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Abstract

We introduce two novel models (“Democratic Three Site Higgsless Model”
and “Vortices and Superfields on a Graph”) that are based on the technique of
Dimensional Deconstruction.

Background

Nowadays, in the (elementary) particle physics, the Glashow-Weinberg-Salam
(GWS) Model [1] is well known theory as the Electroweak (Unified) Theory. In
this model, the symmetry of the gauge field S U(2), ® U(1)y is spontaneously bro-
ken to the electromagnetic symmetry U(1),,. In the process of symmetry break-
ing, some gauge fields become massive and the Higgs particle (a massive scalar
particle) is produced. This mechanism is called the Higgs mechanism [2]. The
GWS Model symmetry group S U(2); ® U(1)y forms the electroweak gauge sec-
tor of the Standard Model (SM) of particle physics. The SM is the very successful
theory, as decades of experiments have confirmed it predictions to a high level
accuracy. Nevertheless there are some questions that have not been answered. We
introduce two of them.

One is the missing Higgs particle problem. This is the problem that the exis-
tence of the Higgs particle has never observed. Therefore the Higgs particle is the
missing piece of the GWS Model.

The other is the gauge hierarchy problem. As the further unification, there is
the Grand Unified Theory (GUT). GUT (for example S U(5) GUT) unifies both
Electroweak Theory and Quantum Chromodynamics (the fundamental theory of
the strong interactions). The unification energy scale of the GUT is about 10
GeV. On the other hand, the unification energy scale of the Electroweak Theory is
about 100 GeV. The gap of the order between these two unification energy scale
is about 12. This large gap of the energy scale is enormous hierarchy. The gauge
hierarchy problem is that what the origin of this hierarchy is. This problem leads
to why there are no physical objects between these unification scale.

To solve these two problems, we introduce the extra-dimensional gauge the-
ory of the Electroweak Theory. In this thesis, we have an interest in the five-
dimensional gauge theory. The fifth-component of the gauge field plays the role of
the Higgs particle and the Kaluza-Klein (KK) mode of the four-dimensional gauge
fields explains the gauge hierarchy problem. The Electroweak Theory which do
not need the Higgs mechanism, is called Higgsless Theory.
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We are interested in the low energy scale physics, near the electroweak uni-
fied energy scale. We focus on the Higgsless Theory of the deconstructed extra-
dimensional gauge theory. The technique of discretizing the dimension is called
“Dimensional Deconstruction” (DD), in this thesis, we use this technique in fifth-
dimension. DD was introduced by Harvard group [3] and Fermi lab group [4]
independently. In the (dimensionally) deconstructed theory, we use the moose
diagram which denotes the theory framework. For the example of the Higgsless
Theory, we show the deconstructed five-dimensional S U(2) gauge theory. This
theory is four-dimensional [effective] SU(2) ® [SU(2)]Y ® U(1) gauge theory,
where N represents the degree of the discretization. Since we are interested in the
low-energy scale physics, we search the highly deconstructed theory of the Three
Site Higgsless Model (SU(2) ® [SU(2)]® U(1), N = 1).

We call the theory based on [15] “the Original Three Site Higgsless Model”,
SUR); @ SUR2)y ® U(l)y. This is the highly deconstructed model of the five-
dimensional SU(2); ® SU(2)g ® U(1)p-; gauge theory. This model investigates
fermions such as leptons and quarks. The property of SU(2); and U(1)y gauge
fields are similar to the GWS Model. There are four SM-like gauge bosons and
three heavier gauge bosons, and a set of SM-like fermions and heavy copies of
those fermions.

We are also interested in (topological) solitons, such as monopole and vortex.
Soliton means a solitary particle. Solitons are the particular classical solutions of
the non-linear field equations. We think that topological configurations are a key
ingredient in recent studies in theoretical physics.

We have an interest in the application of the moose diagram. We try to gener-
alize DD with the help of Graph Theory.

The moose diagram is a figure which consists of sites and links. In the Higgs-
less Theory (of the deconstructed extra-dimensional gauge theory), gauge fields
live in each site and scalar field live in each link. A connection between sites
and links shows the interactions between fields. Therefore the shape of the moose
diagram represents the theory space (theory framework).

We generalize the relation between gauge fields and scalar fields in the context
of Graph Theory. In the language of the Graph Theory, site corresponds to vertex
and link corresponds to edge. Introducing the orientated edge, we have some vari-
ations of the connections between vertices. We can express the relation between
gauge fields and scalar fields in a graph, which is just a complex moose. We
wish to call this theory based on a graph as “Graph Dimensional Deconstruction”
(GDD).
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Democratic Three Site Higgsless Model

We attempt another approach for the Three Site Higgsless Model. We extend
the Three Site Higgsless Model by using the Democratic Condition. We call the
model of this approach “Democratic Three Site Higgsless Model”. In this model,
“Democratic” means that each SU(2) gauge field has equivalent property. We
consider [SU(2)]* ® U(1) gauge it is taken from [S U(2)]® broken by [effective]
adjoint scalar. When S U(2) is broken to U(1) by the Higgs mechanism, the theory
has monopole configuration. As the result of searching, we find that it is difficult
to represent the real electroweak phenomenology in the Democratic Condition.
We need to improve the Democratic Three Site Model.

Vortices and Superfields on a Graph

We extend the DD by utilizing the knowledge of Graph Theory. In the DD, one
uses the moose diagram to exhibit the structure of the “theory space”. We gener-
alize the moose diagram to a general graph with oriented edges. We consider only
the U(1) gauge symmetry.

We also introduce supersymmetry (SUSY) into our model by use of super-
fields. We suppose that vector superfields reside at the vertices and chiral su-
perfields at the edges of a given graph. Then we can consider multi-vector, multi-
Higgs models. In our model, [U(1)]? (where p is the number of vertices) is broken
to a single U(1). Therefore for specific graphs, we get vortex-like classical solu-
tions in our model. We show some examples of the graphs admitting the vortex
solutions of simple structure as the Bogomolnyi solution.
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Chapter 1

Introduction and motivation

We introduce two novel models (“Democratic Three Site Higgsless Model” and
“Vortices and Superfields on a Graph”) that are based on the technique of Di-
mensional Deconstruction. The technique of discretizing the (extra-) dimension
is called “Dimensional Deconstruction” (DD). We use this technique in the extra-
dimension. We supposed the existence of the extra-dimension. In the (dimension-
ally) deconstructed theory, we use the moose diagram which denotes the theory
framework (theory space).

We mention the reason why we consider the field theory in Dimensional De-
construction and Graph Dimensional Deconstruction. We also mention the rela-
tion between the field and the moose diagram (or graph).

Electroweak Unified Theory

From ancient days, many people have been researching Nature. Nowadays, in
the (elementary) particle physics, the Glashow-Weinberg-Salam (GWS) Model
[1] is well known theory as the Electroweak (Unified) Theory. In this model,
the symmetry of the gauge field SU(2), ® U(1)y is spontaneously broken to the
electromagnetic symmetry U(1).,. In the process of symmetry breaking, some
gauge fields become massive and the Higgs particle (a massive scalar particle)
is produced. This mechanism is called the Higgs mechanism [2]. The GWS
Model symmetry group S U(2),® U(1)y forms the electroweak gauge sector of the
Standard Model (SM) of particle physics. The SM is the very successful theory,
as decades of experiments have confirmed it predictions to a high level accuracy.
Nevertheless there are some questions that have not been answered. We introduce
two of them.

One is the missing Higgs particle problem. This is the problem that the exis-
tence of the Higgs particle has never observed. Therefore the Higgs particle is the
missing piece of the GWS Model.

11
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The other is the gauge hierarchy problem. As the further unification, there is
the Grand Unified Theory (GUT). GUT (for example SU(5) GUT) unifies both
Electroweak Theory and Quantum Chromodynamics (the fundamental theory of
the strong interactions). The unification energy scale of the GUT is about 10'*
GeV. On the other hand, the unification energy scale of the Electroweak Theory is
about 100 GeV. The gap of the order between these two unification energy scale
is about 12. This large gap of the energy scale is enormous hierarchy. The gauge
hierarchy problem is that what the origin of this enormous hierarchy is. Saying
another way, why there is no physical object between these unification scale.

To solve these two problems, we introduce the extra-dimensional gauge the-
ory of the Electroweak Theory. The extra-dimensional theory is known as Kaluza-
Klein (KK) theory. We suppose the existence of the unobservable extra-dimension
in this theory. The existence of the extra-dimension is the origin of the mass of par-
ticles. Imposing some boundary conditions on the extra-dimension, theories have
the KK mode of the infinite mass spectrum. In this thesis, we have an interest in
the five-dimensional gauge theory. The fifth-component of the gauge fields plays
the role of the Higgs particle and the KK mode of the four-dimensional gauge
fields explains the gauge hierarchy problem. The Electroweak Theory which does
not need the Higgs mechanism, is called Higgsless Theory.

We are interested in the low energy scale physics, near the electroweak uni-
fied energy scale. We focus on the Higgsless Theory of the deconstructed five-
dimensional gauge theory, especially Three Site Models of the highly decon-
structed model.

In any case, the Large Hadron Collider (LHC) at CERN, as a proton-proton
collider with center-of-mass energies up to 14 TeV, is designed to reach the energy
scale of the electroweak symmetry breaking in hard proton scattering process.
Thus the underlying dynamics are proved at the LHC.

Solitons

We are also interested in (topological) solitons, such as monopole and vortex.
Soliton is studied by many authors [5]. Soliton means a solitary particle. Solitons
are the particular classical solutions of the non-linear field equations. An impor-
tant characteristic of soliton solutions is that they are localized and have finite-
energy with a localized, non-dispersive energy density. Generally, they will travel
undistorted in shape, with some uniform velocity. In that they are non-dispersive
localized packets of energy moving uniformly, solitons resemble extended parti-
cles, even though they are solutions of non-linear wave equations. Elementary
particles in nature are also localized packets of energy, and are furthermore be-
lieved to be described by some relativistic field theory. The field theories describ-
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ing elementary particles are quantum theories, whereas the solitons are, to start
with, solutions of classical field equations.

In 1974, G. "t Hooft [6] and A. M. Polyakov [7] showed the monopole which
had the properties of the soliton. In the SU(5) GUT, the monopole mass is M ~
10'® GeV. This is an enormous mass: therefore magnetic monopoles cannot be
produced at any accelerators.

It is well known that the vortex solution can be found in the Abelian-Higgs
model [8]. In many papers, the solution is used as a simple model for a cosmic
string [9].

We think that topological configurations are a key ingredient in recent studies
in theoretical physics.

Field Theory on a Graph - from a moose diagram to a graph

We have an interest in the application of the moose diagram. We try to generalize
DD with the help of Graph Theory.

The moose diagram is a figure which consists of sites and links. In the Higgs-
less Theory (of the deconstructed extra-dimensional gauge theory), gauge fields
live in each site and scalar fields live in each link. A connection between sites
and links shows the interactions between fields. Therefore the shape of the moose
diagram represents the theory space.

We generalize the relation between gauge fields and scalar fields in the context
of graph theory. In the language of the graph theory, site corresponds to vertex
and link corresponds to edge. Introducing the orientated edge, we have some vari-
ations of the connections between vertices. We can express the relation between
gauge fields and scalar fields in a graph, which is just a complex moose. We
wish to call this theory based on a graph as “Graph Dimensional Deconstruction”
(GDD). The idea of GDD has already been published as [10] [11].

Many interesting results on graph theory have been found in the mathemati-
cal literature [12]. We introduce graph theoretical methods into DD. Especially,
we find that Spectral Graph Theory analytically clarifies the theoretical structure
of DD and mathematical theorems on a graph restrict physical quantity on de-
constructed theories. We expect that rich and extensive content of Graph Theory
produces useful results on DD.

Outline

We have four parts. The first part includes a review of the (dimensionally) de-
constructed theory. The second part includes the three site model. The third part
includes field theory on a graph. The last part includes summary, perspective and
conclusion in this thesis.
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In chapter 2 of part 1, we show the review of the deconstructed five-dimensional
gauge theories.

Part 2 consists of two chapters, chapter 3 and chapter 4. In chapter 3, we
review “the Original Three Site Higgsless Model”. In chapter 4, we show “Demo-
cratic Three Site Higgsless Model”.

In chapter 5 of part 3, we show “Vortices and Superfields on a Graph”.

In chapter 6 of part 4, we mention summary, perspective and conclusion in
this thesis.

In addition, in appendix A and B, we show some supplements.



Part I

Deconstructed Theory

15



Chapter 2

Dimensionally deconstructed theory

In this chapter, we show the deconstructed five-dimensional gauge theories. Di-
mensional Deconstruction (DD) is the technique of discretizing the dimension,
this technique was introduced by Harvard group [3] and Fermi lab group [4] inde-
pendently. '

DD is based on the extra-dimensional theory which is imposed any boundary
condition (or symmetry) on the extra-dimension. This extra-dimensional theory
has the infinite Kaluza-Klein (KK) mode. DD is the technique of discretizing the
(extra-) dimension. Deconstructing the extra-dimensional theory corresponds to
introducing the cut-off in the theory. We use the technique of DD, the infinite
KK mode becomes finite mode. The higher energy mode is cut off. Therefore we
control the cut-off energy scale of the KK mode by DD.

2.1 Kaluza-Klein theory

At first, we suppose the existence of the extra-dimension. It is possible for ad-
ditional spatial dimensions to be undetected by low energy experiments if the
dimensions are curled up into a compact space of small volume. KK theory is the
extra-dimensional theory. There are the ordinary three dimensional spaces and the
extra-space. The number of dimensions is equal to

time (1) + space (3) + unobservable extra-space (?) =4 + 7. (2.1.1)

We think that the extra dimension is too small to observe as in Figure 2.1.
In the following, we consider the case that the extra space is equal to one. In
other words, the following theory is described by the five-dimensional space-time.
There is a particle in the five-dimensional space-time. We denote the five-
dimensional momentum p"

PM =% .0 P P, 2.1.2)

16
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L) =

Figure 2.1: This is the image of the rolled-up unobservable extra-dimension.
When we view a line from a distance (the right figure), it looks like it has one
dimension (along the length). But when we view the line up close (the left figure),
we see that the surface has two dimensions (along the length and around it). We
can observe only the right figure, but there is the rolled-up extra-dimension as in
the left figure.

where N = (i, 5), 4 = (0,1, 2, 3). For the five-dimensional massless particle, it is
satisfied that

pwp" = ppt+ (P =0. (2.1.3)
This equation corresponds to

" = =P (2.1.4)

Therefore the five-dimensional massless particle has the mass M = |p’| in the ob-
servable four-dimensional theory. Because we cannot observe the fifth-dimension,
the fifth-dimensional momentum corresponds to the mass of the particle. There-
fore the existence of the extra-dimension explains the origin of the mass of the
particle. This is the important aspect of the extra-dimensional theory.

Kaluza-Klein mode

There is a field in the five-dimensional space-time. We define the five-dimensional
space-time coordinate xV

=0, X K X X0, (2.1.5)
We prepare a five-dimensional field
p(x") = p(x*, x°). (2.1.6)
We impose the following periodic boundary condition (as in Figure 2.2)

d(*, x° + 27R) = ¢(x*, x°). (2.1.7)
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-

Figure 2.2: The fifth-dimensional space is compactified on a circle of radius R.
This boundary condition is called S! symmetry.

>

xH

Therefore the field ¢(x") corresponds to

n=-+00

$(N) = Z D, (x*)e'F* . (2.1.8)

n=—0o0

Each of mode which is identified by the integer number # is called the KK mode.

The mass ! of mode 7 is "
n
M, =1p = . 2.1.9)

In the five-dimensional theory, when we impose some fifth-dimensional boundary
condition, we get the effective theory. The effective theory is constructed by the
four-dimensional theory part and KK mode part. By the fifth-dimensional bound-
ary condition, the massless theory becomes the massive theory in the effective
theory. Each mode » has the different mass as in Figure 2.3.

2.2 Five-dimensional gauge theory

We describe the five-dimensional gauge theory. We saw in the above section, the
existence of the extra-dimension explains the origin of the mass. In this section,
we apply this mechanism to the gauge theory.

We introduce a five-dimensional gauge field AV,

AV = (4#, 4°). (2.2.1)

Using this gauge field, we construct the five-dimensional massless Lagrangian

1
Ls= —ETr GunG™, (2.2.2)

Tt is satisfied that (¢* + M?)¢ = 0.
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MnA

Figure 2.3: The mass is identified by », M, = 2. The mass has the infinite

"RS' .
spectrum.

where Gy is the five-dimensional field strength of the gauge field A"
Gun = OpAn — OnAn — igs[ A, An]. (2.2.3)

g5 is the coupling constant of the five-dimensional gauge field.

If we impose the some boundary condition, the theory gets the mass of the
gauge field. For instance we impose the S'!/Z, symmetry (boundary condition)
on the fifth-dimension in this theory. Therefore the fifth-dimensional space x> is
restricted to —7R < x> < 7R and the gauge field satisfies the following conditions

A, 25 = +AH @, —x0),

224
A, x°) = =A°(x", =x°). ( )
We can expand the gauge field as follows
A ) = e A £ — 3 400 cos (—) ,
\27R VaR 45 R 22.5)

1 < nx>
A, x5y = —— ) AD(x) sin(—).
VR ; R

We separate the fifth-dimensional term from the above five-dimensional La-
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grangian (2.2.2),
1
Ls=-3 [Tr GG + Tr G,5G** + Tr G5,G™ + Tr G55G55]

1
= ——TrG,G* — Tr G,sG*
27 # (2.2.6)

1
= —ETr {@Av - 0,4, — igs[A#,AV]} {#4Y — o7 A* — igs[4*, A7}
— Tr {9,4s — 054, - ig5[A“,A5]} {ord® —°a - ig5[A",A5]} :

where in the second line we used the anti-symmetric property of the field strength

GMVN . To consider the kinetic and mass terms of the four-dimensional gauge field,

we ignore interacting terms

1
Ls~—5 Tr (0,4, - 0,4, }{3"4" = 4"} = Tr (9,45 — 054, } {0 4® — 9° 4"}

(2.2.7)

After some calculations we get the following result,

1 P RS nx’® 2
- - ) _ ) - 27 (n _ (n)
Ls Tr[ g (0uAY = 8,47 + El cos ( = )(a,,AV 8,4%)

1 S 22 nxS (n) n 2
+ jr_R ;sm (T) (BIJAS + MHAL )) .
2.2.8)

Here we used the notation, M, = n/R. The four-dimensional effective Lagrangian
is obtained by integrating out the fifth-dimensional coordinate,

2R
‘£4—effective = f dxsLs
0

1 2 1o 2w 2
(U] 0 (n () () ()
~ Tr [E(aﬂAv ~0,40) +5 > (9,40 = 0,47) + ) (0,47 + MAL) ]
n=1 n=1
(2.2.9)
Therefore the mass term of the four-dimensional gauge field Af,") is
n
M, = —. 2.2.10
2 (2.2.10)

This mass term constructs the mass tower. As the consequence, the existence of
the extra fifth-dimension is the origin of the mass.

We considered the five-dimensional gauge theory which has the arbitrary gauge
field. For the later description we introduce two examples, SU(2); ® SUQ2)z ®
U(1)p_; and SU(2) gauge field theories. We show only boundary conditions in
these theories.
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The five-dimensional SU(2);, ® SU(2)z ® U(1)_, gauge theory

The five-dimensional S U(2); ® SU(2)r ® U(1)p_; gauge theory is showed in [13].
In this theory, the gauge symmetry is broken by boundary conditions. The sym-
metry breaking pattern and the mass spectrum resemble that in the Electroweak
Theory of the SM.

We prepare the three types of the five-dimensional gauge field, SU(2)., S U(2)zr
and U(1)p_; gauge fields. We denote S U(2);, S U(2)g and U(1)p_; gauge fields as
AL, 4% and BE respectively, in addition the gauge coupling of two S U(2) fields
as gs and U(1) field g5. We define the following identity,

1
Af = N (4F = 45). (2.2.11)

This five-dimensional SU(2); ® SU(2)z ® U(1)p_1 gauge theory is based on the
Randall-Sundrum (RS) model [14]. The fifth-dimensional coordinate x° is on the
interval [R, R’] (as in Figure 2.4). There exist branes in the fifth-dimension, the
four-dimensional space exists on each brane. In RS-type models, R is typically
~ 1/Mpp and R’ ~TeV~!. Therefore the brane which lies on x> = R is called
the Planck brane and x> = R’ the TeV brane. On the Planck brane, the SU(2); ®
SUQR)z ® U(1)p-; symmetry is broken down to SU(2); ® U(1)y by the following
boundary conditions,

854, =0, Ax"Y =0,

ds (gsB, + &s45°) = 0,
gsB, — gAY =0,
A:=0, A48=0, Bs=0.

(2.2.12)

The non zero fields are four-dimensional the S U(2); field Aﬁ and the U(1)y field
gsB, + gSAff’3 , and these two fields do not depend on the fifth-dimensional co-
ordinate. In this brane, the SU(2); ® U(1)y gauge field corresponds to the the
gauge field of the GWS model. On the other hand, in the case of TeV brane, the
SUQR); ® SUR)r ® U(1)p_; symmetry is broken down to SU((2)y ® U(1)p_1 by
the following boundary conditions.

6514; = 0, A; = 0, 653# = O,

2.2.13
A;ZO, (()5Ag:0, B5:0. ( )

The non zero fields are the four-dimensional SU(2)y field 4, the U(1)p-, field
B, and the fifth-dimensional field 45, and these fields also do not depend on fifth-
dimensional coordinate.

2The Planck mass is Mp; ~ 10'° GeV
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SUR),eSU2)r®U(l)p1

5
/L—bx

X =R x> =R
SUQR) @ U()y SU2)yeU(1)p-1

Figure 2.4: This is the shape of the five-dimensional SU(2), ® SU22)r @ U(1)5_1
gauge theory. There exist branes in the fifth-dimension, the four-dimensional
space exists on each brane. The above cuboid is consisted of infinite branes. We
denote symmetries of the gauge field in each brane.
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The five-dimensional S U(2) gauge theory

We consider the five-dimensional S U(2) gauge theory (as in Figure 2.5). As the
boundary conditions we impose

Bs42 = 0,

2.2.14
P (2.2.14)

in the one brane (x° = R). In another brane (x° = R’), we impose

4.7 =0,

3
054>,
9s4}* =0,
A3 =0.

(2.2.15)

SUQ2)

7 o

xS =R x5 =R
SUQ) U)

Figure 2.5: This is the shape of the five-dimensional S U(2) gauge theory. This is
the same type as Figure 2.4.
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2.3 Dimensional Deconstruction

DD is the technique of discretizing the dimension, saying in other words DD is
the reduction of the dimension to a finite point lattice (as in Figure 2.6). In five-
dimensional theory, deconstructed five-dimensional space corresponds to a moose
diagram (as in Figure 2.7). The moose diagram is a graph consisted of sites and
links. The four-dimensional space-time (brane) lives in each site and sites are
connected by links. From the moose diagram, we know that neighboring sites
have interaction through the link.

In the five-dimensional theory, when we impose some boundary conditions on
the fifth-dimension, the infinite KK mode appears. We use the technique of DD
in this theory, the higher values of the infinite mass spectrum are cut off. The
deconstructed theory has the finite mass spectrum (as in Figure 2.8).

5
/4_>x

Figure 2.6: DD is the reduction of the dimension to a finite point lattice. Therefore
the number of branes becomes finite.

Figure 2.7: This is the moose diagram. S means a site and L means a link. The
subscript is the label of each site and link.
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M M
A A

Figure 2.8: The left figure has the infinite mass spectrum and the right figure has
the finite mass spectrum. In the right figure, we use the technique of the DD.
Therefore the higher values of the infinite mass spectrum are cut off.
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2.4 Deconstructed five-dimensional gauge theory

In this thesis, we consider the deconstructed five-dimensional gauge theory. De-
constructing the five-dimensional gauge theory, the fifth-dimension is discretized.
Therefore the gauge fields 4, at each position in the extra-dimension become in-
dependent gauge fields of a product gauge group in four-dimensions. The gauge
fields that point along the fifth-dimension 45 are reinterpreted as the Nambu-
Goldstone boson fields of a non-linear sigma model, which break the gauge groups
at neighboring sites of the discretized extra-dimension down to the diagonal. We
represent the discretized model using the moose diagram.

241 SUQR)®[SUQ)Y ® U(1) model

The discretized fifth-dimensional space corresponds to a moose diagram as in Fig-
ure 2.9. This moose diagram denotes the theory framework. This moose diagram
is derived from the five-dimensional S U(2) gauge field imposing some boundary
conditions. The ordinary four-dimensional gauge fields live in each site (circle
vertex), and the Nambu-Goldstone boson fields live in each link. There are the

SU_2)
¥
- =
X =R X =R
SU(2) U(l)
G
SU(2) SU2) SU(2) SUQR) U(l)

Figure 2.9: This moose diagram is based on the five-dimensional S U(2) gauge
theory. U(1) gauge field is derived from SU(2) gauge field which is imposed
some boundary conditions.
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four-dimensional gauge fields Ao, 41,, - -+, A, and B, in each site. A4;, means
the SU(2) gauge field and B, means the U(1) gauge field. The label 7 of 4,
corresponds to the site number /. g; is the gauge coupling constant of the S U(2)
gauge A;,. Especially, gy, is the gauge coupling constant of the U(1) gauge B,,.
Therefore the gauge group of this model is [SUQ)*! ® U(1). There are the
Nambu-Goldstone boson fields of a non-linear sigma model £, Z;, ---, Zy4; In
each link (edge). ¥; has (SU(2) ® SU(2))/S U(2) symmetry, and has the vacuum
expectation value (VEV) f;. For finite N, this model is four-dimensional theory,
but for infinite N (N — o), this model becomes the five-dimensional theory.
The Lagrangian of SU(2) ® [SU(2)]Y ® U(1) model is

1 & 1 N+1
L=-3 ) TGuG) = FuP” =) T D= 2.4.1)
=0 =1
Here it 1s satisfied that
Glyv = a;1A]V - avAl,u - ig][A]ys A]v]s (242)
F, =0,B,-0,B,. (2.4.3)
The non-linear sigma field is
Ta
Y, = frexp (z‘ﬂa ), (2.44)
Ji

where 7 = 7977 is the Nambu-Goldstone boson field and 7% (a = 1,2, 3) is the
generator of the S U(2) group. The covariant derivative of ¥; is
D%y = 0% —igr1 A1, X —igiZidr, (1 <I<N),

. , (2.4.5)
D, Sy = 8,Zn+1 — ignAn, Ene — igns1 a1 BT

The mechanism of the symmetry breaking is taking the unitary gauge. There-
fore we regard X; as f;

1_.
E] 4 —21'21 = f] (246)
Jr
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The covariant derivative term becomes

N+1

I1=1

N
_ __;_ ;flz (gl—lAll'—l,y + gIA}’#)Z B %f]\H]ngz (Ale,p)

N —

M= I M=

N =

~
il

1

Va (gz—lAil,# + glAiﬂ)z - %fNﬂngz (A?v,y)

2 1
f (g1—1A3_1# + gIA?,y) - ‘2‘fN+12 (gNA?\/‘# - gN+1B#)

2
2
2

(2.4.7)

This term involves the mass term of the gauge fields. We rewrite this mass term.

Inthe a = 1, 2 case, we find

Lmass term a=1,2

N
1 2 12 12y 1 2 2( 41232
=5 Iz;ﬁ (g7, + g1dzs) — 5 h’en? (437) (2.4.8)
1
= —EALZT(massl'z)zAl’z,
where it is satisfied that
12
Aoy
A1}1
A2 =
12
AN—l,y
AI,Z
Ny
(massl’z)2
fiter  —fi'gem

~fitgogr (At + Ah)g?

-A’g18

—fv-12gn-2gn-1 (-1 + fvDgn-1?
~ v gn-18n
(2.4.9)

N
Z Tr |D/12]l2 - Z Tr ("igl—lAI-l,ufl - ig]ﬁAI,y)z +Tr (_igNAN,quH — ign+1fne1By T3)2
=1

—fvlgn-18n
AW + fue1Den?
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In the a = 3 case, we find

Lmass term a=3
1 N 5 ; 3 \2 1 ) 3 2
= -3 Zf] (gI—IAI—l,/,l + gIAI’#) - EfNH (gNAN,/,l - gN+lBu) (2.4.10)
I=1
1
= _§A3T(mass3)2A3,

where it is satisfied that

Age? -fi’gg1
—filgogr  (it+ fADg? -fHlgig

—fvi’gneagna (-1 + vPgn-r? ~flgn-1gn
—fvlen-1gn UN* + fungn? S lgvgns
—fa+12gngn+ Svalgne1?

(2.4.11)

Here we call (mass)?* the mass-squared matrix of the gauge field. We calculate the
eigenvalue problem in this matrix. As the result, we get the mass-squared value
and the state of the gauge fields. This mass is equal to the energy of the gauge
field. Because we know E = mc? and use ¢ = 1 of the natural units.

For simplicity, we examine the case

o=81 = -=8N+1 T8,
24.12
fi=fi=ee= fin =1 (@412
Therefore the mass-squared matrix of @ = 1, 2 becomes
1 -1
-1 2 -1
(mass'?)? = f2g? . (2.4.13)
-1 2 -1
-1 2
We define the matrix (M'?)? as
122
(a2 = ass ) (2.4.14)

g f?
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We consider the eigenvalue of this (NV+1)x(N+1) matrix. After some calculations,
we get the eigenvalue

Qn+1)

E2) = 4gin?
() =asin | oy "

)’ (n=0,l,~-- 7N)- (24.15)

We consider the @ = 3 case in the same way. The mass-squared matrix of
a = 3 becomes

1 -1
-1 2 -1
332 2
mass” )" = . 24.16
(mass’)? = /¢’ . (24.16)
-1 2 -1
-1 1
We define the matrix (M?)? as
mass>)?
(M) = %. (2.4.17)

We consider the eigenvalue of this (N+2)x(N+2) matrix. After some calculations,
we get the eigenvalue

nm
2(N+2)

(E3)2:4sin2( ) (n=0,1,--- ,N+1). (2.4.18)

A Three Site Model - SU2) @ SU(2) ® U(1) model

Since we were interested in the low-energy scale physics, we consider A Three
Site Model N = 1.
The mass-squared matrix of a = 1,2 becomes

(mass'?Y = £ (_11 “21) (2.4.19)
We denote the matrix (M!?)? as
(mass'?)?
(M) = S ) (2.4.20)

We consider the eigenvalue of this 2 x 2 matrix. After some calculations, we get
the eigenvalue

(n=0,1). (2.4.21)

(E1,2)2 - 4sin2 ((znl_(;_ 1)71_) i
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The mass-squared matrix of a = 3 becomes

1 -1
(mass®)? = f2g [—1 2 —1]. (24.22)
-1 1
We denote the matrix (M?)? as
(M) = (m;‘;f i (2.4.23)

We consider the eigenvalue of this 3 x 3 matrix. After some calculations, we get
the eigenvalue

(E) = 4sin? (%’f) (n=0,1,2). (2.4.24)
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2.5 Summary

We made mention of the (dimensionally) deconstructed five-dimensional gauge
theories. The central content of this chapter was the mass terms of fields. The
existence of the extra-dimensions is the origin of the mass of particles.

At first we studied the five-dimensional theory (section 2.1 and 2.2). We
supposed the existence of the unobservable fifth-dimension. We imposed some
boundary conditions on the fifth-dimension, the theory had KK mode which had
the infinite mass spectrum.

DD is the technique of discretizing the dimension. In this thesis, we consider
the deconstructed fifth-dimension. As in Figure 2.8, we introduced the cut-off in
the infinite mass spectrum. Therefore we ignore the higher energy physics which
is above the cut-off energy scale. This is the effect of DD.

In the deconstructed model, the moose diagram represents the theory frame-
work. The moose diagram is a figure which consists of sites and links. In the
Higgsless Theory, gauge fields (vector bosons) live in each site and scalar fields
live in each link. A connection between sites and links shows the interactions
between fields.

In section 2.4, we introduced the technique of DD to five-dimensional S U(2)
gauge theory. For simplicity, we examined the condition (2.4.12), the spectrum
includes a massless state and many massive states. But under some appropriate
conditions, the spectrum should include states identified with the photon (y), W
and Z bosons, and also finite tower of additional massive vector bosons (the higher
KK excitations). Since we were interested in the low-energy scale physics, we
focused on A Three Site Model.



Part 11

Three Site Model

33



Chapter 3

The Original Three Site Higgsless
Model

Recently, “Higgsless Theories” are eagerly studied by many authors. Higgsless
Theory is the Electroweak Theory which does not include Higgs mechanism. In
this chapter, we review “the Original Three Site Higgsless Model”.

3.1 The Original Three Site Higgsless Model

We call the theory based on [15] “the Original Three Site Higgsless Model”.
This theory is the highly deconstructed model of the five-dimensional S U(2); ®
SU2)reU(1)p_1 gauge theory. Arbitrary deconstructed model of the five-dimensional
SUQ2),®SU2)r ® U(1)p_r gauge theory is represented by the four-dimensional
SUR)eU1)ye[SUQ).eSUR)reU1)s-]¥®S U(2)ye U(1)s-1 gauge theory,
where N represents the ratio of the DD. In Figure 3.1, we show the moose diagram
of this model. As the highly deconstructed model, there is the Original Three Site
Higgsless Model SU(2); ® SU(2)y ® U(1)y. In Figure 3.2, we show the moose
diagram of this Three Site Model. This model is the low energy effective model
of the five-dimensional SU(2),  SU(2)z ® U(1)p_; gauge theory. In the paper
[15], “the Ideal Fermion Delocalization™ is considered as the fermionic part.

3.1.1 The basic structure

The basic structure of the Original Three Site Model is the following. The moose
diagram of this model is illustrated in Figure 3.3. This moose diagram is basically
same as Figure 3.2 in the bosonic part. The gauge symmetry is SU(2); S UQQ)y®
Uy

34
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su@: O—O—-O-
SUQ)y,
o /O—O SUQ)k
Y L
N T U (D

Figure 3.1: This is the moose diagram of the SU(2); @ U(1)y®[SUQ2) @S U(2)r®
UMp-1]Y @ SUQR)y ® U(1)p-1 gauge theory.

SUQ)L
SUQ)

Uy i

Figure 3.2: Reducing the lattice points (KK mode) as much as possible. Because
we think it is enough to 1st KK mode for low energy physics.

The Lagrangian of the bosonic term is

1 1 1
Ly = _ETr GonGy - ETr G1,, Gy~ 4FwFﬂV Tr IDﬂZIIZ ~Tr|D, %P (3.1.1)

Here it is satisfied that

Glyv = a/xAlv - 0VA1;1 - ig][AI;u A]v], (312)
F, =3,B,-9,B, (3.1.3)

The non-linear sigma field which connects neighboring gauge fields is

p, =ﬁexp(inﬂTa), (3.1.4)
J1

where 7 = 7°7T° is the Nambu-Goldstone boson field. This sigma field ¥; has
SUR)®SU2))/SU(2) symmetry. The covariant derivative of X; is

DFZI = 0#21 - igvo,#Zl + igIZIAl,pa

3.15
DPZZ = 6#22 - iglAl,#Zz + igzzzB#T3. ( )

The fermionic term includes three terms. They are the kinetic term, the Yukawa
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Yr1 IRy, bro
/ /

R / /
ﬁ // f\ﬁ // PR
&o &1 &2
/ kj//
L / /
7 /

Yio 133}

Figure 3.3: This is the moose diagram of the Original Three Site Higgsless Model.
The solid circles represent S U(2) gauge groups, with coupling constants g, and
g1, and the dashed circle is a U(1) gauge group with coupling g,. The left-handed
fermions, denoted by the lower vertical lines, are located at sites 0 and 1, and
the right-handed fermions, denoted by the upper vertical lines, at sites 1 and 2.
The dashed lines correspond to Yukawa couplings, as described in the text. As
discussed below, we will take f; = f; = V2v, and take g1 > g0, 81-

coupling term and the Dirac mass term,

L= inoDoyno + inPrs + im Pivvm +i (e dra) D (Zﬁ)
= V2vi i Wriys + Ymmn) — Ao (roZadm + Uri Z1o) (3.1.6)
ol e o e
Here it is satisfied that ) = D,

DL()’” = 6ﬂ - ngA(]’# - Zg2 Y()’fBﬂTS,
Dizorryiy = 0, — igid1, — iga Y1 sB,T°, (3.1.7)
DRZ,/[ = (9# - l.g2Y2‘fBﬂT3.

Y; s is U(1) charges of each site fermions. I denotes the site number / = 0, 1,2
and f the fermion type. Yor1)0 = 1/6, Yoornyr = —1/2, Yo, = 2/3, Yo 0 = —1/3,
Y2,e =-1.

We take the VEV of two sigma fields as

fi=f= V2w (3.1.8)

We impose the Ansatz on the gauge couplings

&1 > £o,82- (3.1.9
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We define the ratio of the gauge coupling as following
X =go/g1 <1,
y=g/g1 <1

go and g, are approximately equal to the SM-like SU(2); and U(1)y couplings.
We define an angle

(3.1.10)

sin @

& — tanf = 7. 3.1.11)

g0 cosb

In the fermionic mass contribution term, the Dirac mass contribution is much
larger than the Yukawa coupling mass contributions

/11 > /101, /1,,, /1,1. (3112)
We define the ratio of the A coupling constant as following

Er = /101//11 = O(x) << 1,

3.1.13
EuRdR = /lu,d//ll = O(X) < L ( )

Finally note that, treating the link fields as non-linear sigma models, the model
as described here is properly considered a low-energy effective theory valid below
a mass scale of order 47 V2v =~ 4.3 TeV. Another way of saying, the cut-off A
should satisfy

A<4nf, =4nfs = 4nV2v = 43 TeV. (3.1.14)

3.1.2 The mass of the bosonic term

We choose the unitary gauge to fix the gauge, £; — V2v. Therefore the covariant
derivative of ¥; fields becomes

D,JZI - —Z.goA(),# \/EV + lgl \/§VA1# =—i \/Evgl (-XAO,p - Al‘ﬂ) s

(3.1.15)
D,y — —igi A1, V2v +igy V2vB,T® = —iN2vg, (41, — yB,T%).

The mass term of the gauge field involved in the covariant derivative term of the
3, fields is

~Tr D54 = Tr Dol — ~Tr |~ V2vg (xdo,, — 41,

1 2 1 1 )2
- 327 {(xAO,# —Al)

(3.1.16)
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where we separated the terms about the internal space a = 1, 2, 3. Rewriting these
terms, we find

1

Lt mass a=12 = ~5A1’2T(mass1'2)2A1’2, (3.1.17)
1
L, mass a=3 = —5A3T(mass3)2A3, (3.1.18)
where it is satisfied that
12 A(I)’z 122 Z 91202 x* -x
2 U , —
) et ) o
Ag,p xz -X O
A =41 (mass®)? = 2v*gi2|-x 2 —y|. (3.1.20)
B, 0 -y

The mass of the charged bosons

The eq.(3.1.19) is related to charged gauge bosons. At first we will obtain the
eigen value of the mass-squared matrix (mass'?)? to get the mass values of these
gauge fields. The eigen value of the matrix

M2 = (mass'?)? 2v* g, (3.1.21)
is
24+ xt+ V4 +x2
(EV) = +2 iy (3.1.22)
The corresponding eigen states are W, and W,* which are elements of W'
W’1.2
7= (i)
u
(3.1.23)

(i )
- )
VWA(I),Z vW,Ai‘Z

where W;,l 2 corresponds the eigen state of higher eigenvalue, and W;’z lower one.
The squared mass of the gauge fields is

(mi,) = 27g> (B . (3.1.24)

We insert the eq.(3.1.22) into this equation and we expand for small x.

4" 64

2 x2 x*
(my) = 4’gs? (1 ST +O(x7)).

2 6
(i)’ = veo? (1 A 0(x7)),
(3.1.25)
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We define the Ny and Nyp» used in the normalization of the eigenstate,

1/2
2+ VAT AY )
NW= - 5 +1 ,
X
. i (3.1.26)
-2+ x*+ V4 + x* 5
NWI = — 2 +1
The corresponding eigenstate of the W boson is
Wiz _ 1 =24x - V4 A” 1 REE
# NW 2x NW Lu
x2 5x4 11x5 APEN ¥ 9x
XX AL XX T 412
( 3 128 1024 TOC )) ( ¥ 16~ 256 "0 )) L
(3.1.27)
The corresponding eigenstate of the W’ boson is
ETIR 2+ X7+ VA4 424 LAIZ
s NW! 2x NW'
x X 9x® ¥t 5t 1148
=[S+ 0| A - -+ O(x")|4}7.
( 2716 T 386 T OO )) Oy ( 3 128 Toza T OW)) A
(3.1.28)

Primarily, the /¥ boson state consists of the gauge boson at site 0 and the #’ boson
state consists of the gauge boson at site 1. It is satisfied that

1 [ =2+x%+V4+x* +\/4+x4 1
(VW’,A(I)*z VW',A}-Z] Ny N
vW,A(l)’Z VWA}J ( —2+x —V4+ ) NLW

-(, i - UCOINE R By %),
1—%—m+%+0(x7) L4224 o)
(3.1.29)
Comparing weak boson’s masses (mLVZW )2 in eqs.(3.1.25), we find
122 a2 (24— VA+x) [(2+ 2+ V4 + Xt
(mW) /(mW) - 2 2
(3.1.30)
¥ xt xS 0
=T s @ o
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The mass of the neutral bosons

The eq.(3.1.20) is related to neutral gauge bosons. This mass squared matrix
contains two small parameters x, y. Therefore we use the 7 (= y/x) parameter to
expand about only small x parameter. Same as the case of charged gauge bosons,
we will obtain the eigen value of the mass-squared matrix (mass®)*. The eigen
value of the matrix

¥ —x 0
M = (mass*? | 2Vgl =|-x 2 —ix (3.1.31)
0 -t £°x°
is
242+ 2%+ T_ 972 7
(E3)2=0, +x2 + Px +\/42+x 2tx4+t4x. (3.1.32)
The corresponding eigen states are vy, Z, and Z,Ip are elements of Z
Z,
Z=\Z,
Y,
! (3.1.33)

Vzi4i V24 VZ'B
3
=\ Vza} Vzad Vzp |4,

vy,A(z) v’y,A? V%B

where y, corresponds the eigen state of the lowest eigen value, Z, middle one and
Z# the highest one. The squared mass of the neutral gauge field is

3V 2 (73)?
(mﬂ‘z,) = 2vg,* (E°) . (3.1.34)
At first we show about the y gauge boson. The y gauge boson represents the
massless photon which mediates the U(1),, electromagnetic force. The squared
mass of the y gauge boson is

2
(m3) =o0. (3.1.35)
The corresponding eigen state is
b Ix , 1
Yy = EAO# + V)’Al’“ + EBW (3.1.36)

where N, satisfies
N, =R+ e )" (3.1.37)
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We rewrite y, as

e e e
=—A4,, +—A4; , +—B, 3.1.38
T g g e T g ( )
The electric charge e satisfies

S=—=+t=5+t— (3.1.39)

We show the mass and state about Z and Z' gauge bosons. These gauge bosons
represent the massive weak bosons which mediate the weak forces. The squared
mass of the Z and Z gauge bosons are

(m3)2—2v2 5 &22+x2+t22—\/4+x4—212x4+t4x4
z) =<V &0 2 5
22+ X2+ 2x% — V4 + x4 = 282x% + 14x*

x2

e {(1 R (B e (I o@}

=gy

4

2(1 - 2Y 2(1_ 2\
=V25'202 {l_c (14 )x4+C (164t) x6+0(x7)}

iy { e, s

6 7
= 0 X +—64c‘5 x°+ O(x )},

(3.1.40)

224 X2+ a2 + V4 + x4 = 208x4 + Ax*
2

=17g, {4 +(1+7)x + % (1- 12)2 x*+ 0(x7)}
-y
16

(m3 . )2 = g

Z

(3.1.41)

= 42g? {1 + Zl—zxz + X+ O(x7)} .
c

The corresponding eigen states of Z and Z are
Z, = vy pd5, + vz Al + V288, (3.1.42)

o 3 3
Z'u - VZ'A(B;AO’# + vZ"A%AI# + VZ',BB/I' (3.1.43)
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Here it is satisfied that

V.43 = az [Nz, Vza = bz/Nz, vzp =cz/Nz,
1/2
Ny = (azz + b22 + sz)

_—x2 + 202 + V4 + x* = 22x + Axt

s

42

az = > , (3.1.44)
2+ x2—2x% — V4 + x4 = 282x% + 4x?
bz =- )
2tx
cz =1,
and
vZ’,Aé = aZI /NZI’ vZ’,A% = bZl /NZI’ ‘VZ/’B = cZ/ /NZI,
Nz’ = (az’z + bz’z + Cz’z)l/z N
—x2 + 5% — V4 + x* = 2204 + tAxh
az = — 7 , (3.1.45)
b = 24+ x2 —£2x2 + V4 + x4 - 282x4 + txt
Z - 2tx ’
Cz' = 1.
We expand coefficients vz, -+, vz 5 about x, we use the following notation
t=s/c=sinb/cosb.
Vzap = —CF o@?),
-1+ 7
Vi = c(—z—-—)x +0(x*),
2(=3+22+ 1
Vzp=8— 5¢ ( 3 ))CZ + O(x4),
x 1-372, 5 (3.1.46)
vZIAg=§+ 16 x+0(x),
1+7
t (3-)

_ o 5
VZ.p = 5% T + O(x°).
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3.1.3 The mass of the fermionic term

We rewrite the fermionic term in the Lagrangian.

_ (7 7 \[Po Yo\ | . _’;Rl D Yri
Lr= l(l//LO l'llu) ( El) (&Ll) i (l//uR,dR) ( lDz) (%R,dk)

£121 1

_ _ 523 0 _ .

- V2w ('ﬁLo Wu) Vv R aRE2 Ve ) V2va, (lﬁm %R,dk) V2v uR aRE2
1 N VR dr 0 ===

2v V2v

(3.1.47)

where we use the following notation
Up EuR
u = s &y = . 3.1.48
WuR dR ( dR2) EuR 4R ( EdR) ( )

We use the useful notation

_ [Yro _[ ¥Ym
vr= (l//Ll)’ Ve = (l//uR,dR) ’
er¥] 0 ] (3149)

Therefore the fermionic term becomes
Ly = iy Poryr + YrProvr — v Myas, Wr - 'ZRMz’dﬁ}:LZWL- (3.1.50)

We take the VEV of the %, ; fields, X;, — V2v. Therefore the matrix becomes
M,as,, = M, 4, where it is satisfied that

Mu,d=\/5ml(‘” 0 )E(’”L 0 ) (3.1.51)

1 EuR dR m  Myrdr

After some calculations about the fermionic part of the Lagrangian, we get the
two Klein-Gordon type equations

(6° + MyaM, )y = 0,

(# + M Mos) b =, (3.1.52)

where we neglected the interaction terms included in the covariant derivatives. We
obtain the mass squared values as the eigen values of the matrices M, M, , and

h
M M, ..

I

Yro

)
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In the case of the matrix M,,)dMZ 4> the eigen value is

2 2 2 2
2 mt A mt A+ mg R £ \/ —4mp2myg ar® + (mp* + m? + myp i)
(me) = 2

(3.1.53)
The corresponding eigen states of light and heavy left-handed fermions 4 and
lﬂ Lfh arc

=V +v E)
Yip = vVeproYro + Vianyn (3.1.54)

Wi = VommroWro + Voo

Here it is satisfied that
visizo = ara/Nis, vipn = bra/Nis,

12
Nis= (aszz + bLflz) s

2 2 2 2
—mp° +m"+ mypar” + \/—4mL2muR’dR2 + (mLZ +m? + muR’dRZ)

arp = —

>

2mpm
bip=1,
(3.1.55)

and
VLfuLo = ath/Nth, VifnLl = bth/Nth,

172
Nip = (athz + bthz) )

2
”ZL:2 mZ f muRdRz 4)72L2)71 2 mp? + m? myr dR2
X uR,dR L :

aLm == 2mym ’
1.

by s
(3.1.56)

In the case of the matrix MZ M. a, the eigen value is

2 2 2 2
2 mp© +m° + Myurdr” = \/—4mL2muR,dR2 + (mL2 +m? + muR,dRZ)
(mfR) - D)

(3.1.57)
The corresponding eigen states of light and heavy right-handed fermions ¢ ; and
l// Lfh arc

Wrp = VRARIYRL + VRALR2YR2, (3.1.58)
Yrin = VRmRIWRL + VRinR2YR2-
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Here it is satisfied that

Vearl = ars1/Nrs, Vepirz = bryi/Nryi,

172
Nps = (aRflz + bRﬂz) ,

2 2 2 2
—-mp= —m" + Mypdr~ t \/ —4m2my,g  r? + (M + m? + myp 4g*)

arf1 = —

b4

2mmyg gr

brs =1,
(3.1.59)

and

VRfnR1 = ath/Nth, VRfhR2 = beh/Nth,

172
Nrpn = (athz + behZ) )

2 2 2 2
—-mp® —m°+ myraR" — \/ —4mp myg g + (M2 + m? + myp ar*)

arfh = —

b

2mmyp ar

beh — 1
(3.1.60)

The Ideal Fermion Delocalization

The idea of the Ideal Fermion Delocalization is discussed in [16]. The main point
of this idea is that it is possible to minimize precision electroweak corrections due
to the light fermions by appropriate (“ Ideal ”’) Delocalization of the light fermions
along the moose. At site / = 0, 1, for the left-handed light fermion, we require the
couplings and eigenstates of the ideally delocalized fermion and the W boson to
be related as

2 _
go(VisiLo)” = &wVy, 412,

5 (3.1.61)
1) = EWViy412-
Therefore the following condition is imposed,
v 2 Vi 412
go(VLs1.0) WA, (3.1.62)

givipn? vy
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3.2 Summary

We reviewed the Original Three Site Higgsless Model in section 3.1. This theory
is highly deconstructed model of the five-dimensional SU(2); ® SU(2)z U(1)p-1
gauge theory. For the bosonic part, this model includes the photon, the nearly-
standard light /¥ and Z, the heavier W and Z . For the fermionic part, includes a
set of SM-like fermions and heavy copies of those fermions. We implemented the
Ideal Delocalization for light fermions.



Chapter 4

Democratic Three Site Higgsless
Model

We are interested in the Three Site Model which has [SU(2)]* ® U(1) gauge
symmetry. In this chapter, we consider [SU(2)]* ® U(1) symmetric gauge it is
taken from [SU(2)])® broken by [effective] adjoint scalar. In general, “Demo-
cratic” means “having or supporting equality for all members”. We use this word
“Democratic” as the following that each S U(2) gauge field is equivalent in the
[SU(2)P? symmetric Three Site Model. We call the “Democratic Condition™ that
each gauge field has same coupling constant.

47
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4.1 Model building

4.1.1 The basic structure

The basic structure of the Democratic Three Site Higgsless Model is the follow-
ing. The moose diagram of this model is illustrated in Figure 4.1.

Wro YRl 155

Qoﬂ = A, > AZD_?

W10 1331 1%

R

Figure 4.1: This is the moose diagram of the Democratic Three Site Higgsless
Model. The solid circles represent S U(2) gauge groups, with coupling constants
g0, g1 and g,. The left-handed fermions, denoted by the lower vertical lines, and
the right-handed fermions, denoted by the upper vertical lines, at sites 0, 1 and 2.
We omit the dashed lines of Yukawa couplings to avoid becoming complex. The
rightmost parallel line is the scalar field of the Higgs field which relates to the site
2.

For simplicity, we show the bosonic part of the moose diagram in Figure 4.2.
In the beginning, we prepare the [S U(2)]* symmetric gauge. If the SU(2) gauge
symmetry is spontaneously broken to U(1) by the Higgs mechanism, then there
are monopole solutions. Therefore [S U(2)]® gauge symmetry is spontaneously
broken to [SU(2)]* ® U(1), there are monopole solutions in the Three Site Higgs-
less Model. We have some difference points between Original Three Site Higgs-
less Model and this model. The bosonic part of given Lagrangian is

ofolot

Figure 4.2: This moose diagram is the bosonic part of the Democratic Three Site
Model.

2

2
‘z‘Z Tt G, G Z t (D,51) (D) - Tr (D) (D6) - U(@),
I=0 1=1
(4.1.1)
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where they are satisfied that

G = 8,4, — 8,41, — igr | Ay Ay (4.1.2)
D;zZI = 6;121 - ig]—lA]—l,uzl + igIZA[,;u (413)
Dy = 8,06 —ig2 |42 8| (4.1.4)

The gauge field 4;, exists on the site §; (/ = 0,1,2). The field strength of
the gauge field 4;, is Gy,,. The non-linear sigma field X, exists on the link L;
(J = 1,2). This sigma field connects the gauge fields at neighboring sites. The
covariant derivative of this sigma field is D,%;. The Higgs field ¢ exists on the
site v,. This field is coupled to the gauge field 4, ,.

U($) = %/1(2 Tré¢ — vH2)2 (4.1.5)

is the scalar potential in this model.
We denote the fermionic term using the doublet of quarks and leptons,

_{Y9u _ Ve
w-(qd), or w—(e). (4.1.6)

There are six types of fermions, the left-handed fermions are /1, 71 and y;,, the
right-handed fermions are yzg, Y, and y¥z,. The kinetic term of the fermion is

Lig= iz Powro+iroDowro + iy Drry +iym Dyigs + b2 Dabins + ibra Daiea.
4.1.7)
Here we used the notation D = y*D,,,

DO,y = 6;1 - igOAO;z - igZYO,fB/JT3s
Dy, =8, —igidy, —ig,Y1 B, T, (4.1.8)
Dy, =0,-igY, B, T

Here Y; /! is U(1) charges of each site fermion. / means the site number 7 = 0, 1,2
and f means the fermion type. Rewriting the kinetic term, we find

Do 0 0 \(¢ro | Pro O 0 \(¥ro
0 Dn 0 |y |+ (!ﬁRo YR1 lﬂRz) 0 Dm0 ||¥r].
0 0 DPn)\Wn 0 0 Dr)\Yr
(4.1.9)

Lrx= i(%;Lo Y A;Lz)

'For reference, in the case of the Original Three Site Higgsless Model, it is satisfied that
Y(Oorl).Q =1/6, Y(Oorl),L =-1/2, YZ,u =2/3, YZ,d =-1/3, Y2.e =-1
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This Lagrangian includes the coupling of the fermion. At first, we consider the
Yukawa coupling in same site.

L=~ V2w (l/jRol//Lo + roWro)— V2vihy (Wriir + Wi~ (Wradia + Wiadrs) -

(4.1.10)
Secondly, we consider the coupling between another site fermions. We show in
Figure.4.3, 4.4 and 4.5. Therefore the interaction term is

L V2vodo A Fidyo | (¥ro
Lf—m =- (l»[/LO 73] '7[/L2) /12)121 \/ivl/ll A122n YR
fido AT e )\Yre
L V2w AgZ1 fadao \(¥ro
- (lﬁRo Yr1 l,//Rz) Tt V2vily 2,5 |||
fidy  AnZa ved )Y

4.1.11)

Figure 4.3: The left diagram denote the LO and Rl coupling term
—Ao1 (WroZi¥r1 + YriZi¥z0). The right diagram denote the RO and L1 coupling
term —/ll)l (YroZ1yr1 + l//lellﬁRO)-

Figure 4.4: The left diagram denote the L1 and R2 coupling term
=12 (WniZoyra + YroZayrr). The right diagram denote the R1 and L2 coupling
term —A,, (Yr1Z2¥r2 + Y2Zofrr).
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Figure 4.5: The left diagram denote the L2 and RO coupling term
—/120 f (szgbRo + lﬂRoWLz) The right diagram denote the R2 and L0 coupling term
—/120 fs Wraro + Yroyr2). We omit the dashed lines of Yukawa couplings to avoid
becoming complex.

4.1.2 The mass of the bosonic term
After using the Higgs mechanism the bosonic part of the Lagrangian becomes

2

1 2
- Ga - 23" (D))" (D)
]v 1 75
4; g 2;‘ (4.1.12)

1 | 1 2
2 p2 o2 2 plpl 2
- 5 (g2v)” B,B¥ — 3 (g2v)" B, B* — 56#906“90 ~3 ( VZ/lv) -,

We take the non-linear sigma field X; — f;, therefore the covariant derivative
of the fields becomes

o, Aa_
Tr(D#ZI) (D S)) — f,( L A?’“)(—g_llgl ggg’)( 1;?1#). (4.1.13)
_ )

It is satisfied that

2 : 1 fi& g 0 AB‘#
D T(DE) @)~ 5 (45, 4, 4,)|-fae F+Hg -fHag
=1 0 ~f;818 5
(4 1. 14)
The mass of the charged bosons
When a = 1, 2, the mass matrix of the gauge boson becomes
1 f12g2 _fl go81 0 Aa
E(Ag,u A‘IJ,u 2/1) .fzgogl (.fz +f2)82 _fzgng A ME (4115)
~fag  (ff+V)g)\45,

l,y .
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We define the matrix M? that the mass-squared matrix of the gauge field is
divided by g2 /7,

2 i —figog 0
M- _ngz ﬂgogl (ff+ e —fiag | (4.1.16)
-fia1g2 (5 +Y)g
We impose that x = ko , V= & = ]é, vy = —. Therefore it is satisfied that
&1 g’ A fl
X —x
M2=|-x 1+ —f% |, (4.1.17)
0 —ffy P+
The eigen value becomes (£ 117’2)2, and its eigen state becomes
A;}Z—vb2A12+v12A12+v12A12 (4.1.18)
The mass of the gauge field 4 y1,z is
m,* =g fiE,”. (4.1.19)
The mass of the neutral bosons
We define the matrix M,
x? —-X 0
M=|-x 1+ —f]. (4.1.20)
0o -fy

Similarly to M'?, the eigen value becomes (E;)?, and its eigen state becomes
A =vigdy, + VAl +vinds . (4.1.21)
3 .
The mass of the gauge field 4 is

m, = g1 A E;. (4.1.22)

4.1.3 The mass of the fermionic term

This Lagrangian includes the mass term of the fermion. At first, we consider the
Yukawa coupling in same site.

Lpms == V2vodo (Yrotro + Wrowro)— V2vidy (rires + Yiitvrn)— V2veds (Wratbra + Yiabra) -
(4.1.23)
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Secondly, we consider the coupling between another site fermions. We show in
Figure.4.3, 4.4 and 4.5. Therefore the mass term of the fermionic part is

o V2vodo  fidoi f3/1/20 YRo
Lim=— (l,l/Lo 133 lﬂLz) fidy,  V2vidi fdi||¥m
fio oy, vela) Wk
(V2w A S (Yo
- (l//Ro YR l/’Rz) fide V2w pA, || |-
fé/l;(] fz/l]z VH/lz wLZ

(4.1.24)

We use following notations
my = V2w g, mg; = JSidot, mi)l =f1/1;)1,
my = N2n Ay, myy = Sz, ”1'12 =fz/ll12, (4.1.25)

my = vgly, My = f3d0, My, = f3ly,

my Moy, mo my  my
M= my, mp my|, M =Mooy My My, |. (4126)
my my, Mg my, mp; myg
We construct A,apix and franix matrices.
/190 doi Ay
Amatrix = /101 /1111 Az |, (4127)
Ao A, Ax
\/zvo N f3 ﬁ)o f01 fzo
foariz=| i 2w A|=|fa fi f2] (4.1.28)

A h v U fu f2

The component of the matrix M/ is

MY = 727 (no sum), (4.1.29)

where I,J = 0,1, 2.
Therefore the mass-squared matrix of the left- and right-handed fermionic
fields are MM' and M' M respectively. We consider the left-handed one MM".

my  Mor My (Mo My My
7 ’
MM = my, my mpllmg mp my,
7’ ’
myy my,, mMyxj\m,, Mmp My

2 2 r 2 ’ ’ ’ ’
my” + mo1” + My, Moy, -21' moymy + myaMyy; Moo + Mo1My, + MyMy
! ? ! ? ’
= | My Mo + mimg; + mam,, my + m12 + m122 mg My +mm;, + MypMg |.
’ ’ ’ ’ 2 r 2 2
Moo + m ,Moy + MyMy,  MygMg + MMy +mgmy; my” +m, +my

(4.1.30)
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We define that m
n=—. (4.1.31)
Moy
Therefore it is satisfied that
1
NN' = — MM
moy
) 2 7 ’ ’ ’
1’102 +1+ Ny Nohy, + 1y + Nyaha NoNao + By, + Ny Ry
7 7 ’ 2 ’ ’
= | ny o + 1y + nppny, ng +mi? + my? Mg M0 + nln122 + npang |-
Moty + Ny, + Rghy,  Haohy, + BNy + Rghin Mot + ny, + iyt
(4.1.32)
The eigen value becomes (E;;)?, and its eigen state becomes
W = VeroWro + Veno + venyio. (4.1.33)
The mass of the fermionic field w'L is
mf,L = mmEf,L. (4134)

Similarly, for right-handed fermion, the mass-squared matrix is M’ M. Therefore
we define the matrix

1
N'N=—MM
Moy
2 ’ 2 2 7 7 7 ’
ng” +ny, + N ng + ny Ny + nzoznlz Ngh,, + Ny A2 + Nooly
—- ’ ’ 2 ’ 7 ’
= ng + mng, + 1,0 1+n~+ ny, Ny, -; nmnp + NN
? 7 ’ ’ ’ 2 2
n,,Mo + n2hy, + Rphag My + Ny + Rghyg, Ny, thp” +ng
(4.1.35)

The eigen value (Ez)* is same as the left-handed one (E;)?, and its eigen state
becomes

lﬂ;z =vf,ROWRO+vf,Rl‘//R1 +Vf,RZl//R2- (4136)
The mass of the fermionic field y/, is
Mmsr = mmEﬁR. (4137)

4,1.4 Interaction term

From
Lry= iroDowio + iroDotro + i1 Dypry + g Piiry + iba Do + iy Datiea,s
Dy, = 0, — igodo, — ig2Yo sB. T,
Dy, =0, —igid, —igY1 7B, T,
Dy, =0, - igY2 BT,
(4.1.38)
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we find the interacting between the electron and bosons. For example

ipzoPoviro = iroPio + Wro (80440 + & YO.fBT3) V1o, (4.1.39)

in this equation the second term of the left-hand side is interaction term. There-
fore, the interaction term is

Lrk =0 (gOAO +g YO,fBTS)l/’LO + Yro (gvo + ngo,fBTs) Yro

+ U (glAl + ngLfBT3) i1+ Wi (81441 + gZYI,f$T3) Yr1
+ Ui (ngz,fB#T3) Wiz + Y (ngz,foT3) Yra

=10 (goA(l)’z) T 210 + Yro (gozﬂ(l)’z) T Yo
+ Y1 (glA}’z) T2 y1, + Y (glf/l}’z) T Yp

+¥10 (goAS + gzyo,fB) T*y10 + Wro (8044(3) t& Yoﬂg) T*yrro
+ U (gwﬁ + g Yl,fﬁ) T30 + Ym (glﬂ';’ +& Y1,f$) Tyr
+ Ui (gz Y. fﬁ) T3y1o + g (gz Y, fB) T>Ypo.

(4.1.40)
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4.2 Parameter fitting

4.2.1 Some Democratic parameter fittings - The ratio of the
gauge boson masses

From the experimental result, it is well known that the ratio of the weak boson
masses is ,
(my)

(mz)?

To realize this mass term’s relation, we choose appropriate parameter values

~0.77. (4.2.1)

g09g15g2aﬁ>ﬁa VH. (422)

We consider some parameter fittings. The idea of “Democratic Model” is that
all SU(2) gauge fields is equivalent. Democratic Condition means that all gauge
fields have same gauge coupling constants (go = g1 = £2).

We consider the threes cases of coupling constants g, f in the following.
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Ideally Democratic case

At first, we consider Ideally Democratic case,
go = &1 = &2,
h =L

In this case, the VEV of the sigma fields also have same values. Therefore vy

is independent of f;. In this case the ratio of the weak boson masses has upper

bound (Y
my
< 0.38. 4.2.4

(4.2.3)

2
We show ((MW)

Vg . .
- — graph in Figure 4.6.

(M )’
(M)

0.38 —

0.3€ /

0.22

0.3z

Vir
10 zo 20 20 A

M 2
Figure 4.6: This is the ((MW))z - ng— graph.
4 1
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Democratic case

We consider Democratic case,
8o = &1 = & (4.2.5)

Therefore f;, f; and vy are independent parameters. In this case the ratio of the
weak boson masses also has upper bound

((’:1 ’ZV))ZZ < 2/3. (4.2.6)

(My)? n
(Mz)*

We show The contour plot of the ratio of the weak boson masses

Figure 4.7.

v [y
woF

80

60

40F

0F

(My)?

5

Figure 4.7: The contour plot of the ratio of the weak boson masses

A
horizontal axis indicates f,/f; while the vertical axis indicates vy/f;. The more
the color becomes light, the more the value becomes the upper boound.
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Nearly Democratic case

Under the Democratic Condition, the ratio of the gauge boson masses did not
have experimental value (4.2.1). Therefore we guess the condition of the gauge
coupling that nearly satisfies the Democratic Condition. In their parameters, con-
straint from the democratic idea, x and y are nearly 1. We suggest (or propose) the
condition

x=go/g1 =12,
= = 0.8,
y=gl/& @2.7)
Sl =6,
VH/f1 z 60
In this case the ratio of the weak boson masses becomes
(mw)?
=~ (.77. 4.2.8
()2 (“42.8)

This parameter condition is the one of the parameter choices.
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Some comments about g and f values

As the result, we found that the ratio of the weak boson masses did not realize
the experimental value in the Democratic Condition. The Nearly Democratic case
is based on the Democratic Condition. In this case, the ratio of the weak boson
masses corresponded to the experimental value.

In the Original Three Site Higgsless Model, it were satisfied that

&1 > £o, 82,
N =1

and gy and g, was approximately equal to the SM-like S U(2); and U(1)y cou-
plings. We call this condition “Original Condition”. In this condition, our Three
Site Higgsless Model realizes the experimental value (of the ratio of the weak
boson masses). In addition, if we ignore Democratic Condition, there are many
choices of g and f values which realize the experimantal value.

4.2.9)
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4,2.2 The ratio of the fermion masses

We consider the Nearly Democratic case. We choose parameters as in Figure 4.8.
Therefore the eigen value of the fermion mass-squared matrix becomes

2
(ﬂ) = 2.6x10%,3.8 x 10°,1.00, (4.2.10)
Ash
and its eigen state is
Yheavy 0.53 0 0.85\(yo
Umidale | =] —0.85 0 0.53[|y|. (4.2.11)
lﬁlight 0 -1 0 l//2
- f and g coupling constants ~
Ar Ar Ay
/lmatrix = )»f /lf /1f , (4212)
Ar A s
Joo for S A A 1074
fmatrix = fbl fll f12 = ﬁ fl 6.f1 . (4213)
fo Sz fa) \107A 6/ 1074
4
Figure 4.8: This is the one of the example of the A and f couplings.
To decide the parameter value of f, we use the following ration of mass
N2
(massypiage) g, (4.2.14)
(mass s1ignt)

because we know the following condition

2 2
( mass) ) :(1.74><105) ~ 10! (4.2.15)

mdasSelectron 0.5
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4.2.3 The gauge coupling ratio of weak and electromagnetic

gauge
We consider the some coupling constants as in 4.2.2. It is satisfied that
A2 (0 —-0.03 0.99\(W,
Aral=10 099 0.03{|W,]. (4.2.16)
A;i 1 0 0 J\w,
A,) (-0.02 089 0.46)\(Z,
Aiﬂ =078 -027 055(|Z,|, (4.2.17)
4 -0.62 -0.37 0.69)\4)
H
Yo 0.53 —0.85 0 \(¥hea
yil=] 0 0 —=1||¥Ymidae |- (4.2.18)
U 085 053 0 )\ Yiign
We need the ground state, therefore it becomes that
1,2
A% 0.99-w,
A%:é —(0.03- W1, (4.2.19)
AZ:/J 0- W/l
3
Ag”# 0.46-/%
A}“ - 0.55~A5 , (4.2.20)
4, 0.69 - 4),
Yo 0 - Yiigh:
Y| = | =1 Yigne |- (4.2.21)
W2 0 - Yiight
Therefore the interaction term becomes

Ly

= YL ight (10.03 - W) T"2Y1 signs + YR tight (€10.03 - W) T 2y sign

+ ULiigh (810.55 - A7 + 0.8 - g1 Y1 10.69 - AY) T* WL sighs + Wr sight (810-55 - A7 +0.8- 211 70.69 - A7) T*Yrm sighe
= 0.03 - @ WL 1ight WET 2L tight + 0.03 - g tign W T W tight

+ (0~55 g1 +0.55 - g1 Yl,f) UL tightdl T UL light + (0-55 g1 +0.55- g Yl.f) WR tight A TR tight-
(4.2.22)

It is satisfied that

go =055-g1 (1+ Y1),

(4.2.23)
gws = 0.03 - g1
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Therefore it is satisfied that

2
(gAY)z 055g1 (1+Yl,f)
8w+ 0.03 &1

(4.2.24)

055(1+ Y1)\
B 0.03 ]

2
The experimental value is (&) ~ 0.22.
8w
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4.2.4 Some parameter fitting

We show the detail of parameters, eigenstates and eigenvalues in two cases. One
is the Ideally Democratic case and the other is the Nearly Democratic case.

Case.l Ideally Democratic case
The gauge coupling condition is
& = &1 = & (4.2.25)

The VEV of the scalar fields satisfies

Joo  Jor S0 N A 4
Jmarix = | for i Jiz =lA A N | (4.2.26)
fo fiz fo(=ve)) \A A 10°A

The coupling constant of fermions is

Ao Aoy A A Ay Ag
Amarrix = /101 /l’ll A= /lf /1f /lf . (4227)
A A A Ar Ap A

The mass of bosons and fermions is the following.

boson type  (mass)*/(g>/2)

W 1.00 x10* ;

- 2 62 fermion type (mass)*/(4; 122
w 0.382 Vheaw 10010
7 3~ Umiddie 3.92
7 1 iﬁ light 0
0% 0

The state of bosons and fermions is

W, 0 0 1\(4n) (4o,) (0 -0.53 085\(W.
W, |=1-053 085 0||4;2|, [47|=[0 085 053{W,| (4.2.28)
w,) (085 053 0jl47) 4y;) 1 0 0 AW,

Z) (041 -082 041\(4,) (4, (001 -071 -0.71\(Z,
Z,|=|-071 -071 001||4},|, |4, ]|=]001 -071 071 [|Z,],

) u
vo) \=071 071 o Jl43 ) (4,) 099 o001 0

Yu
(4.2.29)
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Uheaw) (0.01 =070 —0.70\(wo) (o) (0.01 0.01 0.99\( hemy
Ymiadie | = 10.01 =070 0.70 [[un |, |ua|=]-070 -0.70 0.01 || Wmiaae |-

Uige ) 099 001 0 Jya) o) 2070 070 0 | ygw
(4.2.30)
The interaction term becomes
Ly =10 (goﬁé’z) T" Y10 + Yiro (goA(l)’Z) T yrr
+ Y1 (gIAi’z) T2y + Y (gu‘l}’z) T2y
+'7;L0 (goAS + & Yo,fB) Y0 + L;Ro (goAS + ngo,fE) Tz 4.2.31)
+ l;m (gllﬁ + gZYI,fB) Ty + Y1 (glA? + ngI,fB) Tym
+ (gzyz,fo) T2 + Yr2 (gz Yz,fB#) T Y
— 0.83 - @1 W T *Wiight — 0.69 - g1 1igh¥ T Wiighs
Here it is satisfied that
» = —0.69g;,
&4 & (42.32)
84y = 0.83g1.
Therefore we find
2 2
85 )~ (&99V |69 (4.2.33)
2] 1083

We show two values.

(Mw)z (gA;)z

My (845)°
038  0.69
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Case.2 - Nearly Democratic case

The gauge coupling condition is
8 12,8 =08 (4.2.34)
&1 &1

The VEV of the scalar fields satisfies

Joo S o A A 1074
fmatrix = 01 .fll ﬁZ = .fl fl 6ﬁ . (4235)
So Sz fa(=ve) 107f1 61 107fl

The coupling constant of fermions is
Ao Ao A\ (A A Af
Amarriz = | Ao /1}1 A |=4r A Af]. (4.2.36)
A20 /112 A2 /lf /lf /lf
The mass of bosons and fermions is the following.

boson type  (mass)?/(g2f7)

w 6.40 x1013 -

W 0x 3,(7). 0 fermion type  (mass)*/(1/f)
W 1.40 wheavy 2.6 x10™
Z 59 7 wmiddle 3.8 ><1013
; Do Vi Lo
y ~0.00

The state of bosons and fermions is

W, 0 0 1)(4%) (Aoy) (0 —-0.03 0.99\(W,
W,|=|-0.03 0.99 0) Al |4y =(0 0.99 0.03](14/#], (4.2.37)
w,) 1099 003 0){4?) (42) {1 o o Jlw,
Z\ (-0.01 079 -0.62\(4,) (45,) (-0.02 089 046)(Z,
[z# ={0.89 ~0.27 —0.37] 4,1 |4, :[0.78 ~0.27 0.55][4],
va) \046 055 069)(43 | (4 ) (-0.62 -037 0.69)\y,
(4.2.38)
Whea) (053 0 0.85)(yo) (¥o) (053 —0.85 0 \(Whean
{Wmiddle]=[—0-85 0 053][1//1], [lﬁl]:[ 0 0 _1]['w[/middle]-
Wiight 0 -1 0 )Jlwa) \go) 1085 053 0 )\ yn

(4.2.39)
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The interaction term becomes

Lik ZJLO (goA(l,’z) Ty + l,;Ro (ng/l(l,’z) T Ygo
+ l;m (glﬂ}’z) Ty + ',;Rl (81441’2) T 2 Yr
+i10 (goﬂé + ngo.fB) Tyz0 + Yro (goAé + 22 YO,fB) T*Yro
+ Y (gmﬁ + ngl,fB) Ty + g (glAf + ngLfﬁ) T3y
+ Y12 (22Y2Bu) TP Y1 + Uz (€2 2.4Bu) TP
= 0.03 - gYiign W T Wign: + (0-55 g1 +055-g Yl,f) Vi T Wiigh.

(4.2.40)
Here it is satisfied that
»=0.55. 1+7Y4),
B4 a1+ 7y) (4.2.41)
84y =0.03 - 1.
Therefore we find
2
(gA; )2 B 0.55 - &1 (1 + Yl,f)
Suw) 0.03- g
(4.2.42)

0551+ 7,,)Y
B 0.03 )

We show two values.

(M W)2 (gA;)z
(M)’ (Qaw)

. (0.55(1 + Yl.f))2

0.03
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4.3 The aspect of the monopole

We considered the Three Site Higgless Model which included the novel monopole.
The mass of heavy weak bosons W is extremely heavier than the mass of other
bosons. Therefore the mass of the monopole is the same order of the mass of the
heavy weak bosons. The mass of the heavy weak bosons consists of parameters
vy and f;. In this model, parameters vy and f| are highly correlated with the mass
of the monopole. The ratio vy /f; is limited to vy /f; 2 60. Therefore the mass of
the monopole has the lower limit.

We think that the monopole mixture exists as the dark matter in the universe.
We hope that the scale of the scalar VEV is the 10 TeV. The mass of the monopole
mixture is 100 TeV. This scale is smaller than that of GUT scale 10" GeV. The
GUT monopole is considered to be produced in the Inflation. But this novel
monopole is produced in the later period.
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4.4 Conclusion and Outlook

The idea of “Democratic Model” is that each S U(2) gauge field has equivalent
property. Saying this another way, all S U(2) gauge fields have same gauge cou-
plings. From the bosonic part, the condition of the Democratic gauge coupling
2o = g1 = g does not satisfy the ratio of the gauge boson masses (4.2.1). There-
fore we guessed (or proposed) the condition of the gauge coupling that nearly
satisfied the Democratic Condition. In this condition we realized the experimen-
tal value. This value depended on the VEV of the sigma field and the Higgs field.
The former could not choose any values, but the latter could choose the rang of
value vy /f; 2 60. This parameter condition is the one of the parameter choices.
In fact, there are any parameter conditions that satisfy the experimental value
of the gauge boson masses. Including the result of the fermionic part, the ratio
of g4 /gw (4.2.24) showed that above condition did not satisfy the experimental
value (g /gw)* ~ 0.22.

We mentioned the monopole. The mass of heavy weak bosons " is extremely
heavier than the mass of other bosons. Therefore the mass of the monopole is the
same order of the mass of the heavy weak bosons. The mass of the heavy weak
bosons consists of parameters vy and f;. In this model, parameters vy and f; are
highly correlated with the mass of the monopole. The ratio vg/f; is limited to
v/ fi 2 60. Therefore the mass of the monopole has the lower limit.

As in Figure 4.8, the Democratic Three Site Model has many parameters
which are chosen by hand. The number of A and f parameters is 18. The pa-
rameter of A (1s) has each value for each type of fermion. The mass of each
fermion is controlled by the A, parameter.

The Democratic Model includes many difficulties to realize the real phenomenol-
ogy. We need to improve the Democratic Three Site Higgsless Model.
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Chapter 5

Vortices and Superfields on a Graph

The moose diagram like Figure 2.9 naturally leads to the Lagrangian of the model.
This moose diagram indicates a relation between gauge fields and scalar fields.
We will generalize this relation in the context of graph theory. We can express the
relation between gauge fields and scalar fields in a graph, which is just a complex
moose. We wish to call this theory based on a graph as “Graph Dimensional
Deconstruction” (GDD). The idea of GDD has already been published as [10].

In the present work, we propose another idea of using superfields to introduce
supersymmetry (SUSY) into the model. We assign vector superfields to vertices
and chiral superfields to edges of a graph. This is another extension of the DD.

In the beginning, both DD and SUSY are to provide the mechanism of solving
the gauge hierarchy problem. The motivations of including SUSY are, neverthe-
less, claimed as follows. First of all, we should think that every field theory has
SUSY at very high energy, because the correct or controlled UV behaviors are
believed, or because of superstring theory or M-theory. The second motivation
comes from the necessity of more symmetries. Because DD and GDD are ba-
sically the mechanism of controlling the mass spectrum of field theory, we need
more symmetry to determine the (self-) interaction of fields. Thus we consider the
supersymmetric extension of the GDD model here.

In this GDD, we consider only the Abelian theory. For notation, please consult
[10].

5.1 A review of field theory on a graph (or graph
dimensional deconstruction)

A graph G(V, E) consists of a set of vertices V and a set of edges E. A vertex is
connected with another one by an edge. We let the number of the vertices be p,

71
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p = #V, and the number of the edges be ¢, g = #E. In Figure 5.1, we show the
simplest graph with p = 2 and ¢ = 1, constructed by two vertices and an edge.

vi=o(e1) v2=1e)

€1

Figure 5.1: The simplest graph, constructed by two vertices and an edge. A vertex
v; is identified by i, where i is a label for each vertex. In the same way, an edge e;
is identified by i, where i is a label for each edges. The arrow means a direction
of the edge. This edge is called an oriented edge. In terms of the oriented edge,
the original vertex v; is v; = o(e;) and the terminal vertex v; is v, = #(e;). This
oriented graph corresponds to the generalized moose diagram.

We consider a simple Abelian theory. Abelian gauge fields reside at vertices
and scalar fields reside at edges. The U(1) transformation is defined at each vertex.
The Lagrangian density is

1 , .
£=-3 0 FuF = 3 (DU (Do), (5.1.1)

ecE

where the covariant derivative is

DU, = (0" + igAf(e) - igA‘;(e))Ue , (5.1.2)

with |U,|* = f2.

If we rewrite U, as U, = fe®, the real scalar fields a, act as the Stueckel-
berg fields. The number of physical massless scalar fields is ¢ — p + 1, or the
number of closed circuits involved in the graph, because p — 1 scalar degrees of
freedom are absorbed by the to-be massive vector fields. If and only if the graph is
tree (or absent from closed circuits), the scalar fields disappear from the physical
spectrum.

The (mass)* matrix of vector fields M2 is given by 2g>f2A, where the (p, p)
matrix

A=EET (5.1.3)

is called as the graph Laplacian and the (p, g) matrix E is the incidence matrix !
defined as
1 ifv=o(e)
(E)ve=3 =1 ifv=1te) . (5.1.4)
0 otherwise

'Unfortunately, the symbol E is used for the incidence matrix and for the set of edges. Please
do not confuse them.
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Here v = o(e) means that the vertex v is the origin of the edge e and v = #(e)
means that the vertex v is the terminus of the edge e. The (g, p) matrix E7 is the
transposed matrix of E.
For more general cases, one might consider individual coupling constants for
vertices as
D‘uUe = (6” + igt(e)Aﬁl(e) — igo(e)Ag(e))Ue s (515)

and |U,> = f? for each edge. In this case the mass matrix becomes
M: = 2GEF’ETG = 2(GEF)(GEF)T, (5.1.6)

where the diagonal matrices G and F' are given by

_J g ifv=v | fe ife=¢
(G _{ 0 otherwise ’ (Fee _{ 0 otherwise ’ (5.1.7)

respectively.

To summarize this section: In the GDD model, the mass spectrum is given
by eigenvalues of the graph Laplacian or the related matrix constructed from the
incidence matrix of the graph.

S.2 The use of the Stueckelberg superfield

Next we incorporate SUSY into the GDD model. We use superfields [17] to this
end.

In this thesis, we consider that vector superfields {V,} exist on vertices. We
still impose the U(1) transformation on {V,} at each vertex as

V,— Vy+i(Ay— Ay, (5.2.1)

where A, is a chiral superfield. Then the invariant superfield is defined as usual [17]:
1——
W, = —ZDDDC,VV. (5.2.2)

The kinetic term of the vector field can be created from this for each vertex.
Further we introduce a chiral superfield S, at each edge. The superfield S, is
assumed to be transformed as

S.,—> S8, - iA,(e) + iAo(e) . (523)
Then we can write the Stueckelberg term [18]

Ve = Vot + Se +82), (5.2.4)
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and a gauge invariant term for the interaction with scalars

1 , —v—
Z4Z(W3W;I%+ 7,

£ 3 22 (Vo) = Voo + Se + S (5.2.6)
ecE

%) (5.2.5)

The bosonic part of the theory is found to be

-~ Z 4 2 HVFIJV Z f2 (At(e) 0(6) + aﬂae)z Z 2f2(8“pe)

velV ecE eeE
+ +2 ) 221Fs P+ ) 272(Dysy — Do) 52.7
;2 v ;‘felsl ;JZ( @) ©)Pe » (5.2.7)

where the notation of component field is rather standard one and is gathered in
Appendix B.1.

Eliminating the auxiliary fields Fs, and rescaling p,, gauge fields and D, to
have canonical kinetic terms we get

v N2
ZF iy Z — - 8o i) ~ oAy + O ac)’

VGV ecE
S @R = DY fepdENg B fope
eEE e cE velV
2
2 Z {D B gv Z(E)vefepe} . (5.2.8)
vev ecE

Now one can easily find the mass matrices for vectors and scalars:

M, = 2GEF’E"G = 2(GEF)(GEF)", M. = 2FE"G*EF = 2(GEF)'(GEF),
(5.2.9)
where E is defined as (5.1.4) while G and F are given by (5.1.7). Massless scalar
fields are absent if and only if the graph is a tree graph. The mass spectrum of the
scalar fields is the same as the one for the vector fields except for zero modes.?
The fermionic part of the theory is found to be

1 - _
Ly = —i Z — 4,08, — iZ 21208,
veV gy ecE
+ 3 212 [xelAue) = dote) + hc] (5.2.10)

ecE

21t is well known that two square matrices 4B and BA have the same eigenvalues up to zero
modes. See Appendix B.2.
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and can be rescaled as

Ly = =iy A0 —1 ) X0 D,
vev

ecE

=3 V2| Skl EN sy + hic]. (5.2.11)

ecE veV

Here A, and y. are Weyl spinor fields contained in ¥, and S, respectively.
One will find the mass matrices for fermions after rescaling the fields:

M, = 2GEF*E’G = 2(GEF)GEF)", M. =2FE"G’EF = 2(GEF)"(GEF).

(5.2.12)
Note that the fermions A and y form Dirac fields for massive modes. Also note
that all field contents are neutral as well as free from interactions.

5.3 Multi-vector, multi-Higgs model

5.3.1 General construction

We will construct the model that the symmetry [U(1)]? is spontaneously broken
to U(1). Therefore we will not use the Stueckelberg fields but the Higgs fields.

As the model in the previous section, we consider vector superfields on ver-
tices and suppose the U(1) transformation is defined at each vertex. Moreover in
the present case, we introduce a “bicharged” scalar field T on each edge, which is
transformed under two U(1) symmetries as as 3,

T, — e tho 3, gtihee (5.3.1)

Now we get the [U(1)]? invariant supersymmetric multi-vector, multi-Higgs model
on a graph governed by the following Lagrangian:

| . B
L= 4 Z (W(Vl ngyg + WZWLVY —) + Z 3, eXley, o728 o0
vev i

% 6666

= 28> LV — Vot i - (53.2)
ecV
where we rescale the gauge coupling constant to be seen explicitly. The Fayet-
liopoulos (FI) terms are chosen so that they are similar to those in the model of
the previous section, when £, ~ f2.* This thesis will not go into the issue about
anomaly and will deal with only classical aspects of the model.

3Note that the transformation law for ¥, is the same as that for ¢*5¢ in the previous section.

*In most general cases, we can choose the Fayet-Illiopoulos (FI) terms as ~ Y, ¢, V,. We
would like to study aspects of (gauge and/or super-) symmetry breakdown with the general FI
terms elsewhere.
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The bosonic part of the Lagrangian reads

L= —% DR+ % ; D2 - (Do) (Do)

‘ﬁV eck ) (5.3.3)
+ Z FéeFZe + gZ(D,(g) - Do(g))a—;o_e — gZ(Dt(e) — Do(e)){e R
ecE eeE ecV
where the covariant derivative is
Do, = (0" + igA’t‘(e) - igA‘;(e))o-e ) (5.3.4)

By use of the incidence matrix of the graph, we rewrite the above Lagrangian
as

L, = —% D FLFY+ % D= (Do) (Do)

veV vev ecE
+ Z F§ Fse - gZ(cTZore — L)ETD),. (5.3.5)
e€E eekE
Substituting the equation of motion for the auxiliary fields
Fy,=0 and D, = gZ(azae — Z)ED),, (5.3.6)
ecE

into the bosonic Lagrangian, we obtain

1 , ;
Ly = —3 ) FLFY = ) (D0 (Do)
veV

ecE

- %2 Z (0_10_6 - ge)(ETE)ee’(O-Z,O-g' - {ef) . (537)

e €E

Note that ETE is a (g, g) matrix.

5.3.2 Example: P;

The structure of the model depends on the incidence matrix of the graph. For a
simple example, let us consider the path graph with three vertices, Ps.

The incidence matrix depends on the orientation of edges. For instance, two
cases can be considered as follows:?

1 0 1 0
(E)ve =[ L1}, (B :{ -1 -1 ] (5.3.8)
0 -1 0 1

3Obviously the overall sign of the incidence matrix is irrelevant.
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P
PB

Figure 5.2: P;: the path graph with three vertices. There are two substantially
different graphs. They have the different incidence matrices.

where E, is the incidence matrix of P{ and Ej is the one of PZ. The two graphs
are shown in Figure 5.2.
Interestingly, the following matrix is independent of the edge orientation:

1 -1 0
ELET =EgEL=| -1 2 -1 |=A. (5.3.9)
0 -1 1
This is known as the graph Laplacian.
On the other hand, we find
2 -1 2 1
ETE, =( 1 2 ) E§E3=( | 2 ) (5.3.10)

Therefore the shape of the Higgs potential in Eq. (5.3.7) depends on the edge
orientation.

Figure 5.3 illustrates the contour plots of the potentials in Eq. (5.3.7) for the
graphs P{ and P.

5.3.3 Mass matrices for bosonic and fermionic fields

Individually different gauge coupling constants will also be considered. The con-
sequence of such consideration forces the bosonic part of the Lagrangian to be

1 v
Ly = =7 ) FLFY = ) (Do) (Do)
vev

ecE

1 . .
- 5 Z Z(O_:zo-e - (e)(ET)evgi(E)ve'(O'é'o-e' - ge’) s (5311)

ee’€FE veV

with
Doe = (@ +iguodl, — gl )0 (5.3.12)
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Figure 5.3: Contour plots of scalar potentials for the models based on P4 (left)
and on P¥ (right), respectively. In both plots, the horizontal axis indicates |o|/f
while the vertical axis indicates |o|/ f.

Here we assume that all ¢, are positive and /7, = f;. Thus the VEV for |o| is
f. and physical scalar fields should be considered as the linear combinations of
|oel — f.. Each phase part of a to-be massive scalar field is eaten by a vector field
through the Higgs mechanism. Then the (mass)* matrices M2, for vector fields and
M: for scalar fields in this case are

M = 2GEF?E"G = 2(GEF)(GEF)", M; = 2FE"G’EF = 2(GEF)'(GEF),

(5.3.13)
where the matrices that appeared in the above equations are the same as (5.1.4)
and (5.1.7).

Although the shape of the potential with respect to |o-,| depends on the orien-
tation of edges in the graph, the mass spectrum of the scalar fields is the same as
the one for the vector fields except for zero modes, similarly to the model in the
previous section.

The number of the moduli of the potential is ¢ — p + 1 for a general graph.
This is equal to the number of independent closed circuits in the graph. ¢ For tree
graphs, the VEVs of o, are determined rigidly if all Z, are positive.

The fermionic part of the Lagrangian is

.Lf = —iZ/l\,O'“au/Tv— iZWeO—#Dyl/je
veV

ecE

+ V2 Y (Gl ENagidy — oWe(Eeg ), (5.3.14)

ecE

where A, and , are Weyl spinor fields contained in ¥, and %, respectively. The

éIfg— p + 1 > 0, the graph has a closed circuit C(G). It is possible that we add the term like
Dlere2.631€C(G) Zey Zey 2oy 10 the Lagrangian to give the scalar masses.
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covariant derivative on . is defined as D"y, = (" + ig,(e)Aﬁ‘(e) - igo(e)A’;(e))we.
Substituting the VEVs (o) = f., we find

M; = 2(GEF)GEF)", M, =2(GEF)"(GEF). (5.3.15)

Since SUSY is unbroken, the bosonic and fermionic spectra are the same.

In this thesis, we have considered models with unbroken SUSY. The model
with partially broken SUSY is interesting, for some ¢/, < 0. The present analysis
will not go into such models.

5.4 Vortex solution

It is well known that the vortex solution can be found in the Abelian-Higgs model [8].
In many papers, the solution is used as a simple model for a cosmic string [9]. We
consider the vortex-type solutions in our model described in the previous section.

Although an academic interest in our toy model is an important motivation
for the following study, we also think that topological configurations are a key
ingredient in recent studies in theoretical physics. A possibility is expected that
a similar model provides an example of a complicated brane/string system. In
the present thesis, anyway, we study only simple vortex in our theory and their
generalizations and possible applications to particle physics and cosmology are
left for future work.

Moreover we will consider only tree graphs as the bases of models.

5.4.1 Bogomolnyi equation

In the Abelian-Higgs model, the vortex solution is well known [8]. Moreover, it
is known [19] that supersymmetric U(1) theory satisfies the Bogomolnyi condi-
tion [20]. Because our model is also supersymmetric, the Bogomolnyi condition
can be found. The equations of motion can be reduced to the following two sets
of equations:
Fl =568, ) (E)elloel - &), (5.4.1)
ecE
and
Do, =Fie'Djo,, (5.4.2)

where i, j denote two spatial directions and £ is the antisymmetric tensor.
These equations are the Bogomolnyi equations.
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The energy per unit length of a vortex string can be written as

1 " .
f d*x IZ DY FSF+ > (Do) (Do)
vev

ecE

&

1
+ E Z Z(lo-elz - ge)(ET)evg%,(E)ve/(er/|2 - ge’)] (543)

e €E veV

f ! [% SR s Bl = 20f + 3 Y |0 < 16Dy f

veV ecE

+ {Z > %ei,.Fifng)wze —iy effa,(azﬂjae)}} . (5.44)

veV eeE ecE

For a solution of finite energy density, D;o, is equal to zero at spatial infinity.
If the asymptotic behavior of o is expressed by the azimuthal angle ¢ and an
integer n,, i.e. o, — VZ.e"¥, the condition tells (E7 gvA4})e = n.0ip, and then
f &x(ETe;g,F ), = 4nn,. Therefore the energy density becomes

& = f dx % D {F = g E)ellof - ge)}2 + %Z Do, + isiji)jaelz}
vev ecE
+27 Z )L, . (5.4.5)
ecE

We deal with the lowest bound for the energy density read from this result.
The vortex solution satisfying the Bogomolnyi equation (5.4.1) and (5.4.2) has
the energy density 277 Y e [7el0e.”

5.4.2 Bogomolnyi vortices and SUSY

It is well known that the SUSY is partially broken in the topological background
fields. Here we briefly describe the pattern of SUSY breaking in our model. No-
tation may be found in [17]. According to SUSY, the variations of the gauginos
A, are

Sy = ieD, + o*F, €. (5.4.6)

Using the Bogomolnyi equations (5.4.1), and assuming the vortex string lies in
the third direction for simplicity, the above variations are rewritten as

Sy = FiFH(1 + 07)e. (5.4.7)

"Because of the presence of many fields, non-Bogomolnyi configuration may have lower en-
ergy (i.e., the Bogomolnyi solution may correspond to a local minimum).
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This means that the half of the SUSY at the vertex is broken in the presence of the
central magnetic flux of the vortex.
The variations of partners of o, are

S = iV2e "D, 0, (5.4.8)

where D'y, = . + i((g4)),) — (8A), ). If the vortex string lies in the third
direction, this reduces when the Bogomolnyi equations (5.4.2) hold,

Sere = iV2€ [0 Dy + Doy | = i V2e (0 £ i) Dy (5.4.9)

We find again that the half of the SUSY at the edge is broken in the presence of
the magnetic flux.

5.4.3 Construction of vortices: Ansatz

Next we examine how we can obtain the explicit solutions in our model. For
simplicity, we consider a common gauge coupling constant g and a single constant
f = /<. In other words, we consider the case that G = gl and F = fI (where [
is the identity matrix). Although we cannot tell about most general solutions, we
take the Ansatz for a simple, physically admissible type of vortex solutions.® We
impose the axially symmetric Ansatz

oo = pe(r) et (5.4.10)
A, =PJr), (5.4.11)

on Bogomolnyi equations. Here we express the radial coordinate as » and the az-
imuthal angle as ¢. The integers », are winding numbers. The detailed calculation
is shown in the Appendix B.4. We get the following Bogomolnyi equations,

p__(e(E7P)—m),

0 = "f N (5412)
LY@ - ). (5.4.13)

ecE

where the prime (') denotes the derivative with respect to ». These equations are
the special case of the Bogomolnyi equations.

8For a reference, we write down the construction of normal vortex solutions in Appendix B.3.
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5.4.4 examples of vortex solutions

We show some concrete examples for the vortex solution in our model. To have
the vortex solution we restrict the graph structure, or equivalently, the incident
matrix E. Here we also consider configurations with the least winding numbers
for simplicity and for feasibility in physical systems.

We consider here the cases with the single-centered exact solution similar to
the normal vortex. The asymptotic behavior of general cases can be obtained and
is shown in Appendix B.5.

Example 1: P,

The simplest case has two vertices and an edge. This graph is P, graph. We show

the graph in Figure 5.4.

Figure 5.4: P,: the path graph with two vertices.

In this case, the incidence matrix and its transposed matrix are

1
@M%A)(ﬁ%=@—u (5.4.14)
Then considering the Bogomolnyi equations
P,
— =g ) (B~ F), (5.4.15)
ecE
/ (g ETP - n)
e Je (5.4.16)
Pe r
the first one becomes
Pl
—=—g(p*- /). (5.4.17)
r
Pl
JZ%W‘ﬁ- (5.4.18)
-

Therefore it is necessary to find a set of unique equations that we suppose the
relation P;(r) = —P,(r). On the other hand, in the second equation we notice

ZW%&%I&%HH:WL (5.4.19)

v
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So, we get the following equations

P 1 p

— = _g(p _f) , (5.4.20)
’ P _

p__hon (5.4.21)
P r

These equations can be reduced to

jjl

il _(~2 - 1) , (5.4.22)
x
~ ]5 _

pF.__7 (5.4.23)
I x

if we rescale the variables so that P(x) = 2gP,(r), 5(x) = p(r)/f, x = V2gfr,
n = 1 and the prime (') is the derivative with respect to x. These equations are
precisely same as the normal Bogomolnyi equations. The normal Bogomolnyi
equations is referred in Appendix B.3.

The energy per unit length of the straight string is given by 2772 in this case.
Generalization to the case with the winding number » > 1 is trivial.

Example 2: P;

We consider the P3 graph, the three-vertex path graph. In this graph, we consider
two patterns of the direction of the edges. We show these in Figure 5.5.

P
P}

Figure 5.5: The graph P4 has edges of the same direction while P? has the edges
of the different direction.

The condition to reduce the Bogomolnyi equations in these cases to the normal
ones (5.4.22, 5.4.23) with p; = pp and n; = n, = 1 are Py(r) = —P3(r) and
P>(r) = 0 in the case with P{ while P,(r) = P3(r) and P,(r) = —2P;(r) in the case
with P2. The necessary scaling is that P(x) = gP,(¥) and x = gfr in the case with
P{ while P(x) = 3gP,(r) and x = V3gfr in the case with P5. The energy density
takes the same value 27 /%(1 + 1) = 47 /2 in both cases.
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Example 3: K y

Figure 5.6: The star graphs, Kﬁ y and Kﬁ N

We consider another tree graph, the star graph K, y. In the star graph, vy,
is adjacent to all the other vertices and no extra edge exists. We recognize two
types of edges. One is the edge whose origin is vy, another edge is one whose
terminus is vy,1. We call the edge of the first type is e,, the one of the second type
is e,.

We heuristically find the cases that we get the vortex solution similar to the
normal one with p; = p; = -+ = py = pn+1: Here two cases are shown where the
number of edges belonging to two types are

Ky : t#e, =#e,=NJ2, (5.4.24)
KEN . #e,=N and #e, =0, orviceversa, (5.4.25)
where, of course, N is considered to be even in the case 4. The graphs of two

types are shown in Figure 5.6.
The incidence matrix of Kﬁ v (Where N is even) is (N + 1, N) matrix given by

-1 0 0
0 1 0 0
0 1 - 0
Ede={| . . . . s (5.4.26)
0 0 0 1
1 -1 1 -1
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while the incidence matrix of K2 is

-1 0 O 0
0 -1 0 0
o 0 -1 --- 0
(EB)ve = . . . . . . (5427)
|
1 1 1 - 1

We found these patterns by extending the analysis of getting the vortex so-
lution in the case with P; graph shown previously, because K, is the same as
P;.

In the first case (5.4.24), we have vortex solutions if Py, (#) = —Ps,(¥) (£, m
are positive integers and £,m < %) and Py,; = 0. In the second case (5.4.25),
we have the solutions if P(r) = Py(r) = --- = Py(r) and Py, 1(¥) = —=NPy(r). In
both cases the energy density is found to be 27N #? if all the winding numbers are

unity.

Inclusion of no winding scalar edge

In the previous two examples, all Higgs scalars have nonzero winding number.
Conversely we consider that there is an edge where the assigned scalar has no
winding number, thus p, = f at the edge. We use the dashed line to express such
an edge, as in Figure 5.7.

Figure 5.7: This dashed line means that p, = f on this edge, no winding scalar
edge.

For a constant p,, P (r) = Pye(r) holds everywhere.” Suppose that one
have already constructed the vortex solution in a certain model with specific graph
structure. The one might duplicate the solution and the graph. One may connect
the identical vertices of the original and copy of the graph by no winding scalar
edge. The number of such connection is arbitrary. This method can be applied to
the case with two different models and solutions, if one finds the same functional
form of P,(r) in each model. Of course more than two vertices can be connected
if P, is common at all vertices.

Thus the orientation of the edge is irrelevant (so, there is no arrow assigned to the dashed
line).
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Example 4: P,

O—0-O-C

Figure 5.8: P, graph consists of two P, and an edge.

We consider the P, graph. The graph P, has two P, as subgraphs and is
shown in Figure 5.8. We do not show the direction of the edge in this graph. This
graph has a left-right symmetry with respect to the dashed edge. This symmetry
is connected with the winding number of each vector fields. The vector fields at
the both ends of the dashed line must be described by an identical function. For
this reason, we should impose the left-right symmetry to the direction of edges.
In the P, case, we find two types of the edge orientation graph for admitting the
normal vortex solutions, shown in Figure 5.9 and Figure 5.10. In the similar way,

O~O-O~C

Figure 5.9: P, graph whose edge direction is left-right symmetric with respect to
the dashed edge. Each of edge directions is outgoing with respect to the dashed

O~0-0-0

Figure 5.10: P, graph. Each of edge direction is incoming with respect to the
dashed edge.

we consider the model based on P,, with normal vortex solutions.

Example 5: Pg

The graph Pg has three P, as subgraphs. We study the model based on Pg and
their standard solution in the above-mentioned way. In addition, P¢ has two P;
as subgraphs. Similarly to the case with P4, we can consider the Pg graph as two
subgraphs connected by an edge. We exhibit the Pg graph in Figure 5.11. We
have the left-right symmetry with respect to the dashed edge also in this case.
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O—O0—0O-0-0—0

Figure 5.11: P4 graph, which includes two P; as subgraphs.

We classify four types of the graph in terms of the direction of the edges as in
Figure 5.12. In the similar way, we can consider the P3, graph, and associated

O~O~O-0~0~C
O—0~O-0~0~0
O~O~O~0O~0—~C

Figure 5.12: There are four types of the Py graph consisting of two Ps.

models and solutions.

Example 6

We can connect two K; y graphs by the dashed edge as in Figure 5.13. As this
example, we can find the graph structure admitting the normal vortex solutions.

5.5 Conclusion and Outlook

We have generalized DD into GDD and introduced SUSY to GDD in the Abelian
theory. A multi-Abelian-Higgs model has been studied as a further generaliza-
tion. After getting the Bogomolnyi equations, we explicitly constructed vortex
solutions of the normal type. To get the vortex solution, we restricted the graph
structure to the special cases shown in the previous section. We showed some
examples for the graph which has the normal vortex solution.

We have left the following aspects of the multi-Abelian-Higgs models for fu-
ture work. First, we discussed single-centered vortex in the present thesis. The
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Figure 5.13: The graph consisting of two K y connected by the dashed edge.

possibility of multi-vortex solution [21] is an important subject to study. Next,
in this thesis, we mainly considered tree graphs. If we take general graph struc-
tures as the bases of multi-Abelian-Higgs models, we have scalar potentials with
(many) flat direction of the lowest energy. The appearance of moduli is the fea-
ture of supersymmetric theories and the vortex solution in such a model is crucial
for phenomenological models [22]. At the same time, the quantum corrections
might become essential. The generalization of the method in [23] will be useful
to investigate the quantum effects about vortices. Finally, because our model con-
tains several fields, the possibility of different types of topological defects, such
as rings [24], must be examined.

We considered the Abelian gauge theory in GDD as well as multi-Higgs mod-
els. We are also interested in the non-Abelian theory because the Three Site Hig-
gsless model is based on the [S U(2)]* ® U(1) gauge theory. While we considered
vortices in the Abelian gauge theory in this thesis, on the other hand there exist
monopoles in the non-Abelian gauge theory. As the future works, we wish to in-
corporate monopoles, superfields and GDD into non-Abelian theory as some toy
models for the Higgsless model.
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Chapter 6

Summary, perspective and
conclusion

Two novel models

In this thesis we have built two models (“Democratic Three Site Higgsless Model”
and “Vortices and Superfield on a Graph™) using the technique of DD. These two
models are only the mathematical models.

Democratic Three Site Higgsless Model

The idea of “Democratic Model” is that each S U(2) gauge field has equivalent
property. Saying this another way, all S U(2) gauge fields have same gauge cou-
plings. From the bosonic part, the condition of the Democratic gauge coupling
go = g1 = & does not satisfy the ratio of the gauge boson masses (4.2.1). There-
fore we guessed (or proposed) the condition of the gauge coupling that nearly
satisfied the Democratic Condition. In this condition we realized the experimen-
tal value. This value depended on the VEV of the sigma field and the Higgs field.
The former could not choose any values, but the latter could choose the rang of
value vy /fi 2 60. This parameter condition is the one of the parameter choices.
In fact, there are any parameter conditions that satisfy the experimental value
of the gauge boson masses. Including the result of the fermionic part, the ratio
of g4 /gw (4.2.24) showed that above condition did not satisfy the experimental
value (g /gw)* ~ 0.22.

We mentioned the monopole. The mass of heavy weak bosons W is extremely
heavier than the mass of other bosons. Therefore the mass of the monopole is the
same order of the mass of the heavy weak bosons. The mass of the heavy weak
bosons consists of parameters vy and f]. In this model, parameters vy and f; are
highly correlated with the mass of the monopole. The ratio vg/f; is limited to
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vy/fi 2 60. Therefore the mass of the monopole has the lower limit.

As in Figure 4.8, the Democratic Three Site Model has many parameters
which are chosen by hand. The number of A and f parameters is 18. The pa-
rameter of A (1) has each value for each type of fermion. The mass of each
fermion is controlled by the A, parameter.

The Democratic Model includes many difficulties to realize the real phenomenol-
ogy. We need to improve the Democratic Three Site Higgsless Model.

Vortices and Superfields on a Graph

We generalized the moose diagram in the DD into the directed graph in the graph
theory. We considered simple Abelian theory. Abelian gauge fields reside at
vertices and scalar fields reside at edges. We have generalized DD into GDD
and introduced SUSY to GDD in the Abelian theory. A multi-Abelian-Higgs
model has been studied as a further generalization. After getting the Bogomolnyi
equations, we explicitly constructed vortex solutions of the normal type. To get
the vortex solution, we restricted the graph structure to the special cases shown in
this thesis. We showed some examples for the graph which has the normal vortex
solution.

We have left the following aspects of the multi-Abelian-Higgs models for fu-
ture work. First, we discussed single-centered vortex in the present thesis. The
possibility of multi-vortex solution [21] is an important subject to study. Next,
in this paper, we mainly considered tree graphs. If we take general graph struc-
tures as the bases of multi-Abelian-Higgs models, we have scalar potentials with
(many) flat direction of the lowest energy. The appearance of moduli is the fea-
ture of supersymmetric theories and the vortex solution in such a model is crucial
for phenomenological models [22]. At the same time, the quantum corrections
might become essential. The generalization of the method in [23] will be useful
to investigate the quantum effects about vortices. Finally, because our model con-
tains several fields, the possibility of different types of topological defects, such
as “rings” [24], must be examined.

We considered the Abelian gauge theory in GDD as well as multi-Higgs mod-
els. We are also interested in the non-Abelian theory because the Three Site Hig-
gsless Model is based on the [S U(2)]* ® U(1) gauge theory. While we considered
vortices in the Abelian gauge theory in this paper, on the other hand there exist
monopoles in the non-Abelian gauge theory. As the future works, we wish to in-
corporate monopoles, superfields and GDD into non-Abelian theory as some toy
models for the Higgsless model.
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Three kinds of interests

We make some comments about three kinds of interests.

Electroweak (Unified) Theory

In the electroweak energy scale, the dynamics of the symmetry breaking will be
proved in the LHC experiment. Higgsless Theory, which is based on the extra-
dimensional theory, gives the one of the idea of the symmetry breaking. This is the
one of the answers to the gauge hierarchy problem. There exist many heavy weak
bosons in Higgsless Theory. We control the cut-off energy scale by DD, three site
models are examples of the deconstructed theory. If the heavy weak bosons (W’
and Z’) are detected, we have an evidence of the existence of the extra-dimension.

Solitons

As the solitonic objects, monopoles and vortices were considered in this thesis.

We considered the novel monopole model which was based on the three site
model. We think that the monopole mixture exists as the dark matter in the uni-
verse. We guess that the mass of the monopole mixture is 100 TeV.

We considered the vortex solution in multi-Abelian-Higgs model. To get the
vortex solution, we restricted the graph structure to the special cases.

We think that topological configurations are a key ingredient in recent studies
in theoretical physics.

Field Theory on a Graph

We generalized the moose diagram in the DD into the directed graph in a Graph
Theory. GDD and DD are useful techniques not only the Electroweak Theory,
but also any other field theories. For examples, Quantum Electrodynamics was
considered in [10] and Multi-Gravity theory was considered in [11].

Conclusion as a whole

Based on the (dimensionally) deconstructed theory, we consider two novel theo-
ries. It seems that we can search physics in particular “theory space” or “theory
framework” by using the moose diagram (DD) on purpose. In fact, we investi-
gated A Three Site Model by controlling the moose diagram (the degree of decon-
structing). In this model, they are controlled that the upper limit of the adaptive
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energy scale and the relations between fields by the moose diagram. Therefore it is
important that the mechanism (or motivation) of determining the moose diagram
structure. In the model of “Vortices and Superfields on a Graph”, the existence
conditions of vertex solutions restricted the graph structure. Therefore the exis-
tence of the solitons might be the key point of choosing the “theory space” or
“theory framework”.



Appendix A

For the Original Three Site
Higgsless Model

A.1 The Original Three Site Higgsless Model

We show the process, from the five-dimensional S U(2);®S U(2)x®U(1)z-, gauge
theory to the Original Three Site Higgsless Model. In section 3.1, we mentioned
that “Arbitrary deconstructed model of the five-dimensional SU(2); ® SU(2)z ®
U(1)p_ gauge theory is represented by the four-dimensional SU(Q2); ® U(1)y ®
[SUQR)®SUR)z® UM 1V '@ SUQR)y ® U(1)p_; gauge theory, --- . In this
five-dimensional gauge thoery, we imposed the boundary conditions. Therefore
we had U(1)y and S U(2)y gauge fields.

In this Appendix, we start from the five-dimensional SUQ2); ® SU22)z ®
U(1)p-; gauge theory which is not imposed any boundary conditions. We show
the moose diagram of the deconstructed five-dimensional SU(2); ® SU(2)z ®
U(1)p-. gauge theory in Figure A.1. In Figure A.2, we impose the boundary con-
ditions. Consequently, we have the moose diagram as in Figure A.3. We reduce
the lattice points as much as possible in Figure A.4. As the result, we obtain the
moose diagram of the Original Three Site Higgsless Model.
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su2: 0~-0-O--0-O
sUD:O-0-O--O-O

UDppt — i e —

Figure A.1: This is the moose diagram of the discretized five-dimensional
SUQ2), @ SUQ2)z ® U(1)p_;, gauge theory.

SUQ) ®SUQR)x — SUQ)y
0-0-0--0Of0
O10-0--010

—tt — —— —

SUQR®U()pL — U(l)y

Figure A.2: Imposing the boundary conditions, we find that SU(2)z ® U(1)5-1
breaks to U(1)y and SU(2); @ SU(2)g breaks to SU(2)y.
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SUQ)v

Figure A.3: After breaking to U(1)y and SU(2)y, these sites connected to the
neighbor sites.

SUQ)L
SUQR)y

Uty <

Figure A.4: Reducing the lattice points (KK mode) as much as possible. Because
we think it is enough to 1st KK mode for low energy physics.



Appendix B

For Vortices and Superfields on a
Graph

B.1 Contents of superfields

In this Appendix, we collect the superfields and their component fields. See the
reference [17].

B.1.1 Vector superfield

- - 1 —
V= ~60,64,+ 6001, — 16662, + 56666D,. (B.1.1)

This satisfies !
V:= —EGGQGA;A‘;, 72 =0. (B.1.2)

B.1.2 Chiral superfield (Stueckelberg superfield)

1 |
S, = —2-(/)6 + ia,) + Oy. + i6’0‘"9§ (0ype + i0,a.)

- 2
+06F 5, + éeeeaﬂam +20000(p, + ia.) (B.1.3)

Se+S. = pe+bye+ 6y, — 0060,a, + 60Fs, + 60F
S e e
+§99904‘a#)(6 + %eeeaﬂam + £600p. (B.1.4)
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B.1.3 Chiral superfield (Higgs superfield)

Y = 0.+ \5_9% + i@a‘g@#(re

i = 1 —
+00Fs, + 7_2‘9990-#6;1'706 + 29999(0}) . (BIS)

B.2 The eigenvalues of matrices 48 and BA

Let A be a (p, g) matrix and B be a (g, p) matrix. Then (p + ¢, p + g) matrices U

and V are defined as
(1, 4 [ xI, -4
U_(B x]q), V_(qu 1, ), ®21)

where I, is the (p, p) identity matrix while 0,, is the (g, p) matrix all of which
elements are zero.
The products of two matrices are

_(xI, 0, _ [ xl, - 4B 0,
UV—(xB x[q_BA), VU—( 5 (B.2.2)

Because det UV = det VU, the eigenvalues of 4B and BA are equal, except for
zero eigenvalues.

B.3 The normal vortex in Abelian-Higgs model

The Ginzburg-Landau theory is used as a macroscopic theory of the supercon-
ductivity. That is nonrelativistic theory, and we know an Abelian-Higgs model
as the relativistic version of the Ginzburg-Landau theory. This model includes
the normal vortex solution. In this paper we distinguish the vortex solution of
the Abelian-Higgs model from the vortex solutions of our multi-Abelian-Higgs
models, by using the word “normal”.
In the Abelian-Higgs model, the Lagrangian density is
L= —%F’”FW - Dol - %gz (-7, (B.3.1)
where F,, = 0,4, — 0,4, is a field strength of the Abelian gauge field 4,, o is a
complex scalar field and f is its vacuum expectation value (o) = f. D,o is the
covariant derivative of the scalar field

D,o = 8,0 + igd, o, (B.3.2)
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where g is the gauge coupling constant to the scalar field o.
To obtain the classical solution in this theory, we impose the static, axially-
symmetric ansatz:

A=e,P(r), (B.3.3)
o = p(r)e™, (B.3.4)

where the integer # is the winding number. We used the circular cylindrical coor-
dinates r, ¢, and z.

We use the scale conversion x = gfr, P = gP and p = p/f. Therefore the
energy density of per unit length of the z axis becomes

- =, 2 = 2 5 =
a:zﬂfzfo dxx[%(%+,52—1) +(,3’+Px”,3) —%(52—1)—25;3'Px" ,
(B3.5)
where the prime (') denotes the derivative with respect to x. Asymptotic values
are as follows: P(0) = 0, P(co) = n, p(0) = 0 and j(c0) = 1. We can write the
following inequality for the energy

&> 2anf? f ) (,52)' dx = 2nnf>. (B.3.6)
0

This lower bound on the energy is the Bogomolnyi bound and it is saturated when
p and P satisfy the following equations

Lo (-1 B.3.7
. (~p ). (B.3.7)
LA
£__"% (B.3.8)
D X

These equations are the Bogomolnyi equations.

B.4 Action and equation of motion with vortex Ansatz

In this Appendix, we show the details about the Bogomolnyi equations for the
vortex configuration. We take the axially symmetric ansatz:

0o = pe(r)e™, A% =Pyr). (B.4.1)
Then we find

Do, = p’gei’MP, D«po-e = i(ne + (gP)t(E) - (gP)O(E))peeinew ’ (B42)
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where the prime denotes d%, the derivative with respect to », and (gP), = g.P,.
Thus the kinetic term of the scalar reads

(ne + (gp)t(e) - (gP)o(e))zpz

\ Do > = (p;)2 + 3 z, (B.4.3)
while the Maxwell term becomes
1 iy L)
ZFVFU =52 (B.4.4)

The total action can be rewritten as

= 1o @y ETGP), - n,)?
& = 27rf0 drr[zz%+2{(p;)2+(( r)2 n)pﬁ}

veV ecE

1
+ 5 Z (pg - ge)(ETGzE)ee'(pezz’ - 4’6’)“ ) (B45)

e’ eE

and this is no other than the energy density per unit length in the present static
case.
Varying this, we obtain the following equations of motion:

7\ ETGP e — Mg 2
(V/;e) _ « rz ”)pe+ Zpe(ETGzE)ee’(pﬁ’—ge')’ (B.4.6)
e,e’eFE
’\/ T —
(PT) = 2), e Gj:z) "e) 2(ET G (B4.7)
ecE

These second-order simultaneous equations can be reduced to the first-order Bo-
gomolnyi equations:

T —
Pe = i(—g——qPT)e——'ZEpe, (B.4.8)
P:' — 2 T
= = 7)) P LIE G (BA4.9)

ecE

B.S Asymptotic profile of the vortex

We investigate the asymptotic behavior of the solution of (B.4.8,B.4.9) in this
Appendix. To this purpose, first we introduce new variables p,(r) and R, (r):

P(r)=ay—pur), pe=fe—Rr), B.5.1)
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where the constant g, satisfies
n. = (ETGa). . (B.5.2)

Next we prepare p-dimensional eigenvectors x@ (@ = 1,---,p — 1) for the
(mass)* mass matrix for vector fields satisfying

2(GEF)GEF) x@ = m@)*x9 | for nonzero modes (B.5.3)

and g-dimensional eigenvectors X'@ for the (mass)? mass matrix for scalar fields
satisfying
2(GEF)(GEF)X® = (m@)2x@ (B.5.4)

Hereafter we restrict ourselves on the case with tree graphs treated in the text.
Thus ¢ = p — 1. The zero mode satisfies

2GEF)GEF) X9 =0. (B.5.5)
The relations of two sets of eigenvectors are

V2 V2

2
X9 = W(GEF)Tx("), X = %GEFX("), (a#0) (B.5.6)

and we adopt the normalization convention:
xTx@ = xOT x@ = 1 (B.5.7)

Using the eigensystems, we can expand the variables by eigenvectors as
py(F) = Zp(a)x(va) . R(r)= ZR(Q)XEG) , (B.5.8)
(@ @

Noticing R.(o0) = 0 and p,(c0) = 0, the equations of motion (B.4.6,B.4.7) be-
comes at the asymptotic region, » — oo,

1

R@” 4 —R@ _ (m@?R@ =0, (B.5.9)
r
! 1 a)’ a a
p@ _;p() — (M2 p@ =0, (B.5.10)

and the Bogomolnyi equations (B.4.8,B.4.9) become at the asymptotic region,
v — o,

, 1m@
RO = 2@ (B.5.11)
r N2

(@)
P \2moR@ (B.5.12)
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The solution of the above equations is
R@ = CKo(m D7), p@ = V2CrK,(m9r). (B.5.13)

This result can be derived by using the following formulas for the modified Bessel
function of the second type, such as Ky(z) and K,(z);

Kl (2)+ %K{,(z) Ko@) =0, K/@+ éK{(z) - (1 + le)Kl(z) =0, (B.5.14)

K@)~ LK) - (K@) =0, (B.5.15)

K@) =K@, K@) =K@, (B.5.16)

where the prime (') means the derivative with respect to z.
More rough estimation can be done with the exponential function because

K,(2) ~ J%e‘z, for large . (B.5.17)
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