	3192 (77)	8976 (47)	8824 (12)	794 (203)
C57	3002 (65)	8216 (37)	9229 (9)	528 (144)
C58	955 (64)	8582 (39)	9003 (10)	519 (151)

TCZ(1)TCZ (2) TCZ (3) TCZ (4) TCZ (5) 0.93(1)1.00(1)0.84(1)0.78(1)0.84(2)TMA1(1) TMA1(2) TMA1(3) TMA1(4) TMA1(5) 0.86(5)0.94(4)0.82(5)1.00(7)0.97(10)

TMA2(3)

0.97(5)

TMA2(4)

0.65(7)

TMA2(5)

0.95(4)

Table 6.3.5 TMATC-Zn Ⅲ相(5.5℃)の各四面体基の占有確率.()内は標準偏差を表す.

Table 6.3.6	Table 6.3.1	の値を	(6-3)	式で Fit	させた	とき	に往	导られ	った	各係	数の	俌
-------------	-------------	-----	-------	--------	-----	----	----	-----	----	----	----	---

TMA2(2)

0.91(5)

TMA2(1)

0.77(5)

	P 0	A1	B1	A2	B2
TCZ	0.570	-0.526	-0.039	-0.021	-0.096
TMA1	0.646	-0.459	0.236	-0.073	-0.211
TMA2	0.384	-0.438	-0.016	0.133	0.143

Fig. 6.3.1 (a) Table 6.3.6 で得られた係数を(6-3) 式に用いた c 軸に沿っての各四面体基の 密度変調.実線カーブは P(z)を,実直線は平均値を表している.3 次の高調波成分の寄与は点 線で表されている.

(b) c軸に沿っての(i) Cl4, (ii) C3, (iii) C7 原子のy方向の変位. 点線は I 相における 平衡位置を表している.

(b)

Fig.6.3.2 TMATC-Zn Ⅲ相(5.5℃)のc=0~0.5c₀までの結晶構造
(a) a 軸投影図 (b) c 軸投影図

6.4 IV相

Ⅳ相の空間群は *P112*₁/n (Z=12)であり, *c* 軸方向に3倍の超格子構造を持つ. そこで 223 K においてX線回折強度データ収集を行い,結晶構造解析を試みた.

最小二乗解析の初期値として 6.1 章の I 相の解析における Displacive モデルの結 果を *c* 軸方向に 3 倍に拡張したモデルを用いて解析を行った. なおこの相は monoclinic 相であるので, 第 2.3.2 章で述べたドメイン構造を考慮した解析手法で解 析を行った. 最小二乗計算は *R* 因子が *R*=0.058 で計算が収束し最終ドメイン比は 93.5:6.5 であった. Table 6.4.1 に得られた最終原子パラメータを示す.

Fig. 6.4.1 に得られた結晶構造を示す. 図中矢印は各四面体基の回転方向を表しており,同一 layer に属する各四面体基は c 軸に関して同一の回転方向を持つことがわかった.

 Table
 6.4.1
 TMATC-Zn
 のIV相(223 K)における原子座標(×10⁻⁴)と等価等方性温度因子(×10⁻⁴).()内の数字は標準偏差を表す.

atomxyzBeqTCZ(a)Zn(a)2579(1)4073(1)813(1)281(3)Cl(1a)2840(3)4036(2)198(1)396(7)Cl(2a)2915(3)5444(2)1035(1)4453(7)Cl(3a)261(3)3577(2)972(1)468(8)Cl(4a)4328(3)3210(2)1071(1)452(7)TCZ(b)Zn(b)2930(1)4078(1)4157(1)276(3)Cl(1b)2681(3)4104(2)3543(1)479(8)Cl(2b)3377(3)5438(2)4378(1)458(7)Cl(3b)782(3)3559(2)4406(1)454(7)Cl(2b)3377(3)5438(2)4378(1)289(3)Cl(1c)1937(3)4096(2)6875(1)459(7)Cl(2c)7151(3)5317(2)7667(1)477(8)Cl(2c)1751(3)5317(2)7667(1)497(8)Cl(4c)4416(3)3505(2)7642(1)464(7)TMA(1a)N (1a)2841(9)924(6)501(2)355(21)C (1a)2521(16)909(10)909(4)650(41)C (2a)2498(14)516(8)331(3)540(35)C (2b)2058(15)82(8)3715(3)531(34)C (2b)2058(15)82(8)3715(3)531(34)C (2b)2058(15)82(8)3715(3)531(34)C (2c)269(1)1142(10)442(4)604(35)C (2b)2058(15)82(8)7155(2)337(20)C (1b)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		atom	x	у	Z	Beq
Cl(1a) 2840(3) 4036(2) 198(1) 396(7) Cl(2a) 2915(3) 5444(2) 1035(1) 453(7) Cl(3a) 261(3) 3577(2) 972(1) 468(8) Cl(4a) 4328(3) 3210(2) 1071(1) 452(7) TCZ(b) Zn(b) 2930(1) 4078(1) 4157(1) 276(3) Cl(2b) 3377(3) 5438(2) 4378(1) 458(7) Cl(3b) 782(3) 3559(2) 4406(1) 454(7) Cl(4b) 4874(3) 3206(2) 4312(1) 447(7) TCZ(c) Zn(c) 2118(1) 4008(1) 7488(1) 289(3) Cl(1c) 1937(3) 5317(2) 7767(1) 472(8) Cl(1c) 1937(3) 3082(2) 7697(1) 497(8) Cl(1c) 1937(3) 3082(2) 7697(1) 497(8) Cl(4c) 4416(3) 3505(2) 7642(1) 464(7) TMA(1a) N(1a) 2841(9) 924(6) 501(2) 351(2)	TCZ(a)	Zn(a)	2579(1)	4073(1)	813(1)	281(3)
Cl(2a) 2915(3) 5444(2) 1035(1) 453(7) Cl(3a) 261(3) 3577(2) 972(1) 468(8) Cl(4a) 4328(3) 3210(2) 1071(1) 452(7) TCZ(b) Zn(b) 2930(1) 4078(1) 4157(1) 276(3) Cl(1b) 2681(3) 4104(2) 3554(1) 479(8) Cl(2b) 3377(3) 5438(2) 4378(1) 458(7) Cl(3b) 782(3) 3559(2) 4406(1) 454(7) Cl(4b) 4874(3) 3206(2) 4312(1) 447(7) TCZ(c) Zn(c) 2118(1) 4008(1) 7488(1) 289(3) Cl(1c) 1937(3) 4096(2) 6875(1) 459(7) Cl(2c) 1751(3) 5317(2) 767(1) 472(8) Cl(4c) 4416(3) 3505(2) 7642(1) 464(7) TMA(1a) N (1a) 2841(9) 924(6) 501(2) 355(21) C (1a) 2521(16) 909(10) 909(4) 650(37)		Cl(1a)	2840(3)	4036(2)	198(1)	396(7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cl(2a)	2915(3)	5444(2)	1035(1)	453(7)
Cl(4a) 4328(3) 3210(2) 1071(1) 452(7) TCZ(b) Zn(b) 2930(1) 4078(1) 4157(1) 276(3) Cl(1b) 2681(3) 4104(2) 3543(1) 479(8) Cl(2b) 3377(3) 5438(2) 4378(1) 458(7) Cl(3b) 782(3) 3259(2) 4406(1) 454(7) Cl(4b) 4874(3) 3206(2) 4312(1) 447(7) TCZ(c) Zn(c) 2118(1) 4008(1) 7488(1) 289(3) Cl(1c) 1937(3) 4096(2) 6875(1) 459(7) Cl(2c) 1751(3) 5317(2) 7767(1) 472(8) Cl(3c) 331(3) 3082(2) 7697(1) 497(8) Cl(4c) 4416(3) 3505(2) 7642(1) 464(7) TMA(1a) N (1a) 2821(16) 909(10) 909(4) 650(41) C (1a) 2449(14) 50(8) 331(2) 321(20) C (1a) 2475(5) 1034(4) 542(35) C (3a) <th></th> <th>Cl(3a)</th> <th>261(3)</th> <th>3577(2)</th> <th>972(1)</th> <th>468(8)</th>		Cl(3a)	261(3)	3577(2)	972(1)	468(8)
TCZ(b) Zn(b) 2930(1) 4078(1) 4157(1) 276(3) Cl(1b) 2681(3) 4104(2) 3543(1) 479(8) Cl(2b) 3377(3) 5438(2) 4378(1) 458(7) Cl(3b) 782(3) 3559(2) 4406(1) 458(7) Cl(4b) 4874(3) 3206(2) 4312(1) 447(7) Cl(4b) 4874(3) 3206(2) 4312(1) 447(7) TCZ(c) Zn(c) 2118(1) 4008(1) 7488(1) 289(3) Cl(1c) 1937(3) 4096(2) 6875(1) 459(7) Cl(2c) 1751(3) 5317(2) 7767(1) 472(8) Cl(4c) 4416(3) 3082(2) 7697(1) 497(8) Cl(4c) 4416(3) 3505(2) 7642(1) 464(7) TMA(1a) N (1a) 2841(9) 924(6) 501(2) 355(2) C (1a) 2521(16) 909(10) 909(4) 650(41) C (2a) 2498(14) 1504(8) 3118(4) 567(37)<		Cl(4a)	4328(3)	3210(2)	1071(1)	452(7)
Cl(1b) 2681(3) 4104(2) 3543(1) 479(8) Cl(2b) 3377(3) 5438(2) 4378(1) 458(7) Cl(3b) 782(3) 3559(2) 4406(1) 454(7) Cl(4b) 4874(3) 3206(2) 4312(1) 447(7) TCZ(c) Zn(c) 2118(1) 4008(1) 7488(1) 289(3) Cl(1c) 1937(3) 4096(2) 6875(1) 459(7) Cl(2c) 1751(3) 5317(2) 7767(1) 4472(8) Cl(4c) 4416(3) 3505(2) 7642(1) 464(7) TMA(1a) N (1a) 2841(9) 924(6) 501(2) 355(21) C (1a) 2521(16) 909(10) 909(4) 650(41) C (2a) 2498(14) 50(8) 334(4) 542(35) C (1a) 2521(16) 909(10) 909(4) 650(41) G(3a) 4467(12) 1142(10) 442(4) 604(38) C (1a) 2521(9) 981(5) 3381(2) 321(20) 321(20) <td< th=""><th>TCZ(b)</th><th>Zn(b)</th><th>2930(1)</th><th>4078(1)</th><th>4157(1)</th><th>276(3)</th></td<>	TCZ(b)	Zn(b)	2930(1)	4078(1)	4157(1)	276(3)
Cl(2b) 3377(3) 5438(2) 4378(1) 458(7) Cl(3b) 782(3) 3559(2) 4406(1) 454(7) Cl(4b) 4874(3) 3206(2) 4312(1) 447(7) TCZ(c) Zn(c) 2118(1) 4008(1) 7488(1) 289(3) Cl(1c) 1937(3) 4096(2) 6875(1) 459(7) Cl(2c) 1751(3) 5317(2) 7767(1) 472(8) Cl(4c) 4416(3) 3505(2) 7642(1) 464(7) TMA(1a) N (1a) 2841(9) 924(6) 501(2) 355(21) C (1a) 2521(16) 909(10) 909(4) 650(41) C (2a) 2498(14) 50(8) 334(4) 542(35) C (3a) 4467(12) 1142(10) 442(4) 604(38) C (4a) 1903(14) 1594(8) 318(4) 567(37) TMA(1b) N (1b) 2572(9) 981(5) 3831(2) 321(20) C (1b) 2475(15) 1054(8) 4243(3) 540		Cl(1b)	2681(3)	4104(2)	3543(1)	479(8)
$\begin{array}{c ccccc} Cl(3b) & 782(3) & 3559(2) & 4406(1) & 454(7) \\ Cl(4b) & 4874(3) & 3206(2) & 4312(1) & 447(7) \\ \hline Cl(2c) & Zn(c) & 2118(1) & 4008(1) & 7488(1) & 289(3) \\ Cl(1c) & 1937(3) & 4096(2) & 6875(1) & 459(7) \\ Cl(2c) & 1751(3) & 5317(2) & 7767(1) & 472(8) \\ Cl(3c) & 331(3) & 3082(2) & 7697(1) & 497(8) \\ Cl(4c) & 4416(3) & 3505(2) & 7642(1) & 464(7) \\ \hline TMA(1a) & N(1a) & 2841(9) & 924(6) & 501(2) & 355(21) \\ C(1a) & 2521(16) & 909(10) & 909(4) & 650(41) \\ C(2a) & 2498(14) & 50(8) & 334(4) & 542(35) \\ C(3a) & 4467(12) & 1142(10) & 442(4) & 604(38) \\ C(4a) & 1903(14) & 1594(8) & 318(4) & 567(37) \\ \hline TMA(1b) & N(1b) & 2572(9) & 981(5) & 3831(2) & 321(20) \\ C(1b) & 2475(15) & 1054(8) & 4243(3) & 540(35) \\ C(2b) & 2058(15) & 82(8) & 3715(3) & 531(34) \\ C(3b) & 4151(14) & 1123(11) & 3710(4) & 731(46) \\ C(4b) & 1614(18) & 1653(9) & 3667(4) & 753(44) \\ \hline TMA(1c) & N(1c) & 2200(9) & 888(5) & 7155(2) & 337(20) \\ C(1c) & 2462(15) & 939(9) & 7562(3) & 571(37) \\ C(2c) & 2629(14) & -12(8) & 7023(4) & 544(36) \\ C(3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C(4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline TMA(2a) & N(2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C(5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C(6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C(7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C(8a) & 1252(16) & 8662(9) & 1663(6) & 888(59) \\ \hline TMA(2b) & N(2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C(5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C(6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C(8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N(2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C(5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C(6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C(7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C(6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C(7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ \end{array} \right)$		Cl(2b)	3377(3)	5438(2)	4378(1)	458(7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cl(3b)	782(3)	3559(2)	4406(1)	454(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cl(4b)	4874(3)	3206(2)	4312(1)	447(7)
$\begin{array}{c ccccc} Cl(1c) & 1937(3) & 4096(2) & 6875(1) & 459(7) \\ Cl(2c) & 1751(3) & 5317(2) & 7767(1) & 472(8) \\ Cl(3c) & 331(3) & 3082(2) & 7697(1) & 497(8) \\ Cl(4c) & 4416(3) & 3505(2) & 7642(1) & 464(7) \\ \hline\\ TMA(1a) & N(1a) & 2841(9) & 924(6) & 501(2) & 355(21) \\ C(1a) & 2521(16) & 909(10) & 909(4) & 650(41) \\ C(2a) & 2498(14) & 50(8) & 334(4) & 542(35) \\ C(3a) & 4467(12) & 1142(10) & 442(4) & 604(38) \\ C(4a) & 1903(14) & 1594(8) & 318(4) & 567(37) \\ \hline\\ TMA(1b) & N(1b) & 2572(9) & 981(5) & 3831(2) & 321(20) \\ C(1b) & 2475(15) & 1054(8) & 4243(3) & 540(35) \\ C(2b) & 2058(15) & 82(8) & 3715(3) & 531(34) \\ C(3b) & 4151(14) & 1123(11) & 3710(4) & 731(46) \\ C(4b) & 1614(18) & 1653(9) & 3667(4) & 753(44) \\ \hline\\ TMA(1c) & N(1c) & 2200(9) & 888(5) & 7155(2) & 337(20) \\ C(1c) & 2462(15) & 939(9) & 7562(3) & 577(37) \\ C(2c) & 2629(14) & -12(8) & 7023(4) & 544(36) \\ C(3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C(4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline\\ TMA(2a) & N(2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C(5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C(6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C(7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C(8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline\\ TMA(2b) & N(2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C(5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C(6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C(6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C(6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C(6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C(6c) & 2776(17) & 884(10) & 8034(4) & 722(44) \\ C(7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C(7c) & 3102(17) & 8267(11) & 8640(4) & 914(45) \\ C(7c) & 5102(17) & 8267(11) & 8640(4) & 914(45) \\ C(8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$	TCZ(c)	Zn(c)	2118(1)	4008(1)	7488(1)	289(3)
$\begin{array}{c ccccc} C1(2c) & 1751(3) & 5317(2) & 7767(1) & 472(8) \\ C1(3c) & 331(3) & 3082(2) & 7697(1) & 497(8) \\ C1(4c) & 4416(3) & 3505(2) & 7642(1) & 464(7) \\ \hline TMA(1a) & N(1a) & 2841(9) & 924(6) & 501(2) & 355(21) \\ C(1a) & 2521(16) & 909(10) & 909(4) & 650(41) \\ C(2a) & 2498(14) & 50(8) & 334(4) & 542(35) \\ C(3a) & 4467(12) & 1142(10) & 442(4) & 604(38) \\ C(4a) & 1903(14) & 1594(8) & 318(4) & 567(37) \\ \hline TMA(1b) & N(1b) & 2572(9) & 981(5) & 3831(2) & 321(20) \\ C(1b) & 2475(15) & 1054(8) & 4243(3) & 540(35) \\ C(2b) & 2058(15) & 82(8) & 3715(3) & 531(34) \\ C(3b) & 4151(14) & 1123(11) & 3710(4) & 731(46) \\ C(4b) & 1614(18) & 1653(9) & 3667(4) & 753(44) \\ \hline TMA(1c) & N(1c) & 2200(9) & 888(5) & 7155(2) & 337(20) \\ C(1c) & 2462(15) & 939(9) & 7562(3) & 571(37) \\ C(2c) & 2629(14) & -12(8) & 7023(4) & 544(36) \\ C(3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C(4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline TMA(2a) & N(2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C(5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C(6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C(7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C(8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline TMA(2b) & N(2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C(5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 5103(3) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C(6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C(6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C(7b) & 4038(12) & 8703(7) & 5107(4) & 500(46) \\ \hline TMA(2c) & N(2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C(5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C(6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C(7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C(8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$		Cl(1c)	1937(3)	4096(2)	6875(1)	459(7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cl(2c)	1751(3)	5317(2)	7767(1)	472(8)
Cl(4c) 4416(3) 3505(2) 7642(1) 464(7) TMA(1a) N (1a) 2841(9) 924(6) 501(2) 355(21) C (1a) 2521(16) 909(10) 909(4) 650(41) C (2a) 2498(14) 50(8) 334(4) 542(35) C (3a) 4467(12) 1142(10) 442(4) 604(38) C (4a) 1903(14) 1594(8) 318(4) 567(37) TMA(1b) N (1b) 2572(9) 981(5) 3831(2) 321(20) C (1b) 2475(15) 1054(8) 4243(3) 540(35) C (2b) 2058(15) 82(8) 3715(3) 531(34) C (3b) 4151(14) 1123(11) 3710(4) 731(46) C (4b) 1614(18) 1653(9) 3667(4) 753(44) TMA(1c) N (1c) 2200(9) 888(5) 7155(2) 337(20) C (1c) 2462(15) 939(9) 7562(3) 571(37) C (2c) 2629(14) -12(8) 7023(4)		Cl(3c)	331(3)	3082(2)	7697(1)	497(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cl(4c)	4416(3)	3505(2)	7642(1)	464(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TMA(1a)	N (1a)	2841(9)	924(6)	501(2)	355(21)
C (2a) 2498(14) 50(8) 334(4) 542(35) C (3a) 4467(12) 1142(10) 442(4) 604(38) C (4a) 1903(14) 1594(8) 318(4) 567(37) TMA(1b) N (1b) 2572(9) 981(5) 3831(2) 321(20) C (1b) 2475(15) 1054(8) 4243(3) 540(35) C (2b) 2058(15) 82(8) 3715(3) 531(34) C (3b) 4151(14) 1123(11) 3710(4) 731(46) C (4b) 1614(18) 1653(9) 3667(4) 753(44) TMA(1c) N (1c) 2200(9) 888(5) 7155(2) 337(20) C (1c) 2462(15) 939(9) 7562(3) 571(37) C (2c) 2629(14) -12(8) 7023(4) 544(36) C (3c) 3165(15) 1550(8) 6971(4) 570(37) C (4c) 599(13) 1070(10) 7078(4) 621(40) TMA(2a) N (2a) 2722(9) 8260(5) 1665(3)		C (1a)	2521(16)	909(10)	909(4)	650(41)
$\begin{array}{c cccccc} C (3a) & 4467(12) & 1142(10) & 442(4) & 604(38) \\ C (4a) & 1903(14) & 1594(8) & 318(4) & 567(37) \\ \hline TMA(1b) & N (1b) & 2572(9) & 981(5) & 3831(2) & 321(20) \\ C (1b) & 2475(15) & 1054(8) & 4243(3) & 540(35) \\ C (2b) & 2058(15) & 82(8) & 3715(3) & 531(34) \\ C (3b) & 4151(14) & 1123(11) & 3710(4) & 731(46) \\ C (4b) & 1614(18) & 1653(9) & 3667(4) & 753(44) \\ \hline TMA(1c) & N (1c) & 2200(9) & 888(5) & 7155(2) & 337(20) \\ C (1c) & 2462(15) & 939(9) & 7562(3) & 571(37) \\ C (2c) & 2629(14) & -12(8) & 7023(4) & 544(36) \\ C (3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C (4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline TMA(2a) & N (2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C (5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C (6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C (7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C (8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline TMA(2b) & N (2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C (5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C (6b) & 1944(13) & 8836(8) & 4676(3) & 5113(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$		C (2a)	2498(14)	50(8)	334(4)	542(35)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		C (3a)	4467(12)	1142(10)	442(4)	604(38)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		C (4a)	1903(14)	1594(8)	318(4)	567(37)
$\begin{array}{c ccccc} C (1b) & 2475(15) & 1054(8) & 4243(3) & 540(35) \\ C (2b) & 2058(15) & 82(8) & 3715(3) & 531(34) \\ C (3b) & 4151(14) & 1123(11) & 3710(4) & 731(46) \\ C (4b) & 1614(18) & 1653(9) & 3667(4) & 753(44) \\ \hline TMA(1c) & N (1c) & 2200(9) & 888(5) & 7155(2) & 337(20) \\ C (1c) & 2462(15) & 939(9) & 7562(3) & 571(37) \\ C (2c) & 2629(14) & -12(8) & 7023(4) & 544(36) \\ C (3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C (4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline TMA(2a) & N (2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C (5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C (6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C (7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C (8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline TMA(2b) & N (2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C (5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C (6b) & 1944(13) & 8836(8) & 4676(3) & 5113(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$	TMA(1b)	N (1b)	2572(9)	981(5)	3831(2)	321(20)
$\begin{array}{c ccccc} C (2b) & 2058(15) & 82(8) & 3715(3) & 531(34) \\ C (3b) & 4151(14) & 1123(11) & 3710(4) & 731(46) \\ C (4b) & 1614(18) & 1653(9) & 3667(4) & 753(44) \\ \hline TMA(1c) & N (1c) & 2200(9) & 888(5) & 7155(2) & 337(20) \\ C (1c) & 2462(15) & 939(9) & 7562(3) & 571(37) \\ C (2c) & 2629(14) & -12(8) & 7023(4) & 544(36) \\ C (3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C (4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline TMA(2a) & N (2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C (5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C (6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C (7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C (8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline TMA(2b) & N (2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C (5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C (6b) & 1944(13) & 8836(8) & 4676(3) & 5113(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$		C (1b)	2475(15)	1054(8)	4243(3)	540(35)
$\begin{array}{c ccccc} C (3b) & 4151(14) & 1123(11) & 3710(4) & 731(46) \\ C (4b) & 1614(18) & 1653(9) & 3667(4) & 753(44) \\ \hline TMA(1c) & N (1c) & 2200(9) & 888(5) & 7155(2) & 337(20) \\ C (1c) & 2462(15) & 939(9) & 7562(3) & 571(37) \\ C (2c) & 2629(14) & -12(8) & 7023(4) & 544(36) \\ C (3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C (4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline TMA(2a) & N (2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C (5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C (6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C (7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C (8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline TMA(2b) & N (2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C (5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C (6b) & 1944(13) & 8836(8) & 4676(3) & 5113(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$		C (2b)	2058(15)	82(8)	3715(3)	531(34)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C (3b)	4151(14)	1123(11)	3710(4)	731(46)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C (4b)	1614(18)	1653(9)	3667(4)	753(44)
$\begin{array}{c ccccc} C (1c) & 2462(15) & 939(9) & 7562(3) & 571(37) \\ C (2c) & 2629(14) & -12(8) & 7023(4) & 544(36) \\ C (3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C (4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline TMA(2a) & N (2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C (5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C (6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C (7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C (8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline TMA(2b) & N (2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C (5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C (6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$	TMA(1c)	N (1c)	2200(9)	888(5)	7155(2)	337(20)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C (1c)	2462(15)	939(9)	7562(3)	571(37)
$\begin{array}{c ccccc} C (3c) & 3165(15) & 1550(8) & 6971(4) & 570(37) \\ C (4c) & 599(13) & 1070(10) & 7078(4) & 621(40) \\ \hline TMA(2a) & N (2a) & 2722(9) & 8260(5) & 1665(3) & 376(22) \\ C (5a) & 2521(15) & 7315(8) & 1557(4) & 700(41) \\ C (6a) & 3756(21) & 8680(11) & 1426(6) & 1491(60) \\ C (7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C (8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline TMA(2b) & N (2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C (5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C (6b) & 1944(13) & 8836(8) & 4676(3) & 5113(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$		C (2c)	2629(14)	-12(8)	7023(4)	544(36)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C (3c)	3165(15)	1550(8)	6971(4)	570(37)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C (4c)	599(13)	1070(10)	7078(4)	621(40)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TMA(2a)	N (2a)	2722(9)	8260(5)	1665(3)	376(22)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C (5a)	2521(15)	7315(8)	1557(4)	700(41)
$\begin{array}{c ccccc} C (7a) & 3361(24) & 8285(11) & 2035(5) & 1419(59) \\ C (8a) & 1252(16) & 8662(9) & 1683(6) & 888(59) \\ \hline TMA(2b) & N (2b) & 2632(8) & 8279(5) & 4963(2) & 303(20) \\ C (5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C (6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$		C (6a)	3756(21)	8680(11)	1426(6)	1491(60)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C (7a)	3361(24)	8285(11)	2035(5)	1419(59)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C (8a)	1252(16)	8662(9)	1683(6)	888(59)
$\begin{array}{c ccccc} C (5b) & 3046(14) & 7407(7) & 4802(4) & 529(34) \\ C (6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$	TMA(2b)	N (2b)	2632(8)	8279(5)	4963(2)	303(20)
$\begin{array}{c ccccc} C (6b) & 1944(13) & 8836(8) & 4676(3) & 513(33) \\ C (7b) & 4038(12) & 8703(7) & 5107(4) & 501(34) \\ C (8b) & 1544(14) & 8137(9) & 5267(4) & 606(36) \\ \hline TMA(2c) & N (2c) & 2144(9) & 8225(5) & 8321(2) & 356(21) \\ C (5c) & 2121(16) & 7313(8) & 8177(5) & 800(46) \\ C (6c) & 2776(17) & 8844(10) & 8034(4) & 722(44) \\ C (7c) & 3102(17) & 8267(11) & 8646(4) & 914(45) \\ C (8c) & 587(13) & 8517(8) & 8403(4) & 585(38) \\ \end{array}$		C (5b)	3046(14)	7407(7)	4802(4)	529(34)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C (6b)	1944(13)	8836(8)	4676(3)	513(33)
C (8b) 1544(14) 8137(9) 5267(4) 606(36) TMA(2c) N (2c) 2144(9) 8225(5) 8321(2) 356(21) C (5c) 2121(16) 7313(8) 8177(5) 800(46) C (6c) 2776(17) 8844(10) 8034(4) 722(44) C (7c) 3102(17) 8267(11) 8646(4) 914(45) C (8c) 587(13) 8517(8) 8403(4) 585(38)		C (7b)	4038(12)	8703(7)	5107(4)	501(34)
TMA(2c) N (2c) 2144(9) 8225(5) 8321(2) 356(21) C (5c) 2121(16) 7313(8) 8177(5) 800(46) C (6c) 2776(17) 8844(10) 8034(4) 722(44) C (7c) 3102(17) 8267(11) 8646(4) 914(45) C (8c) 587(13) 8517(8) 8403(4) 585(38)		C (8b)	1544(14)	8137(9)	5267(4)	606(36)
C (5c)2121(16)7313(8)8177(5)800(46)C (6c)2776(17)8844(10)8034(4)722(44)C (7c)3102(17)8267(11)8646(4)914(45)C (8c)587(13)8517(8)8403(4)585(38)	TMA(2c)	N (2c)	2144(9)	8225(5)	8321(2)	356(21)
C (6c)2776(17)8844(10)8034(4)722(44)C (7c)3102(17)8267(11)8646(4)914(45)C (8c)587(13)8517(8)8403(4)585(38)		C (5c)	2121(16)	7313(8)	8177(5)	800(46)
C (7c) 3102(17) 8267(11) 8646(4) 914(45) C (8c) 587(13) 8517(8) 8403(4) 585(38)		C (6c)	2776(17)	8844(10)	8034(4)	722(44)
C (8c) 587(13) 8517(8) 8403(4) 585(38)		C (7c)	3102(17)	8267(11)	8646(4)	914(45)
		C (8c)	587(13)	8517(8)	8403(4)	585(38)

Table 6.4.2 TMATC-Zn のN相(223 K)における bond lengths [Å] & angles [°]. () 内は標準偏差を表す.

.

	Туре а	Type b	Туре с
Zn - Cl(1)	2.263(3)	2.261(3)	2.255(3)
Zn - Cl(2)	2.271(4)	2.268(5)	2.278(4)
Zn - Cl(3)	2.238(8)	2.268(7)	2.265(11)
Zn - Cl(4)	2.264(10)	2.276(11)	2.275(8)
N(1)- C(1)	1.520(16)	1.514(14)	1.511(15)
N(1)- C(2)	1.502(15)	1.511(15)	1.515(15)
N(1)- C(3)	1.509(14)	1.498(15)	1.489(16)
N(1)- C(4)	1.492(17)	1.474(18)	1.490(14)
N(2)- C(5)	1.512(15)	1.510(14)	1.493(16)
N(2)- C(6)	1.424(21)	1.492(15)	1.518(18)
N(2)- C(7)	1.472(21)	1.508(14)	1.467(18)
N(2)- C(8)	1.459(18)	1.495(15)	1.499(15)
Cl(1) - Zn - Cl(2)	111.5(1)	110.8(1)	112.5(1)
Cl(1) - Zn - Cl(3)	109.9(1)	108.8(1)	108.8(1)
Cl(1) - Zn - Cl(4)	109.1(2)	109.5(1)	109.4(1)
Cl(2) - Zn - Cl(3)	109.3(5)	108.9(4)	107.1(3)
Cl(2) - Zn - Cl(4)	107.6(3)	108.7(3)	109.0(4)
$\operatorname{Cl}(3)$ - Zn - $\operatorname{Cl}(4)$	109.3(2)	110.2(1)	110.0(2)
C(1) - N(1) - C(2)	110.5(4)	109.3(3)	108.7(4)
C(1) - N(1) - C(3)	109.1(7)	109.8(6)	108.8(6)
C(1) - N(1) - C(4)	110.2(6)	108.7(5)	109.0(6)
C(2) - N(1) - C(3)	109.3(7)	109.3(7)	109.1(6)
C(2) - N(1) - C(4)	108.5(6)	110.4(7)	111.2(7)
C(3) - N(1) - C(4)	109.3(6)	109.5(7)	110.1(5)
C(5) - N(2) - C(6)	110.1(6)	109.6(3)	111.1(4)
C(5) - N(2) - C(7)	108.0(4)	108.0(8)	109.3(6)
C(5) - N(2) - C(8)	108.3(9)	109.0(5)	110.1(9)
C(6) - N(2) - C(7)	107.6(10)	110.3(4)	108.7(8)
C(6) - N(2) - C(8)	115.1(5)	109.7(8)	106.9(6)
C(7) - N(2) - C(8)	107.5(6)	110.2(4)	111.7(4)

Fig.6.4.1 TMATC-Zn のIV相(223 K)の結晶構造の *a* 軸投影図. Zn および N 原子まわりの球 は Cl 原子および C 原子を表し、それぞれの球の半径は温度因子により求められた平均変位 を表している. 各四面体基の *b* 軸および *c* 軸まわりの回転方向を図中矢印で表している.
6.5 V相

Ⅳ相の空間群は *P12*₁/c1 (Z=4) であり normal 構造をとる.そこで 161 K でデータ収 集を行い,結晶構造解析を試みた.

最小二乗解析の初期値として 6.1章の I 相の解析における Disorderd モデルを用い て解析を行った. なおこの相も monoclinic 相であるので,第2.3.2章で述べたドメ イン構造を考慮した解析手法で解析を行った.最小二乗計算は R因子が R=0.053 で計 算が収束し最終ドメイン比は 52.7:47.3 であった. Table 6.5.1 に得られた最終原子 パラメータを, Table 6.5.2 に得られた bond lengths と angles を,また Fig. 6.5.1 に得 られた結晶構造の a 軸投影図を示す. Ⅲ相およびIV相においては同一 layer に属する 各四面体基は c 軸に関して同じ方向の回転をしていたが,この相では同一の layer 内 の各四面体基は c 軸に関して逆方向の回転をしていることがわかった.

Table 6.5.1	TMATC-Zn のV相	(161 K)	での原子座標	(×10 ⁻⁴)	と
等価等方性	温度因子 (×10 ⁻⁴).	()内の	数字は標準偏差	きを表す	•

atom	х	у	Z	Bq
Zn	2262(1)	4050(1)	2467(1)	155(1)
Cl(1)	2730(2)	4069(1)	631(1)	227(3)
Cl(2)	1906(2)	5419(1)	3156(1)	283(3)
Cl(3)	157(2)	3245(1)	2827(1)	244(3)
Cl(4)	4278(2)	3427(1)	3291(1)	300(3)
N (1)	2646(6)	969(3)	1493(4)	195(9)
N (2)	2470(5)	8291(3)	4966(4)	182(10)
C (1)	2220(9)	1027(5)	2690(5)	344(15)
C (2)	2510(13)	32(5)	1120(6)	454(23)
C (3)	4188(9)	1303(8)	1328(8)	559(26)
C (4)	1582(9)	1522(5)	806(6)	349(17)
C (5)	2280(9)	7339(4)	4651(6)	336(15)
C (6)	3171(9)	8789(5)	4031(6)	349(17)
C (7)	3469(9)	8363(6)	5957(6)	394(18)
C (8)	972(7)	8662(5)	5230(7)	294(15)

atom1 - atom2	distance[Å]	atom1 - atom2	distance[Å]
Zn - Cl(1)	2.274 (4)	Zn - Cl(2)	2 267 (2)
Zn - Cl(3)	2.286 (4)	Zn - Cl(4)	2.271 (7)
N (1) - C (1)	1.509 (8)	N (1) - C (2)	1.502 (9)
N (1) - C (3)	1.482 (10)	N (1) - C (4)	1.520 (10)
N (2) - C (5)	1.508 (8)	N (2) - C (6)	1.504 (10)
N (2) - C (7)	1.505 (11)	N (2) - C (8)	1.487 (8)

Table 6.5.2 TMATC-Zn のV相(161 K)での Bond length [Å] & Angle [°]. () 内は標準偏差を表す.

atom1 - atom3 - atom2	angle[°]	atom1 atom3 atom2	angle[°]
Cl(1) - Zn - Cl(2)	112.2(1)	Cl(1) - Zn - $Cl(3)$	110.3(4)
Cl(1) - Zn - $Cl(4)$	107.1(4)	Cl(2) - Zn - Cl(3)	107.8(2)
Cl(2) - Zn - Cl(4)	109.3(2)	Cl(3) - Zn - Cl(4)	110.2(1)
C(1) - N (1) - C(2)	109.1(3)	C(1) - N (1) - C(3)	110.3(6)
C(1) - N (1) - C(4)	110.0(5)	C(2) - N (1) - C(3)	111.1(6)
C(2) - N (1) - C(4)	107.9(5)	C(3) - N (1) - C(4)	108.5(4)
C(5) - N (2) - C(6)	109.8(3)	C(5) - N (2) - C(7)	109.9(3)
C(5) - N (2) - C(8)	108.5(4)	C(6) - N (2) - C(7)	108.8(4)
C(6) - N (2) - C(8)	110.4(4)	C(7) - N (2) - C(8)	109.5(4)

 Fig.6.5.1 TMATC-ZnのV相(161 K)の結晶構造のa軸投影図.

 各四面体基のb軸およびc軸まわりの回転方向を図中矢印で表している.

6.6 まとめと Mn 塩との比較

今回 TMATC-Zn について原型相である第 I 相,5 倍の整合構造をとる強誘電相である 第Ⅲ相,3 倍の整合構造をとる第Ⅳ相,さらに再び normal 相となる第Ⅴ相の各相につ いて典型的な温度での構造解析を行った.

ここでⅢ相及びⅣ相において、c軸に沿っての同一な高さに位置する layer 面に配置される TCZ 四面体基と TMA1 四面体基については、各四面体基のc軸に関する回転に注目するとこれらはすべて同一方向の回転をすることを見いだした.このことは Zn 塩の I 相からⅣ相までの相転移において、layer 内に配置された TCZ 四面体基と TMA1 四面体基が強い相関があることを示唆している.

ここで Fig. 6.6.1 のように同一の layer 内の各四面体基の *c* 軸に関する回転方向 を Ising スピンのように一つの矢印で模式的に表す.すなわち第Ⅲ相の構造を *c* 軸の 回転に注目して模式的に表すと Fig. 6.6.1 (a) のように表現が可能となる.

同様の考えで第Ⅳ相の構造を模式的に考えると、前述のように第Ⅳ相は一対の monoclinic ドメイン構造を持つので図(b)に示すように一対の(+)ドメインと(-) ドメインの構造が考えられる.((-)ドメインの構造は(+)ドメインの構造と逆の 構造)

そこで図 (a) のⅢ相の構造を図 (b) のⅣ相の(+)ドメインと(-)ドメインの組み 合わせで表現することを試みたのが図(c)である. すなわちⅢ相の構造は図中 DC と表現された Discommensuration を挟んで(+)ドメインと(-)ドメインの交互の 組み合わせで再現できる.

ここで DC の間隔 L を第Ⅲ相及び第Ⅳ相の変調波数より求めてみる.第Ⅲ相の変調波数は 2/5, 第Ⅳ相の変調波数は 1/3 であるので, 第Ⅳ相を基準とした misfit parameter δ は

$$\delta = \frac{2}{5} - \frac{1}{3} = \frac{1}{15} \tag{6. 4}$$

$$L = \frac{c_0}{6\delta} = \frac{15}{6}c_0 = \frac{5}{2}c_0 \tag{6.5}$$

となる. ここで c₀は原型相(I相)の単位包の c 軸方向の長さである.

他方, Fig. 6.6.1 (C)では2本分の矢印の占める領域が c_0 に相当し,図よりDC間隔 は一方のドメインを基準に考えると 矢印5本分の領域に相当するのでL=(5/2) c_0 となり式(6.5)から導かれた結果と一致することがわかる.

このように 5 c_0 相である第 III 相は、IV相の(+) ドメインと(-) ドメインが DC (Discommensuration)を挟んで交互に配置した構造であり、整合-不整合相転移にお ける DC の生成-消滅による相転移機構の議論と同様の議論でこの第 III 相-第 IV 相間の

整合-整合相転移が議論できることがわかった.

さて TMATC-Zn と TMATC-Mn は同じ TMATC-M 属物質群としてこれらの相転移 は第1章 Fig.1.6.1 に示されているような統一 P-T 相図で理解されている.

今回 TMATC-Mn と TMATC-Zn の原型相を含む各相の構造について調べた. この 2 つの物質の統一的 P-T 相図における対応する各相は変調波数より

Mn 塩	I 相	—	Zn 塩	I 相
Mn 塩	IV相		Zn 塩	IV相
Mn 塩	V 相	_	Zn 塩	V 相

の組が対応すると考えられる.

構造解析の結果,上記の対応する各相の構造は同一の構造をとることが見いだされた.すなわち構造解析の立場からも統一相図の考えを支持する結果,すなわち統一相 図で同一相に属する両物質の各相は同じ構造をとることが明らかになった.

Fig. 6.6.1 *c*軸に関する回転からⅢ相及びⅣ相の構造を示した模式図
↑および↓の矢印はそれぞれ *c*軸に関する反時計および時計回りの回転を表す
(a) 第Ⅲ相の構造, (b) 第Ⅳ相の構造((+)ドメインと(-)ドメイン)
(c) DC (Discomensuration)を挟んでⅣ相における(+)ドメインと(-)ドメインの
交互の配置によりⅢ相の構造を再現

参考文献

- 1) K. Hasebe, H. Mashiyama, N. Koshiji and S. Tanisaki: J. Phys. Soc. Jpn. 56 (1987) 805.
- 2) T. Sakurai: Editor Universal crystallographic Computation Program system. The Crystallographic Society of Japan, Tokyo, Japan
- 3) International Tables for X-Ray Crystallography (The Kynoch Press, Birmingham, 1974) Vol. IV.
- 4) J. R. Wiesner, R. C. Srivastava, C. H. L. Kennard, M. DiVaira and E. C. Lingafelter: Acta Crystallogr. 23 (1967) 565.

第7章 結論

強誘電性結晶である硫安系物質群の中にあって,TMATC-M属結晶は強誘電相,強 弾性相をふくむ多彩な逐次構造相転移をすることが知られている.中でもTMATC-Mn は,第1章でこれまでの研究を概括しているように,TMATC-M属結晶を代表する物 質であり,多数の高次整合構造が圧力下で見いだされている興味深い結晶である.

我々は大気圧下で TMATC-Mn の4つの構造を X 線構造解析により決定して,どのような原子変位を伴って逐次転移をしているのかを第2章で記述した.

室温以上で安定な原型相(I相)は, 擬六方の斜方晶構造 *Pmcn* (Z=4)をとり, 一番 古くから知られている TMATC-Zn I 相と同型である. すなわち *x*=1/4, 3/4 の鏡映面上 に MnCl₄ 四面体基(TCM)と2種類の{N(CH₃}₄ 四面体基(TMA)があり, TMATC-Zn と同 様に TMA は disorder となることで鏡映対称を満たしている.

TMATC-Mn では 293K 付近での狭い温度領域の不整合相(II相)を経て, 超格子 をとる強弾性相(II相)が出現し P_{2_1}/c_{11} (Z=8)の空間群をとる. 試料には単斜晶ドメ インがほぼ 1:1 の存在比で混じっていることを考慮して構造解析した結果, 273K では TCM, TMA ともに yz 面内で z 軸から少し傾いた回転軸まわりで回転したように鏡映 面から変位した構造をとることが分かった.

さらに低温の整合相(IV相)では P112₁/n (Z=12)の空間群をとり,Ⅲ相とほぼ同様の軸まわりの回転的変位のパターンが3倍周期のものに変わった構造をとる.そして基本構造とおなじ単位胞サイズにもどるV相 P12₁/c1 (Z=4)では, x 軸まわりの回転的変位が加わる構造であり,IV相からではなくI相から直接連続的に変化してできたとみなせる構造へと1次転移していることが分かった.

TMATC-Mn で I - III-IV相の逐次転移に伴う TCM の z 軸からの回転のパターンを模式的に示すと、第6章6節に示したようになる. I 相では $\uparrow \diamond \land z$ アップとダウンが等確率であったものが、低温では $\uparrow \uparrow \downarrow \downarrow \Rightarrow$ および $\uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \phi$ 的な構造になったとみえる. これは競合的相互作用をもつイージングスピン系で表現した、波数が q=1/2 および 1/3 の変調構造と言えようが、結晶構造的には隣り合う系列1と2は等価ではないので、変位の大きさの絶対値は等しくはない.

次に第3章および第4章で記述したように,我々は TMATC-Mn の大気圧下におけ る構造の原型相(I相)から変調構造をとる強弾性相(Ⅲ相)への変化過程すなわち 秩序過程を転移点近傍で多数の温度点で構造解析することにより調べた.その結果, この相転移の機構としては秩序-無秩序型として記述できることが分かった.すなわ ち TCM 四面体基と 2 種類の TMA 四面体基は 2 章で述べたように,鏡映面を挟んだ 2 つのサイトを等確率で占めているが,相転移温度以下Ⅲ相内ではその 2 つのサイト の占有確率が非対称となり,鏡映対称性を失い,低対称相となる.Ⅲ相内では,温度 降下とともにその占有確率の差が連続的に大きくなるが,Ⅲ相の温度範囲では完全に は秩序化しておらず,部分的秩序構造(Partially-Ordered Structure)をとっている.すな わち2つのサイトの占有確率の差が相転移を特徴づける秩序変数となること及びその 秩序変数の臨界指数は3次元xyモデルが示す臨界指数とよい一致をみることがわか った.この点は,他の硫安系物質群の原型-不整合相転移の場合と類似であり,相転 移が自由度2で,3次元的な短距離相互作用のもとで実現されていることを示してい る.

しかし、相転移が無秩序-秩序型といっても、単純なモデルで記述されるような、2 値のいずれかをとるというようなものではない.すなわち第3章で詳しく述べたよう に、転移転直上での詳細な構造解析結果は、原型相において温度降下に伴い転移点近 傍で原子位置が前駆現象的に連続的に変化し、またそれは秩序化が進行するⅢ相内に おいても継続されるという、変位型的性質も併せ持つことを我々は見いだした.その 典型的な例は TCM の重心座標の変位 Δx と TCM の z 軸まわりの回転の自由度 φ の結 合である.秩序化に伴って $\varphi = -\varphi_0$ の状態が少なくなり、 $\varphi = +\varphi_0$ の状態が増していく. 同時に Δx の期待値も変化するが、I 相では等価であった TCM(a)と TCM(b)の Δx の 値は大きな差が現れる.すなわち TCM の x 軸方向の変位については I 相で $\Delta x = \pm A$ の値を無秩序にとっていた状態からⅢ相で±Aの片方の状態に移っていくという単純 なものではなく、Aの大きさそのものが TCM(a)と TCM(b)で数倍異なるということで ある.

ところで、Ⅲ相における MnCl₄四面体基の挙動については、上記のように得られた 部分的秩序構造の2つのサイト間距離が接近しているため、2つのサイトに拡がった 電子密度は、近似的に1つのサイトの原子を仮定する平均モデル(Fully-Ordered model)で表現しても、最小二乗解析は収束をみた.その場合、1つのサイトで近似さ れた四面体基の重心位置の変位と四面体基の回転角が秩序変数のごとく振る舞う温 度依存性を再現する.この事実は一見、相転移機構は変位型とみなすことができるよ うに思われたが、しかしこのモデルを用いると、1つのサイトとして仮定された原子 の平均二乗変位は相転移温度でカスプ的なピークを持つ温度依存性を示すことが分 かった.このカスプ的温度依存性こそが相転移が変位型であることを示す証拠である とみなす考えも過去にはあったが、この非物理的な温度依存性は、上述の部分的秩序 構造モデルで除去できることが分かった.すなわち、平均二乗変位自体は相転移点で 増大することなく、高温相から低温相に単調に減少するとして記述することが可能で ある.

従前は最小二乗法における R 因子の評価をもとに,相転移機構が秩序-無秩序型か 或いは変位型かの判断がもっぱら行われていた.本研究ではモデルによる R 因子の差 が小さい場合,原子の平均二乗変位の振る舞いを含めて,総合的な視点からの検討が 重要であることがわかった. さて、最小二乗法は微細な構造の差を調べるには有効な手段であるが、モデルに依存する側面があり、また得られる原子の電子分布(熱振動分布)に関する情報はORTEP 図で示されるところの回転楕円体で表現すると、6種の異方性温度因子の情報である. これに対して、最大エントロピー法(MEM)はモデルに依存せず、かつ回転楕円体 では正確に表現できない非調和な熱振動を含む電子密度の空間分布を直接的に推論 できる.そこで第5章ではⅢ相内の典型的な温度点3点について MEM 解析を試みた. その際、単斜晶ドメインの単分域のデータを見積もるため、(i)最小二乗法により ドメイン比と単分域の構造因子の大きさ及び符号を見積もる,(ii)単分域からの強 度データに対して MEM を実行、という手法を用いた.得られた結果をドメイン混在 データのまま MEM 解析したものと比べると、重原子 Mn、Cl では顕著な差がみられ なかった一方、N 及び C に関しては温度降下に伴う明瞭な秩序過程を再現できた.こ のように分域構造を伴う場合の電子密度分布を推論する新たな手法を見いだすこと ができたことも本研究の成果である.

第6章ではTMATC-Mnと同型と考えられているTMATC-Znの原型相を含む各相の 構造解析について述べた.この2つの物質の相転移は第1章で述べた統一的P-T相図 で理解でき,構造解析の結果もその考えを支持する結果,すなわち統一相図で同一相 に属する両物質の各相は同じ構造をとることが明らかになった.

以上,本研究ではTMATC-Mnの逐次相転移に伴う構造変化を詳細に記述し,TCM 及びTMAが本質的には無秩序-秩序型の自由度もって相転移に関係していること, TCMの重心の期待値は変位的挙動をし,これは超格子反射の温度依存性と密接に関係していることがわかった.

謝 辞

本論文は昭和 60 年4月に山口大学理学研究科修士課程に籍を置かせていただいて からの増山・笠野研究室での修士課程,文部科学省内地研究員としての研究,そして 平成 20 年 4月社会人学生として入学した理工学研究科博士後期課程での研究をまと めたものです.

増山博行教授には、その長き期間にわたり、一貫して多大かつ親身なご指導、御鞭 撻をいただきました.またその研究に対する真摯な取り組み方、研究に対する姿勢等、 様々な多くのことを学ばせていただきました.ここに厚く御礼申し上げます.

笠野裕修准教授には研究を遂行するに当たり様々な有益な議論・アドバイス・ご指 導をいただきました.ここに厚く御礼申し上げます.

長谷部勝彦名誉教授,朝日孝尚教授には本研究をはじめとする誘電体の研究を通し て示唆あふれる様々な有益な議論,ご指導をいただきました.ここに深く感謝いたし ます.

また X線低温データを九州大学にて収集するにあたり,当時九州大学博士課程学生で あった町田光男九州大学准教授には大変お世話になりました.ここに深く感謝いたし ます.

社会人学生として入学してからは、同じ研究室の博士課程学生として議論や実験を 通してともに刺激し合い、またサポートいただいた Mkam Tchouobiap 氏、三好烈麗氏 に感謝いたします.また年の離れた社会人学生を温かく迎えてくれた研究室の学生諸 氏および今までの研究活動においてお世話になりました研究室卒業生諸氏に御礼申 し上げます.

本研究を通して学んだ様々のことを,私の本務である高専における学生指導や研究 に少しでも活かすことが各位のご指導,御厚情に対する恩返しだと考えております.

最後になりましたが、本研究の遂行に当たり全ての面においてサポートをしてくれ た家族に対して心より感謝いたします.

付 録

A1 原子に部分的無秩序がある場合の温度因子の計算

今, OD 型の考えに基づき,一つの原子がx 軸上の座標 $x=x_1$ および $x=x_2$ の位置 ($x_1 > x_2$)にそれぞれp および 1 - p の占有確率で存在しているものとする. これを split atom といい, 2 つに分かれた原子の間隔 Δx は $\Delta x = x_1 - x_2$ となる.

次に, x=0 に存在する原子密度の分布関数を Gaussian distribution f(x)で表現出来ると する. すなわち、2つの位置 x_1 および x_2 を中心にして分布する原子密度を、1つの 原子と見ると、その原子密度 $\tilde{f}(x)$ は

$$\widetilde{f}(x) = pf(x - x_1) + (1 - p)f(x - x_2)$$
(A.1)

と書けることになる. ここで分布関数は次式のように規格化しておく.

$$\int_{-\infty}^{\infty} f(x)dx = 1 \tag{A.2}$$

そうすると、原子の重心(原子位置の期待値) は
<
$$x \ge \int x\tilde{f}(x)dx = p\int xf(x-x_1)dx + (1-p)\int xf(x-x_2)dx$$

 $= p\int (x'+x_1)f(x')dx' + (1-p)\int (x'+x_2)f(x')dx'$ (A.3)
 $= px_1 + (1-p)x_2 = \bar{x} + (2p-1)d$

となる. ここで

$$\overline{x} = (x_1 + x_2)/2, \quad d = (x_1 - x_2)/2$$
 (A.4)

と置いた. もし, 完全に disorder の状態であれば, p=1/2 であるから, これを (A.3) に代入して < $x >= (x_1 + x_2)/2$ である. また, 完全に order の状態であれば, p=1 または 0 であり, p=1を代入すれば, $< x >= x_1$ となる.

次に (A.1) で表せる場合の熱振動振幅, すなわち平均二乗変位 $\langle (x-\langle x \rangle)^2 \rangle$ を求め よう.まず (A.3) と同様に $\langle x^2 \rangle$ を求める $\langle x^2 \rangle = \int x^2 \tilde{f}(x) dx = p \int x^2 f(x-x_1) dx + (1-p) \int x^2 f(x-x_2) dx$ $= p \int (x'+x_1)^2 f(x') dx' + (1-p) \int (x'+x_2)^2 f(x') dx'$ (A.5) ここで(A.2)より

$$\int (x'+x_1)^2 f(x')dx' = \int (x'^2 + 2x'x_1 + x_1^2) f(x')dx' = \langle x^2 \rangle_0 + x_1^2$$
(A.6)

ただし、完全に order した状態の二乗平均を

$$\langle x^{2} \rangle_{0} = \int x^{2} f(x) dx$$
 (A.7)

と表している.

従って(A.5)式は

$$\langle x^{2} \rangle = \langle x^{2} \rangle_{0} + px_{1}^{2} + (1-p)x_{2}^{2}$$
 (A.8)

となる.よって求める平均二乗変位は

$$<(x-)^{2} >=< x^{2} > -^{2}$$

=< $x^{2} >_{0} + px_{1}^{2} + (1-p)x_{2}^{2} - \{px_{1} + (1-p)x_{2}\}^{2}$
=< $x^{2} >_{0} + 4p(1-p)d^{2}$ (A.9)

となる.ここで、(A.4)で定義した d を使った.完全に無秩序な場合と、完全に秩序 がある場合ではそれぞれ

$$<(x-)^{2}>=\begin{cases} _{0}+d^{2} & ; p=1/2\\ _{0} & ; p=0 \text{ or } 1 \end{cases}$$
 (A.10)

である. 平均二乗変位はまさに温度因子を表す. 古典統計では $\langle x^2 \rangle_0 \propto k_B T$ である. よって,温度低下で無秩序から秩序になる時の温度因子は,以前,伊東氏が提示したように,図のような温度依存性を示すことが期待される.

Fig. A.1 Order-disorder 転移をする場合に期待される温度因子の温度依存性

A2 Hamilton 検定

Hamilton 検定¹⁾とは最小二乗法による構造解析において、与えられたデータ数 *N* と2つのモデルの fitting parameter 数の差を比較することによりどちらのモデルがより確からしいかを数学的に比較するものである.

以下に今回の解析で実際に行ったハミルトン検定の具体例を挙げて説明する.

第4章の289 K における FOM と POM に関しての比較を行う. このときの反射個 数やパラメータ数, 最終 *R*-factor 等は以下の Table A.2.1 の通りである

Table A.2.1: 289 K における FOM と POM の解析結果等

ここでより parameter 数が多い POM の有効性について議論を進める.

上記の「反射個数–POM での parameter 数(= $N - m_{POM}$)」と「2 つのモデルで parameter 数の差 ($m_{POM} - m_{FOM}$)」の Hamilton の文献¹⁾中の対応表から得られる閾値の R 比の 値と上記の実際の R 比 ($R_{FOM} / R_{POM} = 1.17$)を比較し、実際の値の方が大きければ 今回の場合 POM のほうがより確からしい、すなわち優位となる.

ところがHamiltonの文献に掲載されている99.5%の信頼度を与える閾値のR比を与える表は,TableA.2.2で与えられる範囲しかない.

TableA.2.2: Hamilton の文献中の 99.5%の信頼度を与える閾値 R 比の表

		$m_{\rm POM} - m_{\rm FOM}$				
N-m _{POM}	1/(N-m)	15	30	60	120	
15	0.066667	2.252	2.894	3.863	5.289	
30	0.033333	1.582	1.905	2.415	3.194	
60	0.016667	1.282	1.447	1.721	2.161	
120	0.008333	1.139	1.223	1.369	1.614	

したがって今回の検定のために文献の表を拡張する必要がある.そこで縦軸及び横軸 の各値に対してそれぞれ最小二乗法で関数フィッティングを行い, Table A.2.2 の表を Table.A.2.3 のように拡張した.

Table.A.2.3 拡張された閾値の R 比を求める表(99.5%の信頼度)

		$m_{\rm POM} - m_{\rm FOM}$						
N-m _{POM}	1/(N-m)	15	30	60	120	240	276	480
15	0.066667	2.252	2.894	3.863	5.289	7.462868	8.018363	10.72808
30	0.033333	1.582	1.905	2.415	3.194	4.415459	4.733801	6.313636
60	0.016667	1.282	1.447	1.721	2.161	2.865626	3.053071	3.999413
120	0.008333	1.139	1.223	1.369	1.614	2.013398	2.121472	2.675093
240	0.004167	1.06825	1.109327	1.177993	1.288374	1.466129	1.513484	1.752925
480	0.002083	1.033958	1.054512	1.088981	1.144529	1.234111	1.258001	1.378901
960	0.001042	1.016937	1.027219	1.044488	1.072352	1.117320	1.129319	1.190065
1920	0.000521	1.008458	1.013600	1.022243	1.036198	1.058726	1.064739	1.095186
2908	0.000344	1.005582	1.008977	1.014686	1.023904	1.038788	1.042761	1.06288
3840	0.000260	1.004227	1.006798	1.011121	1.018104	1.029379	1.032389	1.047631

_____の部分が文献の表

Table.A.2.3 より閾値の *R* 比は 1.04 となり, Table.A.2.1 に記した今回得られた *R* 比の 値 R_{FOM} / R_{POM} = 1.17 より小さい. したがって今回の解析では「POM の方が 99.5% の信頼度で優位である」と結論づけることができた.

参考文献

1) W. C. Hamilton, Acta Crystallogr. 18 (1965) 502.

発表論文

本研究に関する発表論文/紀要は以下の通りである.

(1) H. Mashiyama, N. Koshiji

"A Structural Study of Phase Transitions in {N(CH₃)₄}₂MnCl₄" Acta Crystallographica (1989) **B45** p.467-473 (第2章)

(2) N. Koshiji, H. Mashiyama

"Disordered and Displacive Models for the Structure of Normal Phase in {N(CH₃)₄}₂MnCl₄" Journal of the Physical Society of Japan (2000) **69** p.3853-3859 (第3章)

(3) N.Koshiji, H. Mashiyama

"Structural Study of Ordering at the Normal-Commensurate Transition of ${N(CH_3)_4}_2MnCl_4$ - Models and Adaptation - " Journal of the Physical Society of Japan (2011) **80** p.06 (第4章)

(4) 越地尚宏

"内地研究員を終えて

A Report of Research at Yamaguchi University as a Visiting Researcher (Naichi Kenkyuin) "

久留米工業高等専門学校紀要(1995)第11巻第1号 p.59-67(第3章)

- (5) K. Hasebe, H. Mashiyama, <u>N. Koshiji</u>, S. Tanisaki
 "X-Ray Diffraction Study of Structures of Normal and Ferroelectric {N(CH₃)₄}₂ZnCl₄"
 Journal of the Physical Society of Japan (1987) 56 p.3543-3552 (第6章)
- (6) H. Kasano, <u>N. Koshiji</u>, H. Mashiyama
 "A Structural Study of Phase Transitions in {N(CH₃)₄}₂ZnCl₄ at Low Temperature" Journal of the Physical Society of Japan (1992) 61 p.348-356 (第6章)

.