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Abstract: Tissue characterization of coronary artery plaque plays an important role in diagnosing 
the acute coronary artery syndrome. This paper presents a similarity-based method for tissue 
characterization, combined with a moving window computational strategy. At every computation 
step the dissimilarity degree between two representative models is calculated and estimated.  
   Two types of representative models are presented and discussed in the paper, namely the 
Histogram-based models that do not need learning and Key Point-based models that need 
unsupervised learning. This leads to two different tissue characterization methods that are 
explained and analysed in details in the paper. Simulations results by using data from two 
cross-sections of a coronary artery show that the Key Point model-based method achieves slightly 
better tissue characterization.      
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1. Introduction and Problem Statement 
 

   Tissue characterization of the plaque that has 
gradually built in the coronary artery is very important 
and necessary step for a correct diagnosis of the acute 
coronary syndrome (ACS) with a possible treatment. 
Here the Intravascular Ultrasound (IVUS) method has 
been for a long time the most often used method for 
diagnosis of ACS.  
   Many experiments, deep research and analysis have 
been done until now [1] by using and proposing different 
classification techniques and algorithms. However, there 
is still not an “ideal” method for a reliable and correct 
tissue characterization. In this paper we propose a 
similarity-based tissue characterization method with 
moving window computation strategy and evaluate the 
results obtained.  
   The IVUS method is a tomographic imaging 
technology, in which medical doctors use a gray-scale 
radial-shape B-mode image for observation and analysis 
of the IVUS data. This image corresponds to one 
cross-section of the coronary artery with a given 
depth-range in all 256 directions (angles) of rotation of 
the IVUS probe.  
   However, in this paper, we use the more classical 
rectangular type of representation with axis X denoting 
all angles (directions) between 0 and 255, and the 
ordinate Y denoting the depth of the measurement (the 
distance between the probe and the current measured 
signal).  
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   As initial information we use the raw (actual) 
reflected RF signal with a simple preprocessing, as 
shown in Fig. 1, namely taking the absolute vale of the 
RF signal after subtracting the central (stationary) value 
of 2000 from it.  
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Fig. 1. The Raw and the Preprocessed RF Signal. 

   In our paper, one cross-section of the coronary artery 
is represented by a large number of data in the 
rectangular area X-Y (Directions-Depths) as shown in Fig. 
2. Then the problem is to utilize all these data in the best 
way, in order to properly find (characterize) the regions 
of Lipid tissue and those of Fibrous tissue in the artery 
plaque. From a research view point this is a typical 
classification problem. First of all, some proper training 
data are needed before performing the actual 
classification.  
   For such purpose we have used the results from the 
true classification, made by the doctor through 
microscopic analysis, which is shown in Fig. 2 as two 
regions of interest (ROI), namely the Lipid ROI and 
Fibrous ROI. Two other regions, denoted as Region1 and 
Region2 are also shown in the figure as examples of 
unknown regions that have to be classified as belonging 
(or not belonging) to either Lipid or Fibrous tissue.    
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Fig. 2. One Cross-Section with two Regions of 

Interest (ROI) and two Arbitrary Chosen Regions. 
 
2. The Similarity-Based Moving Window 

Method for Tissue Characterization 
 

In this paper, we propose the moving window method 
for classification, based on Similarity Analysis. The 
general idea of the Similarity analysis was proposed in 
[2] and has been successfully used for classification of 
images and machine operating modes. Here we propose 
its extension version to a moving window method, which 
is suitable for solving the problem of tissue 
characterization. It can be summarized briefly as follows: 

Preparation Step: The whole examination area from a 
given cross section is divided into a grid with fixed 
number of windows Nw having an equal predefined size: 
Angle_Range x Depth_Range, as shown in Fig. 3. For all 
further experiments in this paper, a constant window size 
of 10 x 40 has been used, which means that 400 data 
from the reflected RF signal can be extracted from each 
window;   

Step 0: The available data from a given ROI (e.g. 
Lipid ROI or Fibrous ROI) are used for creating the 
respective Representative Model RMo; Set i = 1; 

Step 1: Extract all data in the current i-th window 
from the grid of the examination area;  

Step 2: Use the extracted data from this window to 
create the respective Representative Model RMi; 

Step 3: Calculate the Difference (the Dissimilarity 
Degree) DS between the two models, as a real value, 
bounded between 0 and 1, namely:  

0( , ) [0,1]iDS RM RM ∈            (1) 

Step 4 (Decision Step with a given Threshold Th):  
  

0I f ( , ) TheniDS RM RM Th≤  
the i-th window is characterized as Similar to the ROI 
that has been used for creating the RM0;  
    Otherwise  this window is not characterized.   
Step 5: Select the next window i i 1← +  from the grid. 

I f Then 1 Otherwise .wi N Go To Step Stop≤   

   It is easy to notice that the most important part of the 
above algorithm is the type of the Representative Models 
used in Step 0 and Step 2, as well as the method to 
calculate the Dissimilarity Degree DS in (1). The next 
two sections give two different solutions to these 
problems.  
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Fig. 3. An Illustration of the Moving Window 

Method for Tissue Characterization   
 

3. Histogram-Based Similarity Analysis 
for Tissue Characterization 

   In this Section we propose the use of normalized 
Histograms as Representative Models, created for a given 
ROI and for each of the windows in the grid from Fig. 3. 
Let us denote with M the data number in one ROI or in a 
given window. Then for a pre-selected number of N 
subsequent Intervals with equal range (width), the 
Histogram is calculated as follows:   
       

1
/ [0,1]; 1

N

i i i
i

h m N h
=

= ∈ =∑          (2) 

 where:    

1
[0, ];

N

i i
i

m M m M
=

∈ =∑          (3) 

   Here , 1,2,...,im i N=  denote the number of data 
points that fall into the i-th Interval The width of each 
interval is fixed to 20 in all further calculations.  
   The next Fig. 4 shows the histogram of the Lipid ROI 
(containing 885 data) and the histogram of the Fibrous 
ROI (containing 2896 data), calculated by (2) and (3). 
Their difference can be easily noticed and such a 
significant difference is definitely helpful for the proper 
tissue characterization.    
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Fig. 4.  The Histograms of the two Regions of 

Interests: Lipid ROI and Fibrous ROI from Fig. 2. 

   Fig. 5. depicts two other Histograms of the arbitrary 
chosen regions Region1 and Region2 from Fig.1. Each of 
those regions contains 50 x 40 = 2000 data. It is easy to 
notice that they look quite different from each other and 
are also different from the histograms in Fig. 4.   

Biomedical Fuzzy Systems Association (BMFSA2011)

-258-



 
 

 

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25
Histograms of two Different Regions 

Region2

Region1

RF Signal Intensity 

h

 
Fig. 5.  Histograms of two Arbitrary Chosen Regions, 

shown in Fig. 2.  

Then the Dissimilarity Degree DS from (1) uses now the 
Histograms Ho and Hi as Representative Models and is 
calculated as follows:  

0
0

1

( , ) 2 [0,1]
N

i
i j j

j

DS H H h h
=

= − ∈∑        (4) 

The extreme case of “not similar at all” histograms is: DS 
= 1where the two histograms do not overlap.      
 

4. Key Point Model-Based Similarity 
Analysis for Tissue Characterization 

 

    The use of Histograms as Representative Models 
has the disadvantage that there are “no tuning 
parameters” in this approach, which could be helpful to 
change (amplify or attenuate) the dissimilarity degree (4), 
in order to improve the characterization accuracy. 
Therefore in this Section we propose another type of 
Representative Models called Key Point (KP) models. 
   The proposed KP models here are a kind of 
modification of the general idea in [2], where all 
available data M are represented (compressed) by a small 
number of K neurons (called also Key Points).. This is 
usually done by a competitive learning algorithm, such as 
the popular Neural Gas or some of its modifications.  
   In this paper we use a special modification of the 
basic competitive learning algorithm, called “frequency 
sensitive competitive learning” FSCL [3]. The idea of 
FSCL is to gradually suppress the winner-neuron that has 
won “too frequently” during the learning. Because of 
space limitations, the computational details are omitted in 
this paper, but can be found in [3].  
   After the learning is completed, a post-processing is 
performed in order to discover important parameters of 
the extracted Key Points (neurons), as follows:  
- Relative Weights of the neurons: 

[0,1]; ,...i iw m M i 1,2 K= ∈ =         (5) 
 Here im denotes the number of all data points that have 
a minimal Euclidean distance to the i-the neuron.  
- Center-of-Gravity (CG) of the Key Point Model. 
This is essentially the Weighted Average of the locations 

, ,...,iR i 1,2 K= of all K neurons in the KP Model: 

     

1

K

i i
i

CG R w
=

= ∑                       (6) 

   This parameter represents an important characteristic 
of all M data, namely the central location of the data set 
in one-dimensional space of the RF Signal Intensity. 
- Average Distance of the subset of all data points im  
to their nearest i-th neuron:   

1

; ,...
im

i
i j

j

AD D i 1,2 K
=

= =∑          (7) 

Here i
jD  denotes the Euclidean distance between the 

j-th data point and the nearest i-th neuron to it.    
- Average Spread AS of the Key Point Model. It is 
calculated as the weighted average distance of all data 
points to their respective nearest neurons:  

   

1

K

i i
i

AS AD w
=

= ∑                    (8) 

   This parameter reveals another important 
characteristic of the data set of M points, which is similar 
to the data density distribution. A large value of AS 
corresponds to a more sparse data set and a small value 
of AS is an indication for a dense data set.    
   Among all the parameters of the KP model, further 
on we use the Center-of-Gravity CG (6) and the Average 
Spread AS (8) as two most representative parameters.   
   The following Fig. 6. shows the parameters of the KP 
models for Fibrous ROI and for Lipid ROI with the 
assumption of K = 5 neurons. These models have been 
trained with a linearly decreasing Learning Rate of 0.9 
for 4000 iterations. The learning time was within 5 
seconds for each of the models. The learning of the KP 
models for the windows was much faster, because of the 
small number of data (just 400) in each window.     
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Fig. 6. Parameters of the KP Models for the Fibrous 

ROI and Lipid ROI, used for Tissue Charcterization.  

   Calculation of the Dissimilarity Degree DS (1) could 
be done in several different ways, but we propose here 
the following calculation of DS for the models 0RM  and 
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iRM , which has a clear physical meaning:  
2 2

0 0
2 2

( ) ( )

2 2.
i i

C S

CG CG AS AS

DS 1 exp expσ σ

− −
− −

= −    (9) 

   Here Cσ  and Sσ  denote the predefined width for 
the CG and width for the AS, respectively. Smaller values 
of Cσ  or Sσ  mean that we have put a bigger 
importance (bigger sensitivity) to the DS. 
   The calculated parameters of the KP models for 
Fibrous ROI and Lipid ROI are as follows:  
   ; ;Fibrous FibrousCG 43.50 AS 5.95= =    
   ; ;Lipid LipidCG 45.41 AS 3.37= =  

   It is seen that both CGs are quite closed to each other, 
but both ASs are much more apart. Therefore we have put 
more importance to the AS parameter, in order to achieve 
a better tissue characterization, by setting the following 
values for the widths: ; ;C S4.0 0.5σ σ= = These 
parameters serve as tuning parameters of the proposed 
method for KP Model-based similarity analysis.   

5. Experimental Results and Analysis  
   The performance of the above proposed two methods 
for tissue classification has been tested and compared on 
a new data set that represents another cross-section in the 
same blood vessel (and the same patient). This test data 
set was not used for training the Representative Models 
(the Histograms and KP models) of the Fibrous and Lipid 
ROI, but the “true solution”, i.e. the actual Fibrous and 
Lipid ROI have been known and used for confirmation of 
the results. The classification results from both methods 
are shown in Fig. 7.and Fig. 8.  
   It is easy to notice that none of the methods can 
perfectly detect the true ROI, but still the KP 
Model-based method from Fig. 8. is the better one, 
because it produces less number of misclassifications for 
the same assumed threshold of 0.15.    

5. Conclusions and Future Work 
   In this paper we have proposed a general 
Similarity-based method for tissue characterization, 
which uses the moving window computational strategy 
for comparing the representative model of a given ROI 
with the respective models of each window in the 
examination grid. Two kinds of representative models 
have been proposed in the paper, namely the 
Histogram-based and the Key Point-based models.  
   The results show that the KP model-based similarity 
produces more plausible classification results. The main 
reason for this is that the KP models can be tuned with 
different number of neurons and also different possible 
widths for calculating the DS in (9) can be applied.  
   The further research is aimed at improving the 
classification accuracy by automatic selection of the 
widths (9), as well as the window sizes and the threshold 
for classification. 
This work was supported by the Grant-in-Aid for Scientific 
Research (B) of the JSPS under the Contract No. 23300086.    

a) 0 40 80 120 160 200 240
400
360
320
280
240
200
160
120

80
40

0
Test Data Set;  Threshold Th = 0.15

Fibrous ROI

Histogram Based Characterization

 

b) 0 40 80 120 160 200 240
400
360
320
280
240
200
160
120

80
40

0
Test Data Set; Threshold: Th = 0.15

Histogram Based Characterization

Lipid ROI

 

Fig. 7. Results from the Tissue Characterization of 
Unknown (Test) Data Set by use of Histograms. 
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Fig. 8. Results from the Tissue Characterization of 

Unknown (Test) Data Set by use of KP Models.   
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