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ABSTRACT

This paper proposes a method for calculating the false detection/alarm rate

for the Nasu interferometric sky survey. This method considers both spectral

intensity and time width of a fringe in the time-frequency domain. It detects

periodic waves with a given time width in a noise band and calculates the dis-

tribution of the spectral intensity of the waves. Using this distribution, we can

calculate the false positive rate of fringe detection and determine the reliability

of the detection results as an objective probability. The proposed method can

be applied to interferometric observations such as the Nasu sky survey whose

observation results depend entirely on the existence of fringes.

Subject headings: Data Analysis and Techniques

1. Introduction

Temporal Fourier analysis of time-series data, particularly called the short-time Fourier

transform (STFT), is used for revealing wave features and detecting signals from background

noise (e.g., Nawab & Quatieri 1987). On observation with an astronomical interferometer,

the Fourier analysis enables us to detect fringes as signals and discover astronomical objects.

In the Nasu sky survey that is conducted by Waseda University in Japan, the STFT is

used for detecting fringes in time-series data (Kuniyoshi et al. 2006; Takefuji et al. 2007).
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However, it is yet to be proven whether the detected signal-like wave is a genuine signal.

A large signal-to-noise ratio (SNR) and a small false detection rate (FDR) are essential to

conclude that the detected wave is indeed a signal.

The FDR of a periodic wave is derived from the distribution of spectral intensity in the

frequency domain. The spectral amplitude and the spectral power of the Gaussian noise

have a Rayleigh and an exponential distribution, respectively (see e.g., Papoulis 1984 or

Appendix A). The FDR of a wave with a certain spectral intensity is calculated as the upper

probability of these distributions, i.e., the probability that the intensity is caused by noise.

This FDR calculation method is effective only if one imposes a condition C1, according to

which the spectral intensity is large enough to not be generated by noise, on signal detection.

In the field of radio astronomy, condition C2, according to which the signal-channel intensity

must be the maximum in the total band or in the two-dimensional grid (fringe frequency-

delay plane), is additionally adopted. Then, the FDR is calculated from the distribution of

the maximum value of Rayleigh-distributed random variables. This calculation method is

discussed in Moran (1976) and Thompson et al. (1986).

However, these FDR calculation methods do not consider the time width of the signal

appearance (hereinafter called signal duration) and therefore ignore whether the detected

signal-like wave maintains a desirable wave-form. Here the term “duration” does not nec-

essarily signify the time width in which a certain physical phenomenon continues. In a

drift-scanning interferometer observation such as the Nasu sky survey, for example, a fringe

appears with the specified duration that corresponds to the instrumental characteristics, i.e.,

the full width at half maximum of the receiving sensitivity pattern when a point source is

observed. For reliable signal detection, we factor in a condition C2′, according to which

a signal wave must have a duration that is greater than the specified duration. This idea

implies that condition C2 should be replaced with condition C2′.

In this paper, we discuss an FDR calculation method that is useful when one imposes

conditions C1 and C2′ on signal detection. This FDR calculation enables us to assess the

authenticity of the detection result or obtain the SNR threshold for signal detection. In

Section 2, we show the methodology by using the data that include fringes as the signal

output from a basic two-element interferometer for the following application of the method

to the Nasu sky survey. In Section 3, we apply the method to Gaussian noise data and

derive the probability distribution of the intensity of a periodic wave generated by noise.

Section 4 shows the application to the Nasu sky survey. We present the observation data

and compute the FDR for each fringe having an astronomical origin. Section 5 summarizes

the methodology and the results of the applications, and Appendix A provides the basics of

the statistical distributions used in this study.
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2. Methodology

The FDR calculation method treats the time-series data x(t), which include infrequently

appearing signal waves in the background noise. Suppose that the signals have the following

two properties: a large intensity that satisfies condition C1, and a duration greater than the

given time width that satisfies condition C2′. Figure 1 shows an example of a signal that

exhibits these properties and satisfies the signal-detection conditions C1 and C2′. A wave

that satisfies these conditions is regarded as a signal. However, such a wave is generated not

only in the signal band but also in the noise band. In other words, even noise energizes a

periodic wave (hereinafter called noise wave) with a large intensity and duration. Accord-

ingly, while identifying the detected signal-like wave as a genuine signal, we must calculate

the probability of SNR caused by noise waves. This technique calculates the probability,

i.e., FDR, from the distribution of the SNR of a noise wave that has a duration greater than

the specified duration ∆ts. The strict signal-detection condition restricts the detection of

signal-like waves, but the FDR of the once-detected wave is expected to be small.

In this section, we use the simulated data shown in Figure 1 for describing the method-

ology of the technique. The interferometric observation data include fringes as signals that

satisfy conditions C1 and C2′. Although the physical dimension of data x(t) is arbitrary, for

the following application to the Nasu sky survey, we suppose that data x(t) are the cross-

correlation of two voltage outputs from two telescopes. Hence, in this case, the dimension

of x(t) is equivalent to that of power. We also mention the case in which data x(t) refer

to voltage, if necessary. Let x(t) and x[t̂] denote the continuous and discrete data, respec-

tively, where the time index t̂ is defined by t̂ = t/tsmp with a sample interval tsmp. Table 1

summarizes the analysis parameters and values that are consistently used in this paper.

2.1. Definition of SNR

First, we derive the STFT of the data x[t̂] by using the direct method defined as

X[t̂, f̂ ] =
n−1∑
k=0

x[k] w[k − t̂] e−i2πf̂k/n, (1)

where w[t̂] is a window function and n is the window width. A frequency index, i.e., a

spectral channel f̂ , is an integer defined by f̂ = f × ntsmp and ranges from 0 to n/2 if the

data x[t̂] are real numbers. A compactly supported function, e.g., Hann window, is desirable

for the window function in order to avoid the Gibbs phenomena that hinder the processing

mentioned in Section 2.2. The power spectrum at a given time is defined by |X[t̂, f̂ ]| because
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the data x[t̂] refer to the power. This time-series power spectrum is called a spectrogram

S[t̂, f̂ ] = |X[t̂, f̂ ]|. Now, the data x[t̂] are cross-correlation values, and thus, |X[t̂, f̂ ]| is called

a cross-power spectrum. However, note that the spectrogram is defined by S[t̂, f̂ ] = |X[t̂, f̂ ]|2
if the data x[t̂] refer to voltage.

Next, we define the SNR from the spectrogram S[t̂, f̂ ]. Fixing time t̂ reduces the spec-

trogram S[t̂, f̂ ] to the power spectrum S[f̂ ]. Then, transform the power spectrum S[f̂ ] to

the ratio R[f̂ ] defined as

R[f̂ ] =
S[f̂ ]

〈S[f̂n]〉
, 〈S[f̂n]〉 =

1

n − 1

∑
f̂n 6=f̂

S[f̂n]. (2)

In the signal band f̂ = f̂s, the ratio R[f̂s] refers to the SNR that is the signal intensity

normalized with the average of the noise intensity 〈S[f̂n]〉. Equation (2) indicates that the

SNR definition is expanded to the noise band. The SNR can be arbitrarily defined and will

change the distribution discussed in Section 2.3, but does not affect the subsequent FDR

calculation. The chronologically arrayed SNR R[t̂, f̂ ] refers to a modified spectrogram that

is transformed from the spectrogram S[t̂, f̂ ].

A signal appears with a wave-form in the time-series data and with an embossment-

form in the spectrogram. However, embossments also appear in the noise band in the

spectrogram. Consequently, corresponding waves are observed in the time-series data. A

loud noise wave exists with an SNR of 4 in the area [t̂, f̂ ] ' [450, 63] in Figure 1. This noise

wave can be erroneously detected as a signal if it appears with a time width greater than

the specified signal duration ∆t̂s and consequently satisfies the signal-detection condition

despite the presence of intrinsic noise. In order to search for noise waves that might have

been erroneously detected, measurements of the duration of the wave or embossment are

required.

2.2. Definition of duration

The duration of a wave can be defined by using the modified spectrogram R[t̂, f̂ ] as

follows. We consider the time width between the rise and decay of an embossment as

the duration in the time-series SNR R[t̂] at a given frequency (Figure 2). Note that an

inappropriate window function impedes the measurement of the duration because of the

Gibbs phenomena and the rippling curve R[t̂]. Then, we record the peak value of the

embossment as the SNR of the wave if the measured duration is greater than the specified

duration ∆t̂s. This leads to the following mathematical expression for the SNR r of the
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detected wave:

r = local max{. . . , R[t̂], R[t̂ + 1], R[t̂ + 2], . . .} (3)

because the variables R[∗] are not deterministic but stochastic.

2.3. Derivation of SNR distribution

There remain some unanswered questions such as whether a noise wave with a duration

greater than ∆t̂s exists, and if it does, how many such waves exist and what are their SNR

values. To answer these questions, we count the number of noise waves detected by the

processing described in Section 2.2 and derive the histogram as shown in Figure 3. The

histogram shows the number of noise waves classified by the SNR r. The left side of Figure 3

represents the histogram in the signal band and shows the detection of the real signal at a

bin of SNR > 7. On the other hand, the right side of the figure shows the SNR distribution

of the detected noise waves, which indicates that the possibility of eruption of noise waves

with SNR > 5 is low. In order to calculate this probability, we derive the probability density

function of the distribution.

2.4. Calculation of false detection rate

To calculate the FDR, we estimate the probability density function of the SNR of noise

waves. If the observation data x[t̂] originate from stationary random noise, an approxima-

tion of the probability distribution of the SNR is theoretically derived (see Section 3 and

Appendix A). However, the noise in the actual observation data is both random and system-

atic. Moreover, the stochastic process of noise is not consistently stationary in a long-term

observation. Therefore, we estimate the probability density function that is equivalent to the

histogram of Figure 3 by using a non-parametric method. In this study, we use the kernel

density estimation method.

Let {rj; j = 1, 2, . . . , N} denote the SNR values of noise waves that constitute the

histogram, where N is the number of detected noise waves. Note that the random variable r

is a positive real number and the probability density function p(r) has bounded support on

[0,∞). Accordingly, we conduct an estimation based on a logarithmic conversion described

below (Copas & Fryer 1980; Silverman 1986). we estimate the probability density q(log r)

using a Gaussian kernel:

q(log r) d(log r) =
1

Nh

N∑
j=1

K

(
log r − log rj

h

)
d(log r). (4)
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The parameter h refers to the smoothing bandwidth, and the function K(∗) is the Gaussian

kernel, i.e., the probability density function of the standard normal distribution. We deter-

mine the bandwidth by using the method provided by Scott (1992) and the R stats package.

Consequently, the probability density p(r) is defined as

p(r) dr =
q(log r)

r
dr. (5)

In this example, the parameters are N = 300 and h = 0.11, and the estimated function is

represented by the curve on the right side of Figure 3. The FDR is calculated by integrating

the estimated function p(r). The signal-like wave of Figure 1 has a duration of ∆t̂texts and

an SNR of rs ' 13. If such a wave is generated by noise, the probability is
∫ ∞

13
p(r) dr <

1.0×10−25, which implies that the FDR is extremely small. Therefore, we can conclude that

the detected wave is a genuine signal. Summarizing the discussion, when a signal-like wave

has a duration of ∆t̂s and an SNR of rs, we can calculate the FDR as

FDR =

∫ ∞

rs

p(r) dr. (6)

However, in this example, the FDR computed above is not highly reliable because of the

small number of data points. The observation data x[t̂] should be dominated by noise because

this FDR calculation method analyzes noise in detail. The application of the proposed FDR

method to actual observation data is presented in Section 4. In the next section, we discuss

the distribution of the SNR in case the data x[t̂] consist of stationary Gaussian noise.

3. Application to Gaussian noise

We apply this FDR calculation method to Gaussian noise data with 100,000 data points.

The noise data x[t̂] consist of normally distributed random numbers with mean 0 and vari-

ance 1, and are generated by the Mersenne Twister random number generator (Matsumoto

& Nishimura 1998). The distribution of the SNR of a noise wave is shown in Figure 4, and

is obtained by analyzing the Gaussian noise data with the parameters given in Table 1.

This distribution depends on the analysis parameters but is approximated by the dis-

tribution of the maximum value of the independent and identically distributed Rayleigh

random variables. Therefore, the probability density can be approximated by

p(r; m,σ) ' m
(
1 − e−r2/(2σ2)

)m−1

· r

σ2
e−r2/(2σ2). (7)

This is because the SNR r of a noise wave is defined by Equation (3) as the local maximum

value of the embossment R[t̂], and the variables R[t̂] are dependently distributed Rayleigh
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variables. This approximation is also discussed in Appendix A. Then, the parameter is

estimated at m ' 3.47 and σ ' 0.907 by using the maximum likelihood estimation for the

distribution shown in Figure 4. For confirmation, we conduct the χ2 test of the goodness

of fit between the obtained distribution and p(r). The result shows the p-value to be 0.33,

which is greater than the common significance level of 0.05. Therefore, the null hypothesis,

i.e., the SNR distribution is described by Equation (7), is not rejected.

The probability density function p(r) provides the SNR threshold necessary for signal

detection. The SNR threshold value is calculated by

rth ' σ
√
−2 ln [1 − (1 − FDR)1/m] (8)

which is derived from Equations (6) and (7). The parameter σ, which is equivalent to noise

intensity, remains on the right hand side even though the left hand side refers to the SNR in

Equation (8). This is because of the preservation of the parameter σ as a free parameter for

the approximation of Equation (7), as mentioned in Appendix A. In this case, the threshold

is rth ' 3.7 for FDR = 10−3 and rth ' 5.0 for FDR = 10−6. Using the SNR threshold of 5,

we can reliably detect a signal provisionally.

4. Application to Nasu sky survey data

We apply the proposed FDR calculation method to the actual observation data of the

Nasu sky survey. The Nasu sky survey is an observation project at the Nasu Observatory of

the Waseda University in Japan. The Nasu Observatory is located 150 km north of Tokyo

and is equipped with eight east-west arrayed 20 m radio telescopes. The main reflectors

of these telescopes are spherical in shape and are fixed to the ground; the Arecibo 305 m

telescope is also used. We construct basic two-element interferometers using a combination

of the above-mentioned telescopes and observe the sky using a drift-scanning technique,

which considers the transit of an astronomical source. The basic specifications of the Nasu

Observatory are reported by Takeuchi et al. (2005), Kuniyoshi et al. (2006), Niinuma et al.

(2007), and Takefuji et al. (2007).

Table 2 lists the observation parameters for the data used in this section. The ob-

servation started on 2010-06-29, as specified in the ISO 8601 date format. We sample the

voltages that are outputted from two telescopes at the Nyquist rate, digitally calculate the

cross-correlation of the two voltages, and acquire the cross-correlation data x[t̂] sampled at

intervals of tsmp = 0.629 15 s. An observed fringe has a duration of ∼144 s, which corre-

sponds to a beam width of 36′ when a point source is received at the beam center. Hence,

the signal duration in the observation data is ∆ts = 144 s, and the duration time index is
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∆t̂s = ∆ts/tsmp = 228.

Figure 5 shows the modified spectrogram of the observation data that consist of 68,000

data points observed for 12 h. The downward arrows indicate the detected fringes at this sin-

gle epoch observation. One of the fringes originates dominantly from galaxy J004055+331007

and has an SNR of 10.2, as indicated by arrow (6) and shown in Figure 6. However, this

fringe-like wave has not yet been proven to be a true fringe having astronomical origins. In

order to validate the detection result, we need to calculate the FDR for each fringe.

The proposed FDR calculation method involves the derivation of the SNR distribution

from the modified spectrogram, as shown in Figure 7. The distribution in the signal band

shows the detection of nine fringes having a duration index of more than 228 and an SNR

greater than the threshold of 5. These fringes are indicated by arrows in Figure 5. From the

right side of Figure 7, we estimate the probability density function p(r) from Equation (5) for

the SNR of the noise waves. Integrating p(r) with Equation (6) provides FDR = 5.9× 10−68

for rs = 10.2 that is the SNR of the J004055+331007 fringe. Thus, we can conclude that the

detected fringe-like wave of J004055+331007 is definitely a fringe. The FDR for each of the

six fringes is listed in Table 3, where these six of the nine detected fringes are identified as

known astronomical objects. This table shows that the observation configuration, presented

in Table 2, of the Nasu Observatory can be used to detect sources whose flux density is

greater than ∼ 1 Jy, with a high level of confidence at a single epoch observation.

Furthermore, we observed the same declination strip for nine epochs, every day from

2010-06-29 to 2010-07-09 but for 07-01 and 07-02. This observation result is summarized in

Table 4. We detected all the sources that were expected to be observed with a flux density

greater than 0.5 Jy and no sources that were concluded to be variable only from these

observations. However, the comparison of the single observation with the nine observations

implies that the counterparts of the fringes tagged as (1) and (2) in both Tables 3 and 4 may

indicate variability. The counterpart of fringe (1), J160207+332653, was detected with a

flux density of ∼ 2.3 Jy, which is significantly less than the presumably received flux density

of 2.9 Jy at 1.4 GHz. On the other hand, Kuehr et al. (1981) reported that the flux density

of the source is 2.5 Jy, which is in the error range of our observed flux density. The source

J160207+332653, also known as blazar 4C +33.38 (Pilkington & Scott 1965), may show

∼ 0.5 Jy variation, which is consistent with the variability of ∼ 15% at 15 GHz reported by

Tremblay et al. (2010). Moreover, a counterpart of fringe (2), J190348+331920 or a nearby

source, may indicate intraday or intraweek variability. To confirm the implication, other

observations are required. Table 4 shows that the observation configuration can be used to

detect sources whose flux density is greater than ∼ 0.3 Jy at nine epoch observations.



– 9 –

5. Conclusion

In this paper, we proposed a method for calculating the FDR in order to verify an

observation result for the Nasu sky survey. This method calculated the SNR distribution

of a periodic wave that was generated by noise for the data. During the detection of a

signal-like wave, we had to calculate the FDR for the wave and verify that the wave was

definitely a signal. The proposed method was useful when we imposed a signal-detection

condition, which stipulates that a real signal maintains a desirable wave-form and has a

duration greater than the specified time width. The application of the proposed method to

Gaussian noise data was discussed in Section 3. In this case, the SNR distribution of the

noise wave was approximately equal to the distribution of the maximum value of Rayleigh-

distributed random variables. The result indicated that we could reliably detect signals with

SNR > 5. The SNR threshold of 5 allowed us to detect fringes from the Nasu sky survey

data, as mentioned in Section 4. In order to statistically assess the authenticity of the

detection result, we carried out the kernel density estimation for the SNR distribution and

calculated the FDR. The result revealed the detection of astronomical sources with a flux

density greater than ∼ 1 Jy at the single epoch observation. The FDR of each source was

extremely low and the confidence level was significantly high. Moreover, the proposed FDR

calculation revealed the detection of sources with a flux density greater than ∼ 0.3 Jy at the

nine epoch observations. This method is helpful for verifying the reliability of a detection

result from various perspectives for the Nasu interferometric sky survey.

This work was supported by Grant-in-Aid for JSPS Fellows 22-4016. In this research,

we used data obtained from the High Energy Astrophysics Science Archive Research Cen-

ter (HEASARC), provided by NASA’s Goddard Space Flight Center. We also used the

NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Lab-

oratory, California Institute of Technology, under contract with NASA.

A. Basics of statistical distributions

The derivation of Equation (7) is outlined below. The detailed calculation is explained

by Papoulis (1984) for example. For simplicity, let random variables and values have the same

symbols and statistical distributions as those mentioned in Table 5. Assume that a random

variable x has a normal distribution N(µ, σ2). The set of values {xj; j = 0, 1, . . . , n − 1}
corresponds to a subset of data x[t̂] mentioned in Section 2. The validity of the assumption

is explained below in the case of the data obtained using a radio interferometer. The data

xj are a cross-correlation between two voltage outputs from the telescopes, i.e., an ensemble
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average of the product of ergodic voltages. Hence, a large number of averaging data points

normally distributes the data xj according to the central limit theorem.

When random variable xj has a normal distribution, the orthogonal transform of xj

defined as

Xk =
n−1∑
j=0

akjxj,

n−1∑
l=0

aklalj = δkj (A1)

is normally distributed N(µ
∑n−1

j=0 akj, σ
2), where δkj is the Kronecker delta. The discrete

Fourier transform is the orthogonal transform of akj ∝ exp(−i2πkj/n), which reveals that

the real part ReXk and the imaginary part ImXk of the Fourier transform are independently

and identically normally distributed N(nµ δk0, σ
2). Consider the case of k 6= 0; the random

variables ReXk and ImXk have a normal distribution N(0, σ2). Now, define the amplitude

spectrum as

Ak = |Xk| =
√

(ReXk)2 + (ImXk)2 ; (A2)

the random variable Ak has the distribution Rayleigh(σ), mentioned in Table 5, because of

the transformation of the random variables. Define the power spectrum as

Pk = |Xk|2 = A2
k ; (A3)

the random variable Pk has the exponential distribution Exp(1/(2σ2)). We can calculate the

FDR by using the Rayleigh or exponential distributions if condition C1 is imposed on signal

detection (see Section 1).

By additionally imposing condition C2, we obtain the distribution of the maximum value

of spectral intensity. When the data xj are real numbers with n data points, the number of

independent spectral channels is m = n/2 and the range of the integer k is k = 0, 1, . . . ,m−1.

Hence, the probability density of the maximum value A of the amplitude spectrum {Ak} is

p(A; m,σ) dA = m
(
1 − e−A2/(2σ2)

)m−1

· A
σ2

e−A2/(2σ2) dA. (A4)

Likewise, the probability density of the maximum value P of the power spectrum {Pk} is

p(P ; m,σ) dP = m
(
1 − e−P/(2σ2)

)m−1

· 1

2σ2
e−P/(2σ2) dP . (A5)

The parameter m is replaced by m − 1 without considering k = 0. Then, we can calculate

the FDR using Equation (A4) or (A5) while imposing conditions C1 and C2 on the signal

detection. The above discussion is based on a spectrum, i.e., only in the frequency domain.

The method discussed in this paper considers the time extent of a wave in the time-

frequency domain and derives the distribution of a local maximum value of the spectral
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intensity or SNR in this range. If the data x[t̂] have a normal distribution N(µ, σ2), the

spectrogram at a certain time S[f̂ ] = |X[f̂ ]| has the distribution Rayleigh(σ), and the mean

value is 〈S〉 = σ
√

π/2. Therefore, the modified spectrogram at a certain time R[f̂ ] defined by

Equation (2) has the distribution Rayleigh(
√

2/π). The distribution of the maximum value

r of the variables Rk, i.e., r = max{R0, R1, . . . , Rm−1}, is represented by the probability

function p(r; m,
√

2/π) in Equation (A4) if the variables Rk are independent of each other.

In Section 3, the variable r is defined as the local maximum value of the embossment R[t̂]

and is expressed by Equation (3), i.e., r = local max{. . . , R[t̂], R[t̂+1], R[t̂+2], . . .}. Note

that the variables R[∗] are not independent, and consequently, the distribution of r is not

described by p(r; m,
√

2/π). However, the distribution is roughly approximated by p(r; m,σ)

that preserves the parameter σ as a free parameter. This is why we use Equation (7) for

calculating the interim SNR threshold.
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Fig. 1.— The left side shows the simulated time-series data x[t̂] and the modified spectrogram

R[t̂, f̂ ], and the right side shows the modified spectrogram at a certain frequency index R[t̂, 4]

and R[t̂, 63]. This FDR calculation method deals with data that include a signal wave with

a duration of ∆t̂s in the background noise. The data are created from the simulation of the

Nasu sky survey, and the signal channel is a frequency index f̂s = 4; the data are similar

to the actual observation data, as mentioned in Section 4. The signal wave appears as an

embossment in an area [t̂, f̂ ] ' [1200, 4] on the modified spectrogram. Likewise, in an area

[t̂, f̂ ] ' [450, 63] in the noise band, a noise wave appears with SNR R ' 4. If the noise wave

has the duration of the specified value ∆t̂s, this wave satisfies the signal-detection condition

despite the presence of intrinsic noise. This FDR calculation method counts the number of

noise waves and draws a histogram, as shown in Figure 3.
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Fig. 2.— The upper curve shows the temporal variation of SNR R[t̂, 4] at the frequency

index f̂ = 4, and the lower curve shows the slope of the curve R[t̂, 4]. We use the slope

of the local regression line of the curve R[t̂] to determine whether SNR R[t̂] increases with

time t̂. The duration is defined as twice the time width between a zero-crossing point from

negative to positive and one from positive to negative. The local regression line is derived

from 20 points around each data point. The 20 data points are set to approximately ∆t̂s/10,

but this setting has no theoretical basis. Then, the peak value of the embossment is recorded

such that the measured duration is greater than the specified signal duration ∆t̂s. This figure

reveals that the signal has an SNR of approximately 13.
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Fig. 3.— Histogram of the SNR of a wave that has a duration greater than ∆t̂s (= 228).

The data points form a rug plot on the horizontal axis. The left side of the figure shows

that four waves exist in the data at the signal band f̂s = 4; three of these waves have

SNR < 2, and one has SNR > 7. The wave with SNR > 7 is the true signal in the area

[t̂, f̂ ] ' [1200, 4] in Figure 1. Likewise, the right side shows the SNR distribution of waves

in the noise band, where the noise band is defined as a band of f̂ ≥ 10 with a view to avoid

leakage of the signal component. We acquire the FDR from a probability density function

of the distribution estimated with a kernel function.

Fig. 4.— Same as Figure 3, but for the application to Gaussian noise. The shape of this

distribution depends on the analysis methods and parameters given in Table 1 but is ap-

proximately expressed by Equation (7). This approximation provides the interim threshold

of SNR for signal detection.



– 15 –

Fig. 5.— Same as Figure 1, but for the case in which the Nasu sky survey data are used.

The downward arrows indicate the reliably detected fringes. The magnification of the fringe

tagged as (6) is shown in Figure 6 as an example.
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Fig. 6.— Same as Figure 1; the magnification of the fringe tagged as (6) in Figure 5. The

FDR of the displayed fringe is 5.9 × 10−68, and we can, therefore, conclude that the wave is

a genuine fringe having an astronomical origin. The counterpart of this fringe is the galaxy

NVSS J004055+331007 .
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Fig. 7.— Same as Figure 3, but for the application to the actual observation data. The left

figure shows the detection of nine fringes at SNR > 5.
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Table 1. Analysis parameters and values.

Parameter Value

Sample interval tsmp 0.629 15 s

Signal duration ∆ts 144 s

Signal duration index ∆t̂s 228

STFT window w[t̂] Hann window

Window width n 256
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Table 2. Observation configuration.

Parameter Value

Observation start 2010-06-29 10:00:00 (UT)a

Observation end 2010-06-29 22:00:00 (UT)a

Frequency 1420 ± 10 MHz

Telescope diameter 20 m

Baseline length 84 m

Integration time 0.629 15 s

System temperature 100 K

Declination 33◦30′

Right ascension 14h–24h & 0h–2h

Resolution for Decl. 36′

Resolution for R.A. 9′

aThe date and time representation is based on

ISO 8601.
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Table 3. Detected fringes at a single epoch.

Tag Detected fringes Counterparts FDR

αobs Fobs Name Fexp C1 C1 & C2 C1 & C2′

(1) 16h02m02s ± 14s 2.3 ± 0.3 Jy J160207+332653 2.9 Jy 10−22 10−20 10−40

(2) 19h03m45s ± 20s 1.6 ± 0.3 Jy J190348+331920 0.8 Jy 10−10 10−8 10−10

(3) 19h24m12s ± 11s 3.1 ± 0.3 Jy J192417+332929 3.1 Jy 10−42 10−39 10−79

(6) 00h40m54s ± 10s 3.3 ± 0.3 Jy J004055+331007 3.2 Jy 10−35 10−33 10−67

(7) 01h26m43s ± 8s 4.4 ± 0.3 Jy J012644+331309 3.7 Jy 10−69 10−67 10−123

J012811+332432 0.3 Jy

(8) 01h37m41s ± 3s 14.1 ± 0.4 Jy J013741+330935 14.0 Jy 10−300 10−300 10−300

Note. — The tags refer to the fringes numbered in Figure 5. The detected fringes or radio sources are indicated by

their right ascension αobs (J2000.0), where their declination is +33◦30′ ± 36′ because of the drift-scanning observation.

The observed flux density is denoted by Fobs. The calibrators of position and flux density are J013741+330935 and

J192417+332929, respectively; these calibrators are catalogued in the NRAO VLA Sky Survey (NVSS) compiled by

Condon et al. (1998). The possible counterparts are formally taken from the NVSS sources with a flux density greater

than a noise level of 0.3 Jy and within a distance of 36′ from the field center. The listed flux density of the counterparts,

Fexp, expresses an intensity that is expected to be received by a sensitivity pattern of the telescopes. The observed flux

density Fobs is expected to be equal to a sum of the expected flux density Fexp, if the luminosities of the counterparts

are not variable. However, the sources other than the listed counterparts also increase or decrease the spatial coherence

and the observed flux density. The fringes tagged as (4) and (5) in Figure 5 are not listed because they originate from

sources in the galactic plane and are not resolved by the instruments of the Nasu Observatory. Furthermore, fringe (9)

is eliminated because it is from the listed sources J013741+330935 and is received by the side-lobe of the telescope. The

FDR based on the condition C1 is calculated by using Equation (A4), where m = 1 and σ =
p

2/π. Similarly, in the

case of C1 and C2, m = 127 and σ =
p

2/π. The FDR based on C1 and C2′ is calculated with the estimated function,

as described in Section 2.
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Table 4. Detected fringes at nine epochs.

Tag Detected fringes Counterparts FDR

αobs Fobs Name Fexp C1 C1 & C2 C1 & C2′

15h04m18s ± 24s 0.3 ± 0.1 Jy J150429+334337 0.3 10−7 10−5 10−8

J150508+331832 0.1

15h50m50s ± 16s 0.6 ± 0.1 Jy J155049+332016 0.7 10−17 10−15 10−37

(1) 16h02m03s ± 05s 2.2 ± 0.1 Jy J160207+332653 2.9 10−131 10−128 10−218

a 16h18m32s ± 31s 0.4 ± 0.1 Jy J161820+334837 0.2 10−10 10−8 10−17

17h41m18s ± 20s 0.5 ± 0.1 Jy J174128+333221 0.4 10−9 10−7 10−12

J174109+330538 0.1

J174111+330623 0.1

18h12m43s ± 35s 0.3 ± 0.1 Jy J181252+333702 0.4 10−8 10−6 10−10

J181322+333132 0.1

18h15m55s ± 15s 0.7 ± 0.1 Jy J181600+332744 0.5 10−19 10−17 10−43

18h44m40s ± 18s 0.6 ± 0.1 Jy J184440+331614 0.6 10−18 10−16 10−40

(2) 19h03m48s ± 11s 1.0 ± 0.1 Jy J190348+331920 0.8 10−32 10−29 10−75

J190308+334040 0.1

(3) 19h24m12s ± 04s 3.1 ± 0.1 Jy J192417+332929 3.1 10−232 10−230 10−298

J192345+332219 0.1

21h38m16s ± 24s 0.4 ± 0.1 Jy J213856+331415 0.2 10−8 10−6 10−10

J213814+332616 0.1

J213827+330115 0.1

J213813+330406 0.1

21h46m58s ± 28s 0.3 ± 0.1 Jy J214730+325902 0.2 10−7 10−5 10−8

J214620+333146 0.1

J214626+333240 0.1

J214626+333344 0.1

22h06m32s ± 20s 0.4 ± 0.1 Jy J220634+333142 0.4 10−9 10−7 10−14

J220719+333012 0.3

J220644+331555 0.3

J220418+331519 0.0

22h09m53s ± 13s 0.8 ± 0.1 Jy J220955+331408 0.6 10−19 10−17 10−43

J220931+334026 0.1
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Table 4—Continued

Tag Detected fringes Counterparts FDR

αobs Fobs Name Fexp C1 C1 & C2 C1 & C2′

J220953+333008 0.1

22h27m59s ± 24s 0.4 ± 0.1 Jy J222805+333138 0.4 10−9 10−7 10−14

22h42m00s ± 12s 0.8 ± 0.1 Jy J224127+333713 0.4 10−32 10−30 10−76

J224250+332153 0.2

23h27m26s ± 19s 0.4 ± 0.1 Jy J232731+331805 0.3 10−6 10−4 10−6

J232802+332829 0.1

J232813+330802 0.1

a 23h51m56s ± 19s 0.3 ± 0.1 Jy J235220+330403 0.5 10−9 10−7 10−13

a 23h54m17s ± 20s 0.5 ± 0.1 Jy J235411+325511 0.4 10−11 10−9 10−19

00h10m20s ± 23s 0.4 ± 0.1 Jy J001025+333009 0.3 10−9 10−7 10−12

J001025+332901 0.2

J001003+340315 0.1

00h26m07s ± 25s 0.3 ± 0.1 Jy J002543+331648 0.2 10−6 10−4 10−6

J002757+333531 0.1

J002653+325840 0.1

(6) 00h40m54s ± 04s 2.8 ± 0.1 Jy J004055+331007 3.2 10−174 10−172 10−256

J003938+335716 0.1

a 01h09m48s ± 15s 0.6 ± 0.1 Jy J011112+330706 0.1 10−16 10−14 10−35

(7) 01h26m43s ± 03s 4.4 ± 0.1 Jy J012644+331309 3.7 10−300 10−300 10−300

J012811+332432 0.3

J012753+330533 0.1

(8) 01h37m41s ± 01s 14.0 ± 0.2 Jy J013741+330935 14.0 10−300 10−300 10−300

Note. — Same as Table 3, but for the observation result of the nine epochs. The tagged fringes are also detected

at a single epoch observation, as shown in Figure 5 and Table 3. The listed counterparts are the NVSS sources that

are expected to be received with a flux density greater than a noise level of 0.1 Jy by the telescope sensitivity.

aThese fringes are strongly diffused and confused, leading to errors in the position and flux density.
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Table 5. Notation of distributions.

Notation Probability density function

N(µ, σ2) p(x) = (1/
√

2πσ2 )e−(x−µ)2/(2σ2)

Rayleigh(σ) p(x) = (x/σ2) e−x2/(2σ2)

Exp(1/(2σ2)) p(x) = (1/(2σ2)) e−x/(2σ2)


