EQUIVARIANT SCHUBERT CALCULUS OF COXETER GROUPS

SHIZUO KAJI

Abstract

We consider an equivariant extension for Hiller's Schubert calculus on the coinvariant ring of a finite Coxeter group.

1. Introduction

Throughout this note, all the cohomology ring is with the real coefficients unless otherwise stated. The primary goal of Schubert calculus is to describe the cohomology ring structure of the flag variety with respect to a distinguished basis consisting of the Schubert classes. Among many strategies for this subject is to reformulate the topological problem in an algebraic fashion.
Let G be a connected complex Lie group, B be its Borel sub-group. Then the homogeneous space G / B is called the flag variety. A family of cohomology classes indexed by the Weyl group W of G called the Schubert classes form a basis for the cohomology $H^{*}(G / B)$. On the other hand, $H^{*}(G / B)$ can be identified with the coinvariant ring of W, i.e. the polynomial ring divided by the ideal generated by the invariant polynomials of W. The relation between those two presentation of $H^{*}(G / B)$ was studied independently by [2] and [7]. Based on it, Hiller ([10]) rephrased and extended Schubert calculus purely in terms of the coinvariant ring of any finite Coxeter group including non-crystallographic ones, by defining a set of basis polynomials in the coinvariant ring corresponding to the Schubert classes.
We can impose another structure on G / B : it admits the canonical action of the maximal torus T and we can consider the equivariant cohomology with respect to this action. In this note, we investigate the equivariant cohomology $H_{T}^{*}(G / B)$ and develop an equivariant version of Hiller's Schubert calculus for the double coinvariant ring of a finite Coxeter group W. The main result is the construction of a Hiller-type double schubert polynomial given in a uniform manner for any finite Coxeter groups (see Definition 4.3).

The organization of this note is as follows: In $\S 2$ and $\S 3$, we recall basic notions of Schubert calculus. In $\S 4$, we define the double coinvariant ring for a finite Coxeter group and its equivariant Schubert classes. Using this definition, we prove Chevalley rule in §5, and a symmetry property in §6. We observe a relation between ordinary and equivariant setting in §7. §8 is devoted to examples.

I would like to thank the refree for the valuable comments.

[^0]
2. Coxeter groups

Here we collect some well-known facts on Coxeter groups, which are necessary in the later sections. Readers refer to [6] or [11] for detail.

A finite Coxeter group W is a generalization to a Weyl group of a Lie group. It is defined by generators and relations as:

$$
W=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}=e\right\rangle
$$

where $m_{i i}=1$ and $2 \leq m_{i j}<\infty$. The number of generators n is called the rank of W. The complete classification for irreducible Coxeter groups is known and W is one of the
(1) crystallographic groups $A_{n}, B_{n}, C_{n}, D_{n}, G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$, which correspond to the Weyl groups of Lie groups, or
(2) non-crystallographic groups $I_{2}(n), H_{3}, H_{4}$.

A finite Coxeter group of rank n coincides with a finite reflection group on \mathbb{R}^{n} : each generator s_{i} can be regarded as the reflection through the hyperplane defined by $\alpha_{i}=0$, where $\alpha_{i} \in\left(\mathbb{R}^{n}\right)^{*}$ is called the simple root. $\beta \in\left(\mathbb{R}^{n}\right)^{*}$ is called the root if $\beta=w\left(\alpha_{i}\right)$ for some simple root α_{i} and $w \in W$. If a root β is a linear combination of simple roots with non-negative coefficients, it is called a positive root. The reflection through the hyperplane defined by $\beta=0$ for a positive root β is denoted by s_{β}, i.e. $s_{\beta}=w s_{i} w^{-1} \in W$.

We fix this standard representation on \mathbb{R}^{n} for each W and the action of W on the symmetric algebra over $\left(\mathbb{R}^{n}\right)^{*}$, which we denote by $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$, is defined by extending the representation. Namely, we define $w(f(t))=f\left(w^{-1}(t)\right)$ for $f(t) \in \mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ and $w \in W$.

The following definitions are essential for our purpose:
Definition 2.1 (see $[6,11])$. (1) The length $l(w) \in \mathbb{Z}_{\geq 0}$ for $w \in W$ is the minimal length of the presentation of w by a product of s_{1}, \ldots, s_{n}, which is called a reduced word for w.
(2) There is a unique element $w_{0} \in W$ of the maximum length called the longest element.
(3) We denote $w<_{\beta} v$ iff $w=s_{\beta} v$ and $l(w)<l(v)$.
(4) The (strong) Bruhat order $w \leq v$ is the closure relation of $w<_{\beta} v$.

The following Lemma on the Bruhat order is used frequently in our discussion.
Lemma 2.2 (Exchange condition, see [6,11]). For any reduced word $v=s_{i_{1}} \cdots s_{i_{(v)}}, w<_{\beta} v$ iff $w=s_{i_{1}} \cdots s_{i_{k-1}} s_{i_{k+1}} \cdots s_{i_{(v)}}$ and $\beta=s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)$ for some $1 \leq k \leq l(v)$.

In particular, for a fixed $v \in W$, the number of positive roots β such that $w<_{\beta} v$ for some $w \in W$ is equal to $l(v)$.

3. Schubert calculus

In this section, we briefly recall the result by Berstein-Gelfand-Gelfand ([2]), which studys the ordinary cohomology of flag varieties. Let G be a connected complex Lie group of rank n, B be its Borel sub-group. Then the (right quotient) homogeneous space G / B is known to be a smooth projective variety with the T-action induced by the left multiplication and called the (generalized) flag variety. Denote by Π^{+}the set of positive roots and by $\left\{\alpha_{i} \mid 1 \leq i \leq n\right\} \subset \Pi^{+}$ the set of simple roots. Then the Weyl group W of G is generated by the simple reflections s_{1}, \ldots, s_{n} corresponding to $\alpha_{1}, \ldots, \alpha_{n}$.

Let B_{-}be the Borel sub-group opposite to B so that $B \cap B_{-}$is the maximal algebraic torus. The Bruhat decomposition (see for example [4]) $G=\coprod_{w \in W} B_{-} w B$ induces a left T-stable cell decomposition $G / B=\coprod_{w \in W} B_{-} w B / B$. The class Z_{w} corresponding to the (dual of the) cell $B_{-} w B / B$ is called the Schubert class and having degree $2 l(w)$. Since the cell decomposition involves even cells only, we have

$$
H^{*}(G / B)=\bigoplus_{w \in W}\left\langle Z_{w}\right\rangle .
$$

On the other hand, by the classical theorem by Borel [5], the cohomology ring has the form of so-called coinvariant ring $\mathbb{R}_{W}[x]$ of W :

$$
H^{*}(G / B)=\mathbb{R}_{W}[x]:=\frac{\mathbb{R}[x]}{\left(\mathbb{R}^{+}[x]^{W}\right)},
$$

where $\mathbb{R}[x]$ is the polynomial ring $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $\left(\mathbb{R}^{+}[x]^{W}\right)$ is the ideal generated by the positive degree invariant polynomials. Here we regard $\mathbb{R}[x] \cong H^{*}(B T)$ as the symmetric algebra over the dual Lie algebra t^{*}, and the generators have degree 2 .

In the fundamental work by Berstein-Gelfand-Gelfand ([2]), the relationship between the two presentations of $H^{*}(G / B)$ are revealed using the divided difference operators.

Definition 3.1 ([2]). For a simple root α_{i}, define $\Delta_{i}: \mathbb{R}_{W}[x] \rightarrow \mathbb{R}_{W}[x]$ of degree -2 as

$$
\Delta_{i} f(x)=\frac{f(x)-f\left(s_{i}(x)\right)}{-\alpha_{i}(x)}
$$

For a reduced word $w=s_{i_{1}} \cdots s_{i_{k}} \in W$, define

$$
\Delta_{w}=\Delta_{i_{1}} \circ \cdots \circ \Delta_{i_{k}} .
$$

Then it is independent of the choice of a reduced word for $w \in W$.
Theorem 3.2 ([2]). (1) A polynomial $f \in R_{W}[x]$ represents the cohomology class

$$
\sum_{w \in W} \Delta_{w}(f)(0) Z_{w} .
$$

(2) A polynomial representative $\sigma_{w}(x)$ of Z_{w} is obtained by

$$
\sigma_{w}(x)= \begin{cases}\frac{(-1)^{|W|}}{|W|} \prod_{\beta \in \Pi^{+}} \beta(x) & \left(w=w_{0}\right) \\ \Delta_{w^{-1} w_{0}} \sigma_{w_{0}}(x) & \left(w \neq w_{0}\right)\end{cases}
$$

The main problem in Schubert calculus is to give an algorithm for expressing the cup product of two Schubert classes by a linear combination of Schubert classes

$$
Z_{u} \cup Z_{v}=\sum_{w \in W} c_{c v}^{w} Z_{w}, \quad c_{u v}^{w} \in \mathbb{Z}
$$

where $c_{u v}^{w}$ is called the structure constant. By the previous Theorem, this problem has an equivalent in the coinvariant ring setting. This point of view was pursued by Hiller ([10]) as follows:

Definition 3.3 ([10]). Let W be a finite Coxeter group and $\mathbb{R}_{W}[x]$ be its coinvariant ring. Define Schubert classes in $\mathbb{R}_{W}[x]$ as

$$
\sigma_{w}(x)= \begin{cases}\frac{(-1)^{|W|}}{|W|} \prod_{\beta \in \Pi^{+}} \beta & \left(w=w_{0}\right) \\ \Delta_{w^{-1} w_{0}} \sigma_{w_{0}}(x) & \left(w \neq w_{0}\right)\end{cases}
$$

Schubert classes form a vector space basis for $\mathbb{R}_{W}[x]$, so now the problem of structure constants is translated into an algebraic one, that is, to find an algorithm for $c_{u v}^{w}$ in the following equation

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w \in W} c_{u v}^{w} \sigma_{w}, \quad c_{u v}^{w} \in \mathbb{Z}
$$

Hiller showed, for example, the Chevalley rule in this setting.

4. Equivariant Schubert calculus

To generalize Hiller's Schubert calculus, what we concern is the (Borel) T-equivariant cohomology $H_{T}^{*}(G / B)$ with respect to the T-action induced by the left multiplication on G / B. (For a more detailed treatment in the topological aspect of our argument, readers refer to [12].) We consider $H_{T}^{*}(G / B)$ as an algebra over $H_{T}^{*}(p t)=\mathbb{R}[t]=\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ by the equivariant map $G / B \rightarrow p t$. Just as in the case of ordinary cohomology, $H_{T}^{*}(G / B)$ is a free $\mathbb{R}[t]$-module generated by Schubert classes, i.e.

$$
H_{T}^{*}(G / B) \cong \bigoplus_{w \in W} \mathbb{R}\left[t_{1}, \ldots, t_{n}\right]\left\langle Z_{w}\right\rangle
$$

On the other hand, the following description for the equivariant cohomology is well-known:
Proposition 4.1. As $\mathbb{R}[t]$-algebras,

$$
H_{T}^{*}(G / B) \cong \frac{\mathbb{R}\left[t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}\right]}{I_{W}}
$$

where I_{W} is the ideal generated by $f\left(t_{1}, \ldots, t_{r}\right)-f\left(x_{1}, \ldots, x_{r}\right)$ for all W-invariant polynomials f of positive degree.
Proof. The Borel construction associated to the T-action on G / B fits in the following pull-back diagram:

The Eilenberg-Moore spectral sequence converges to $H_{T}^{*}(G / B) \cong H^{*}\left(E T \times_{T} G / B\right)$ with the $E_{2^{-}}$ term $\operatorname{Tor}_{H^{*}(B G)}\left(H^{*}(B T), H^{*}(B T)\right)$. Recall from [5] that $H^{*}(B G) \cong H^{*}(B T)^{W}$. Since $H^{*}(B T)$ is free over $H^{*}(B G)$, there are only non-trivial entries in the 0 -th column and so $E_{2} \cong H_{T}^{*}(G / B)$ as $H^{*}(B T)$-algebras. Here $E_{2} \cong \operatorname{Tor}_{H^{*}(B G)}\left(H^{*}(B T), H^{*}(B T)\right)$ is just the tensor product $H^{*}(B T) \otimes_{H^{*}(B G)}$ $H^{*}(B T)$.

We call $\frac{\mathbb{R}\left[t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}\right]}{I_{W}}$ the double coinvariant ring of W and denote it by $\mathbb{R}_{W}[t ; x]$.
The equivariant cohomology $H_{T}^{*}(G / B)$ has yet another description by GKM-theory [9]. The fixed points set of the T-action is $\{w B / B \mid w \in W\}$ so we have the localization map

$$
H_{T}^{*}(G / B) \xrightarrow{\oplus_{w \in W}^{i_{w}^{*}}} \bigoplus_{w \in W} H_{T}^{*}(w B / B) \cong \bigoplus_{w \in W} H^{*}(B T) \cong \bigoplus_{w \in W} \mathbb{R}[t] .
$$

It is known that this is an injection and the image is described by a certain combinatorial condition called GKM condition. The relation between these three descriptions are summarized as follows.

Proposition 4.2 ([15]). (1) For a Schubert class $Z_{w} \in H_{T}^{*}(G / B)$,

$$
i_{v}^{*}\left(Z_{w}\right)= \begin{cases}0 & (l(v) \leq l(w) \text { and } v \neq w) \\ \prod_{\beta \in \Pi^{+}, \exists v<\beta w} \beta & (v=w) .\end{cases}
$$

(2) For $f(t ; x) \in \mathbb{R}_{W}[t ; x], i_{w}^{*}(f(t ; x))=f\left(t ; w^{-1}(x)\right)$.

Now just as Hiller did, we bring equivariant Schubert calculus into the double coinvariant ring setting for any finite Coxeter group W. Using the divided difference operators extended by $\mathbb{R}[t]$-linearity, we can define the Schubert classes in $\mathbb{R}_{W}[t ; x]$.

Definition 4.3. Let W be a finite Coxeter group. For $w \in W$, we define the partition set of w as

$$
P_{i}(w)=\left\{\left(w_{1}, w_{2}, \ldots, w_{i}\right) \in W^{i} \mid w_{1} \cdot w_{2} \cdots w_{i}=w, l\left(w_{k}\right)>0 \forall k, l\left(w_{1}\right)+\cdots+l\left(w_{i}\right)=l(w)\right\}
$$

Then the Schubert classes in $\mathbb{R}_{W}[t ; x]$ are defined to be

$$
\Im_{w_{0}}(t ; x)=\sigma_{w_{0}}(x)+\sum_{v \in W}^{l\left(w_{0} v^{-1}\right)} \sum_{i=1} \sum_{\left(w_{1}, w_{2}, \ldots, w_{i}\right) \in P_{i}\left(w_{0} v^{-1}\right)}(-1)^{i} \sigma_{w_{1}}(t) \sigma_{w_{2}}(t) \cdots \sigma_{w_{i}}(t) \sigma_{v}(x) \in \mathbb{R}_{W}(t ; x),
$$

and

$$
\Im_{w}(t ; x)=\Delta_{w^{-1} w_{0}} \Im_{w_{0}}(x)=\sigma_{w}(x)+\sum_{v<w} \sum_{i=1}^{l\left(w v^{-1}\right)} \sum_{\left(w_{1}, w_{2}, \ldots, w_{i}\right) \in P_{i}\left(w v^{-1}\right)}(-1)^{i} \sigma_{w_{1}}(t) \sigma_{w_{2}}(t) \cdots \sigma_{w_{i}}(t) \sigma_{v}(x),
$$

where σ_{w} is Hiller's Schubert class given in Definition 3.3.
Notice that $\Im_{w}(t ; t)=\left\{\begin{array}{ll}0 & (w \neq e) \\ 1 & (w=e)\end{array}\right.$ since $\sigma_{e}(x)=1$ and we can rewrite

$$
\begin{equation*}
\Im_{w}(t ; x)=\sigma_{w}(x)-\sum_{i=1}^{l(w)} \sum_{\left(w_{1}, w_{2}, \ldots, w_{i}\right) \in P_{i}(w)}(-1)^{i} \sigma_{w_{1}}(t) \sigma_{w_{2}}(t) \cdots \sigma_{w_{i-1}}(t)\left(\sigma_{w_{i}}(t)-\sigma_{w_{i}}(x)\right) \tag{4.2}
\end{equation*}
$$

And so by definition, $\left(\Delta_{v} \Xi_{w}\right)(t ; t)=\left\{\begin{array}{ll}0 & (v \neq w) \\ 1 & (v=w)\end{array}\right.$. This is the key property of the definition.

Remark 4.4. A representative for an element in $\mathbb{R}_{W}[t ; x]$ is determined up to the ideal I_{W}. We can choose another representative by replacing Hiller's Schubert class σ_{w} by other Schubert class. For example, when W is of type A_{n-1}, we can take Lascoux and Schützenberger's Schubert polynomial

$$
\sigma_{w}^{\prime}(x)=\Delta_{w^{-1} w_{0}} x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1} .
$$

And then

$$
\begin{aligned}
\varsigma_{[121]}(t ; x) & =\sigma_{[121]}(x)-\sigma_{[1]}(t) \sigma_{[21]}(x)-\sigma_{[2]}(t) \sigma_{[12]}(x) \\
& +\left(\sigma_{[1]}(t) \sigma_{[2]}(t)-\sigma_{[12]}(t)\right) \sigma_{[1]}(x)+\left(\sigma_{[2]}(t) \sigma_{[1]}(t)-\sigma_{[21]}(t)\right) \sigma_{[2]}(x) \\
& +\left(-\sigma_{[121]}(t)+\sigma_{[1]}(t) \sigma_{[21]}(t)+\sigma_{[2]}(t) \sigma_{[12]}(t)\right. \\
& +\sigma_{[12]}(t) \sigma_{[1]]}(t)+\sigma_{[21]}(t) \sigma_{[2]}(t) \\
& \left.-\sigma_{[2]}(t) \sigma_{[1]}(t) \sigma_{[2]}(t)-\sigma_{[1]}(t) \sigma_{[2]}(t) \sigma_{[1]}(t)\right) \\
& =\left(x_{1}-t_{1}\right)\left(x_{1}-t_{2}\right)\left(x_{2}-t_{1}\right)
\end{aligned}
$$

These Schubert classes form a free $\mathbb{R}[t]$-basis for $\mathbb{R}_{W}[t ; x]$.

Theorem 4.5.

$$
\mathbb{R}_{W}[t ; x] \cong \bigoplus_{w \in W} \mathbb{R}\left[t_{1}, \ldots, t_{n}\right]\left\langle\Im_{w}(t ; x)\right\rangle
$$

Proof. Note that $\mathbb{R}[t]$ is a local ring whose maximal ideal is $\mathbb{R}[t]^{+}$with $\mathbb{R}[t] / \mathbb{R}[t]^{+}=\mathbb{R}$ and $\left.\mathbb{R}_{W}[t ; x] / \mathbb{R}^{[t]}\right]^{+} \mathbb{R}_{W}[t ; x]=\mathbb{R}_{W}[x]$. We apply the following form of Nakayama's Lemma [1, Prop. 2.8]:
$f_{1}(t ; x), \ldots, f_{N}(t ; x)$ generate $\mathbb{R}_{W}[t ; x]$ over $\mathbb{R}[t] \Leftrightarrow f_{1}(0 ; x), \ldots, f_{N}(0 ; x)$ generate $\mathbb{R}_{W}[x]$ over \mathbb{R}.
Since $\Im_{w}(0 ; x)=\sigma_{w}(x),\left\{\Im_{w}(t ; x) \mid w \in W\right\}$ generate $\mathbb{R}_{W}[t ; x]$ over $\mathbb{R}[t]$.
We now show that $\left\{\mathfrak{S}_{w}(t ; x) \mid w \in W\right\}$ are free over $\mathbb{R}[t]$. Assume that $\sum_{v \in W} c_{v}(t) \Im_{v}(t ; x)=0$. For any $w \in W$, applying Δ_{w} and evaluating at $x=t$, we obtain

$$
0=\sum_{v \in W} c_{v}(t) \cdot\left(\Delta_{w} \Im_{v}\right)(t ; t)=c_{w}(t)
$$

In fact, there is a formula to express any $f(t ; x) \in \mathbb{R}_{W}[t ; x]$ as a $\mathbb{R}[t]$-linear combination of Schubert classes:

Proposition 4.6. For $f(t ; x) \in \mathbb{R}_{W}[t ; x]$,

$$
f(t ; x)=\sum_{w \in W}\left(\Delta_{w}(f)(t ; t) \cdot \Im_{w}(t ; x)\right)
$$

Proof. Suppose that $f(t ; x)=\sum_{v \in W} c_{v}(t) \Im_{v}(t ; x)$. Then $\Delta_{w}(f)(t ; x)=\sum_{v \in W} c_{v}(t) \cdot \Delta_{w}\left(\Im_{v}\right)(t ; x)$.
Since $\left(\Delta_{w} \widetilde{\Xi}_{v}\right)(t ; t)=\left\{\begin{array}{ll}0 & (v \neq w) \\ 1 & (v=w)\end{array}\right.$, we have $\Delta_{w}(f)(t ; t)=c_{w}(t)$.
To show some properties of $\mathbb{R}_{W}[t ; x]$, it's convenient to recall the definition of GKM-ring:

Definition 4.7 ([9]). A subring of $\bigoplus_{w \in W} \mathbb{R}[t]$ called the GKM-ring for W is defined as:

$$
F_{W}:=\left\{\bigoplus_{w \in W} h_{w}(t) \in \bigoplus_{w \in W} \mathbb{R}[t] \mid h_{w}(t)-h_{v}(t) \text { is divisible by } \beta(t) \in \Pi^{+} \text {when } w<_{\beta} v\right\} .
$$

A $\mathbb{R}[t]$-module map called the localization map $\bigoplus_{w \in W} i_{w}^{*}: \mathbb{R}_{W}[t ; x] \rightarrow F_{W}$ is defined as $i_{w}^{*}(f(t ; x))=f\left(t ; w^{-1}(t)\right)$. Note that this map is well-defined because $i_{w}^{*}(f(t ; x))-i_{s_{\beta w}}^{*}(f(t ; x))=$ $f\left(t ; w^{-1}(t)\right)-f\left(t ; w^{-1} s_{\beta}(t)\right)$ is divisible by $\beta(t)$.

Just as the cohomological localization map, it is injective.
Lemma 4.8. $\bigoplus_{w \in W} i_{w}^{*}: \mathbb{R}_{W}[t ; x] \rightarrow F_{W}$ is injective.
Proof. Take $f(t ; x) \in \mathbb{R}_{W}[t ; x]$ such that $i_{w}^{*}(f)=0(\forall w \in W)$. By the definition of the divided difference operator, $i_{w}^{*}\left(\Delta_{v}(f)\right)=0(\forall v, w \in W)$, in particular, $i_{e}^{*}\left(\Delta_{v}(f)\right)=\Delta_{v}(f)(t ; t)=0$. Hence by Proposition 4.6, we have $f(t ; x)=0$.

We show that the Schubert classes are characterized through the localization map.

Proposition 4.9.

$$
i_{v}\left(\Im_{w}(t ; x)\right)= \begin{cases}0 & (l(v) \leq l(w) \text { and } v \neq w) \\ \prod_{\beta \in \Pi^{+}, \exists v<_{\beta} w} \beta(t) & (v=w)\end{cases}
$$

On the other hand, if $h_{w}(t ; x) \in \mathbb{R}_{W}^{2 l(w)}[t ; x]$ satisfies $h_{w}(t ; x)=0$ when $l(v) \leq l(w)$ and $v \neq w$, then $h_{w}=c \Im_{w}$ for some $c \in \mathbb{R}$.
Proof. First, note that

$$
\begin{aligned}
i_{w}^{*}\left(\Delta_{i} f(t ; x)\right) & =i_{w}^{*}\left(\frac{f(t ; x)-f\left(t ; s_{i}(x)\right)}{-\alpha_{i}(x)}\right) \\
& =\frac{f\left(t ; w^{-1}(t)\right)-f\left(t ; s_{i} w^{-1}(t)\right)}{-\alpha_{i}\left(w^{-1}(t)\right)} \\
& =\frac{i_{w}^{*} f(t ; x)-i_{w s_{i}}^{*} f(t ; x)}{-\alpha_{i}\left(w^{-1}(t)\right)} .
\end{aligned}
$$

We induct on the length of $w \in W$. Recall that $i_{e}^{*} \mathfrak{S}_{w}=0$ for $w \neq e$. Take $u \in W$ such that $l(u)<l(w)$ and assume $i_{u}^{*} \Im_{w}=0$. Then for any simple reflection s_{i} such that $l\left(u s_{i}\right)=l(u)+1$, we have

$$
i_{u s_{i}}^{*} \Im_{w}=\alpha_{i}\left(u^{-1}(t)\right) i_{u}^{*}\left(\Delta_{i} \Im_{w}\right)-i_{u}^{*} \Im_{w}=\alpha_{i}\left(u^{-1}(t)\right) i_{u}^{*}\left(\Im_{w s_{i}}\right)= \begin{cases}0 & \left(u \neq w s_{i}\right) \\ \alpha_{i}\left(u^{-1}(t)\right) \prod_{\exists v<_{\beta} u} \beta(t) & \left(u=w s_{i}\right)\end{cases}
$$

So again by induction on the length of u and the Exchange condition, we have

$$
i_{v}\left(\Im_{w}(t ; x)\right)= \begin{cases}0 & (l(v) \leq l(w) \text { and } v \neq w) \\ \prod_{k=1}^{l(w)} \alpha_{i_{k}}\left(\left(s_{i_{1}} \cdots s_{i_{k-1}}\right)^{-1}(t)\right)=\prod_{\beta \in \Pi^{+}, \exists v \ll^{w}} \beta(t) & (v=w)\end{cases}
$$

where $w=s_{i_{1}} \cdots s_{i_{(w)}}$.
Let $h_{w}(t ; x) \in \mathbb{R}_{W}^{2 l(w)}[t ; x]$ such that $h_{w}(t ; x)=0$ when $l(v) \leq l(w)$ and $v \neq w$. Since $i_{w}^{*}(h(t ; x))-$ $i_{s \beta \psi}^{*}(h(t ; x))$ is divisible by $\beta(t)$ and any two distinct positive roots are linearly independent,
$i_{w}^{*}\left(h_{w}(t ; x)\right)$ is divisible by $\prod_{\beta \in \Pi^{+}, \exists v<\beta^{w}} \beta(t)$. By degree reason, $i_{w}^{*}\left(h_{w}(t ; x)\right)=c \prod_{\beta \in \Pi^{+}, \exists v<\beta w} \beta(t)$. Put $h_{w}^{\prime}(t ; x)=h_{w}(t ; x)-c \mathbb{S}_{w}(t ; x)$ then $i_{v}^{*}\left(h_{w}^{\prime}(t ; x)\right)=0$ if $l(v) \leq l(w)$. Let $u \in W$ be a minimal length element such that $i_{u}^{*}\left(h_{w}^{\prime}(t ; x)\right) \neq 0$. Then by the same argument above, $i_{u}^{*}\left(h_{w}^{\prime}(t ; x)\right)$ should be divisible by $\prod_{\beta \in \Pi^{+}, \exists v<\beta u} \beta(t)$. But $2 l(u)>2 l(w)$ and by degree reason, this leads to contradiction. By the injectivity of the localization map, we have $h_{w}^{\prime}(t ; x)=0$, i.e. $h_{w}(t ; x)=$ $c \mathfrak{S}_{w}(t ; x)$.

This and Proposition 4.2 assert that the Schubert class $\mathbb{S}_{w} \in \mathbb{R}_{W}[t ; x]$ we consider in the algebraic setting coincides with the Schubert class $Z_{w} \in H_{T}^{*}(G / B)$ in the topological setting when W is a Weyl group of a Lie group.
There are two interesting Corollaries to this Proposition.
Corollary 4.10. The localization map gives an isomorphism between the GKM-ring F_{W} and the double coinvariant ring $\mathbb{R}_{W}[t ; x]$.

Proof. We only have to show surjectivity. Let $\bigoplus_{w \in W} h_{w}(t ; x) \in F_{W}$. Take $v \in W$ such that $h_{\nu}(t ; x) \neq 0$ and $h_{u}(t ; x)=0$ for $l(u)<l(v)$. Then the same argument as in the proof of the previous Proposition, $h_{v}(t ; x)$ should be divisible by $\prod_{\beta \in \Pi^{+}, \exists u<\beta_{\nu}} \beta(t)$. Then put $\bigoplus_{w \in W} h_{w}^{\prime}(t ; x)=$ $\bigoplus_{w \in W}\left(h_{w}(t ; x)-\frac{h_{\nu}(t ; x)}{\prod_{\beta \in \Pi^{+}, \exists u<\beta_{\nu}} \beta(t)} \cdot i_{w}^{*}\left(\Im_{\nu}(t ; x)\right)\right) \in F_{W}$ so that $h_{v}^{\prime}(t ; x)=0$. Iterating this process shows that $\bigoplus_{w \in W} i_{w}^{*}$ is surjective.

Corollary 4.11 (c.f. [3, 13]). Let $v=s_{i_{1}} \cdots s_{i_{(v)}}$ be a reduced word. The localization image of a Schubert class is determined to be

$$
i_{v}^{*}\left(\Theta_{w}(t ; x)\right)=\sum \beta_{j_{1}} \cdots \beta_{j_{(w)}}
$$

where $\beta_{k}=s_{i_{1}} \cdots s_{i-1} \alpha_{i_{k}}$ and the sum runs over $\left(1 \leq j_{1}<\cdots<j_{l(w)} \leq l(v)\right.$ such that $s_{i_{j_{1}}} \cdots s_{i_{j_{(w)}}}=w$.

Proof. Using the Exchange condition, one can easily see that the right hand side resides in the GKM ring F_{W}. Because $\mathbb{R}_{W}[t ; x] \cong F_{W}$, there is a lift $h(t ; x) \in \mathbb{R}_{W}[t ; x]$ which satisfies $i_{v}^{*}(h(t ; x))=\sum \beta_{j_{1}} \cdots \beta_{j_{l(w)}}$. This $h(t ; x)$ trivially meets the condition in the previous Proposition. (In particular, the right hand side is independent of the choice for a reduced word.)

5. Chevalley rule

Here we concern with the equivariant version of the structure constant $c_{u v}^{w}(t) \in \mathbb{R}[t]$, where

$$
\mathfrak{\Im}_{u} \cdot \Im_{v}=\sum_{w \in W} c_{u v}^{w}(t) \Im_{w} .
$$

Since $\Im_{w}(0 ; x)=\sigma_{w}(x)$, the equivariant version $c_{u v}^{w}(t)$ is a polynomial whose constant term is the ordinary structure constant $c_{u v}^{w}$.

Chevalley rule, which computes the product of any Schubert class and that of degree two, is well-known for the equivariant cohomology of flag varieties (see [13]). It can be slightly extended to this double coinvariant ring setting. First we identify the degree two Schubert classes.

Lemma 5.1.

$$
\mathfrak{S}_{s_{i}}(t ; x)=\omega_{i}(t)-\omega_{i}(x),
$$

where the linear form $\omega_{i} \in \mathbb{R}^{2}[t]$ is the fundamental weight defined by $\left\langle\alpha_{j}, \omega_{i}\right\rangle=\left\{\begin{array}{ll}0 & (i \neq j) \\ \left|\alpha_{j}\right|^{2} / 2 & (i=j)\end{array}\right.$.
Proof. Since $\sigma_{s_{i}}(x)=\omega_{i}(x)$, the assertion follows from the equation (4.2).
Proposition 5.2 (Chevalley rule, c.f. [13]).

$$
\mathfrak{S}_{s_{i}} \Im_{w}=\sum_{\beta \in \Pi^{+}, l\left(w s_{\beta}\right)=l(w)+1} \frac{2\left\langle\beta, \omega_{i}\right\rangle}{|\beta|^{2}} \Im_{w s_{\beta}}+\left(\omega_{i}(t)-\omega_{i}\left(w^{-1}(t)\right)\right) \mathfrak{S}_{w}
$$

To show the Proposition, we need the following direct but useful Lemma.
Lemma 5.3 ([2]). The divided difference operators satisfy the following Leibniz rule:

$$
\Delta_{i}(f(t ; x) g(t ; x))=\Delta_{i}(f(t ; x)) g(t ; x)+f\left(t ; s_{i}(x)\right) \Delta_{i}(g(t ; x)), \quad f(t ; x), g(t ; x) \in \mathbb{R}_{W}[t ; x] .
$$

For a reduced word $v=s_{i_{1}} \cdots s_{i(v)}$ and a set $L \subset\{1, \ldots, l(v)\}$, we define a subword v^{L} of v by $s_{i_{1}}^{\epsilon_{1}} s_{i_{2}}^{\epsilon_{2}} \cdots s_{i_{(V)}}^{\epsilon_{(l)}}$, where $\epsilon_{j}=\left\{\begin{array}{ll}0 & (j \notin L) \\ 1 & (j \in L)\end{array}\right.$. Define Δ_{L}^{\prime} as the composite $\phi_{i_{1}} \circ \phi_{i_{2}} \circ \cdots \circ \phi_{i_{(l v)}}$, where $\phi_{i_{j}}=\left\{\begin{array}{cc}\Delta_{i_{j}} & (j \notin L) \\ s_{i_{j}} & (j \in L)\end{array}\right.$. Put $\Phi_{v}^{w}=\sum_{L} \Delta_{L}^{\prime}$, where L runs over subsets of $\{1, \ldots, l(v)\}$ such that $v^{L}=w$. Then by iterating the Leibniz rule, we have

$$
\Delta_{v}\left(\Im_{u} \Im_{w}\right)(t ; t)=\Phi_{v}^{w}\left(\Im_{u}\right)(t ; t)=\Phi_{v}^{u}\left(\mathfrak{S}_{w}\right)(t ; t)
$$

So by Proposition 4.6, we have

$$
\mathfrak{S}_{u} \Im_{w}=\sum_{v \geq w} \Phi_{v}^{w}\left(\Im_{u}\right)(t ; t) \cdot \Im_{v}(t ; x)
$$

Proof of Chevalley rule. By the argument above, we have

$$
\mathfrak{S}_{s_{i}} \mathfrak{S}_{w}=\sum_{v \geq w} \Phi_{v}^{w}\left(\omega_{i}(t)-\omega_{i}(x)\right)(t ; t) \cdot \Im_{v}(t ; x) .
$$

By degree reason, $\Phi_{v}^{w}\left(\omega_{i}(t)-\omega_{i}(x)\right)(t ; t)$ vanish unless $v=w$ or $l(v)=l(w)+1$. For $v=w$, $\Phi_{w}^{w}\left(\omega_{i}(t)-\omega_{i}(x)\right)(t ; t)=\left(\omega_{i}(t)-\omega_{i}\left(w^{-1}(x)\right)\right)(t ; t)=\left(\omega_{i}(t)-\omega_{i}\left(w^{-1}(t)\right)\right)$. For $l(v)=l(w)+1$, we can write $v=w s_{\beta}$ for some $\beta \in \Pi^{+}$. Then by Exchange condition, we have

$$
\Phi_{v}^{w}\left(\omega_{i}(t)-\omega_{i}(x)\right)=\frac{\omega_{i}(t)-\omega_{i}(x)-\left(\omega_{i}(t)-\omega_{i}\left(s_{\beta}(x)\right)\right)}{-\beta(x)}=\frac{2\left\langle\beta, \omega_{i}\right\rangle}{|\beta|^{2}} .
$$

6. Symmetry between t and x

As one can see from (4.1), $H_{T}^{*}(G / B) \cong H^{*}\left(B T \times_{B G} B T\right)$ has a symmetry. This symmetry become clearer when we view it from the algebraic setting. The involution on $\mathbb{R}[t ; x]$ defined by switching the variables x_{i} and t_{i} induces the involution τ on $\mathbb{R}_{W}[t ; x]$ since I_{W} is stable.

What we show in this section is the following symmetry of the Schubert classes:
Proposition 6.1. $\tau\left(\Im_{w}(t ; x)\right)=\mathfrak{\Im}_{w}(x ; t)=(-1)^{l(w)} \Im_{w^{-1}}(t ; x)$.
To show the Proposition, we use the left divided difference operator $\delta_{w}=(-1)^{l(w)} \tau \circ \Delta_{w} \circ \tau$. It is obvious that Δ_{v} and δ_{w} commute for any $w, v \in W$. The following Lemma explains why δ_{w} is called the left divided difference operator.

Lemma 6.2. $\delta_{w} \widetilde{\Xi}_{v}=\left\{\begin{array}{ll}\Im_{w v} & (l(w v)=l(v)-l(w)) \\ 0 & (\text { otherwise })\end{array}\right.$.
Proof. By Proposition 4.6 and the commutativity,

$$
\delta_{i} \mathfrak{\Xi}_{v}=\sum_{u \in W} \delta_{i} \Delta_{u}\left(\Im_{v}\right)(t ; t) \cdot \Im_{u}(t ; x)
$$

On the other hand, we have

$$
\left(\delta_{i} \Im_{u}\right)(t ; t)=\frac{\Im_{u}(t ; t)-\Im_{u}\left(s_{i} t, t\right)}{\alpha_{i}(t)}=\frac{\Im_{u}(t ; t)-s_{i} \Im_{u}\left(t, s_{i} t\right)}{\alpha_{i}(t)}= \begin{cases}1 & \left(u=s_{i}\right) \\ 0 & \text { (otherwise) }\end{cases}
$$

Hence

$$
\delta_{i} \Delta_{u}\left(\mathfrak{S}_{v}\right)(t ; t)= \begin{cases}1 & \left(u=s_{i} v, l(u)=l(v)-1\right) \\ 0 & (\text { otherwise })\end{cases}
$$

and

$$
\delta_{i} \Im_{v}= \begin{cases}\Im_{s_{i} v} & \left(l\left(s_{i} v\right)=l(v)-1\right) \\ 0 & \text { (otherwise) }\end{cases}
$$

By induction on the length of w, we have the Proposition.
Proof of Proposition 6.1. By Proposition 4.6 and the previous Lemma,

$$
\begin{aligned}
\tau \Im_{w} & =\sum_{v \in W} \Delta_{v}\left(\tau \Im_{w}\right)(t ; t) \cdot \Im_{v}(t ; x) \\
& =\sum_{v \in W}(-1)^{l(v)}\left(\tau \delta_{v} \Im_{w}\right)(t ; t) \cdot \Im_{v}(t ; x) \\
& =\sum_{v \in W}(-1)^{l(v)}\left(\Im_{v w}\right)(t ; t) \cdot \Im_{v}(t ; x) \\
& =(-1)^{l\left(w^{-1}\right)} \Im_{w^{-1}}(t ; x) \\
& =(-1)^{l(w)} \Im_{w^{-1}}(t ; x) .
\end{aligned}
$$

7. Ordinary vs Equivariant Schubert classes

The equivariant cohomology $H_{T}^{*}(G / B)$ recovers the ordinary one $H^{*}(G / B)$ by the augmentation map

$$
r_{1}: H_{T}^{*}(G / B) \rightarrow \frac{H_{T}^{*}(G / B)}{H^{+}(B T)} \cong H^{*}(G / B),
$$

which maps the equivariant Schubert classes to the ordinary ones. Similarly in our algebraic setting, it is easily seen from the definition that

$$
r_{1}: \mathbb{R}_{W}[t ; x] \ni f(t ; x) \mapsto f(0 ; x) \in \mathbb{R}_{W}[x]
$$

maps the equivariant Schubert class \Im_{w} to the ordinary one σ_{w}.
We have another map with a similar property. In the topological setting, we can consider the following composition:

$$
H_{T}^{*}(G / B) \xrightarrow{r_{2}} H_{T}^{*}(G / B)^{W} \cong H_{T}^{*}(G / G) \cong H^{*}(B T)=H^{*}(B B) \xrightarrow{c^{*}} H^{*}(G / B),
$$

where r_{2} is Reynold's operator $Z \mapsto \frac{1}{|W|} \sum_{w \in W} w(Z)$ and c^{*} is the induced map of the fiber inclusion $G / B \xrightarrow{c} B B \rightarrow B G$.

Similarly in our algebraic setting,

$$
r_{2}: \mathbb{R}_{W}[t ; x] \ni f(t ; x) \mapsto \frac{1}{|W|} \sum_{w \in W} f\left(t ; w^{-1}(x)\right)=\frac{1}{|W|} \sum_{w \in W} f\left(t ; w^{-1}(t)\right) \in \mathbb{R}_{W}[t]
$$

Here $\sum_{w \in W} f\left(t ; w^{-1}(x)\right)=\sum_{w \in W} f\left(t ; w^{-1}(t)\right)$ in $\mathbb{R}_{W}[t ; x]$ because $\sum_{w \in W} f\left(t ; w^{-1}(x)\right)$ is invariant under the action of W on x-variables.

Proposition 7.1. $r_{2}\left(\mathcal{S}_{w^{-1}}(t ; x)\right)=\sigma_{w}(-t)$.
Proof. Applying $\frac{1}{|W|} \Delta_{w^{-1} w_{0}}$ to the both hand sides of

$$
\sum_{v \in W} \Im_{w_{0}}\left(v^{-1}(t) ; x\right)=\sum_{v \in W} \Im_{w_{0}}\left(v^{-1}(t) ; t\right)=\sum_{v \in W} i_{v}^{*}\left(\tau \Im_{w_{0}}\right)=(-1)^{l\left(w_{0}\right)} \sum_{v \in W} i_{v}^{*}\left(\Im_{w_{0}}\right)=(-1)^{l\left(w_{0}\right)} \prod_{\beta \in \Pi^{+}} \beta=|W| \sigma_{w_{0}}(t)
$$

yields

$$
\frac{1}{|W|} \sum_{v \in W} \Im_{w}\left(v^{-1}(t) ; x\right)=\sigma_{w}(t)
$$

Again, applying τ to the both hand sides of the above equation yields

$$
\frac{1}{|W|} \sum_{v \in W} \mathfrak{S}_{w^{-1}}\left(t ; v^{-1}(x)\right)=(-1)^{l(w)} \sigma_{w}(t)=\sigma_{w}(-t)
$$

8. Example

Presentation of Schubert classes $\Im_{w}(t ; x) \in \mathbb{R}_{W}[t ; x]$ has indeterminancy up to the ideal I_{W}. It is preferable to choose a simple and explicit presentation than the one given in Definition 4.3. For example, Lascoux and Schützenberger [16] defined the beautiful double Schubert polynomial for $W=A_{n-1}$ as

$$
\mathfrak{S}_{w_{0}}(t ; x)=\prod_{i+j<n}\left(x_{i}-t_{j}\right) .
$$

We can also easily verify that the polynomial

$$
\mathfrak{S}_{w_{0}}(t ; x)=c_{n} \prod_{i \geq j}\left(x_{i}-t_{j}\right) \prod_{i>j}\left(x_{i}+t_{j}\right)
$$

is the top Schubert class for W of type B_{n} and C_{n} by Proposition 4.9, where

$$
c_{n}=\left\{\begin{array}{ll}
1 /(-2)^{n} & \left(W=B_{n}\right) \\
(-1)^{n} & \left(W=C_{n}\right)
\end{array} .\right.
$$

Note that this representative is different as polynomials in $\mathbb{R}[t] \otimes \mathbb{R}[x]$ from the one given by Fulton and Pragacz [8], and Kresch and Tamvakis [14]; their constructions aim not only to represent Schubert classes but also to satisfy a lot of combinatorially desirable properties.

In this section, we try to find a simple presentation of the Schubert class \mathbb{S}_{w} for the Coxeter group of non-crystallographic type $I_{2}(m)$ in view of Proposition 4.9. The facts about this group are summarized as follows:

- W is the dihedral group of order $2 m$.
- W is generated by s_{1}, s_{2} with $\left(s_{1} s_{2}\right)^{m}=\left(s_{2} s_{1}\right)^{m}=1$.
- $s_{1} s_{2}=\beta_{2}$ and $s_{2} s_{1}=\beta_{-2}$, where β_{k} is the rotation by $k \theta(\theta=\pi / \mathrm{m})$.
- the simple roots are $\alpha_{1}=t_{1}, \alpha_{2}=\beta_{(m-1)}\left(t_{1}\right)$.
- the fundamental weights are $\omega_{1}=\frac{t_{1}}{2}+\frac{t_{2}}{2 \tan \theta}, \omega_{2}=\frac{t_{2}}{\sin \theta}$.
- the positive roots are $\beta_{k}\left(t_{1}\right)(0 \leq k \leq m-1)$.
- the longest element is $w_{0}=\left\{\begin{array}{ll}\left(s_{1} s_{2}\right)^{m / 2} & (m: \text { even }) \\ s_{2}\left(s_{1} s_{2}\right)^{(m-1) / 2} & (m: \text { odd })\end{array}\right.$.
- the double coinvariant ring is

$$
\mathbb{R}_{W}[t ; x]=\frac{\mathbb{R}\left[t_{1}, t_{2}, x_{1}, x_{2}\right]}{\left(t_{1}^{2}+t_{2}^{2}-x_{1}^{2}-x_{2}^{2}, \operatorname{Re}\left(t_{1}+\sqrt{-1} t_{2}\right)^{m}-\operatorname{Re}\left(x_{1}+\sqrt{-1} x_{2}\right)^{m}\right)}
$$

We define

$$
h(t ; x)=\left(x_{1}-t_{1}\right) \prod_{\substack{k, \ldots, m-1 \\ k \neq m / 2}}\left(x_{2}-\beta_{2 k}\left(t_{2}\right)\right) \quad(m: \text { even })
$$

and

$$
h(t ; x)=\left(x_{1}-\beta_{m+1}\left(t_{1}\right)\right) \prod_{\substack{k=0, \ldots, m-1 \\ k \neq(m+1) / 2}}\left(x_{2}-\beta_{2 k}\left(t_{2}\right)\right) \quad(m: \text { odd }) .
$$

From the following facts:

- the W-orbit of x_{2} is $\left\{\beta_{2 k}\left(x_{2}\right) \mid k=0,1, \ldots, m-1\right\}$
- $w_{0}\left(x_{2}\right)=s_{1} w_{0}\left(x_{2}\right)= \begin{cases}\beta_{m}\left(x_{2}\right)=-x_{2} & (m: \text { even }) \\ \beta_{m+1}\left(x_{2}\right) & (m: \text { odd })\end{cases}$
- $s_{1} w_{0}\left(x_{1}\right)=\left\{\begin{array}{ll}-\beta_{m}\left(x_{1}\right)=x_{1} & (m: \text { even }) \\ \beta_{m+1}\left(x_{1}\right) & (m: \text { odd })\end{array}\right.$,
we can easily verify that $i_{w}^{*} h(t ; x)$ doesn't vanish iff $w=w_{0}$. Hence by Proposition $4.9, h(t ; x)$ is the top Schubert class up to constant.

Next, we give the multiplication table for the classes using the result obtained in §5. Put $w_{k}^{\prime} \in W\left(w_{k}^{\prime \prime} \in W\right)$ be the element of length k whose reduced word ends with s_{1} (respectively, s_{2}), so that $W=\left\{e=w_{0}^{\prime}=w_{0}^{\prime \prime}\right\} \sqcup\left\{w_{k}^{\prime}, w_{k}^{\prime \prime} \mid 1 \leq k<m\right\} \sqcup\left\{w_{0}=w_{m}^{\prime}=w_{m}^{\prime \prime}\right\}$. Then Chevalley rule computes:

$$
\begin{aligned}
& \mathfrak{S}_{1} \widetilde{\Im}_{w_{k}^{\prime}}=\frac{\sin ((k+1) \theta)}{\sin \theta} \Im_{w_{k+1}^{\prime}}+\left(\omega_{1}(t)-\omega_{1}\left(w_{k}^{\prime-1}(t)\right)\right) \mathfrak{S}_{w_{k}^{\prime}} \\
& \mathfrak{S}_{2} \widetilde{\Im}_{w_{k}^{\prime}}=\widetilde{\Im}_{w_{k+1}^{\prime \prime}}+\frac{\sin (k \theta)}{\sin \theta} \Im_{w_{k+1}^{\prime}}+\left(\omega_{2}(t)-\omega_{2}\left(w_{k}^{\prime-1}(t)\right)\right) \widetilde{\Im}_{w_{k}^{\prime}} \\
& \mathfrak{\Im}_{1} \mathfrak{\Im}_{w_{k}^{\prime \prime}}=\mathfrak{\Im}_{w_{k+1}^{\prime}}+\frac{\sin (k \theta)}{\sin \theta} \mathfrak{\Im}_{w_{k+1}^{\prime \prime}}+\left(\omega_{1}(t)-\omega_{1}\left(w_{k}^{\prime \prime-1}(t)\right)\right) \mathfrak{\Im}_{w_{k}^{\prime \prime}} \\
& \Im_{2} \Im_{w_{k}^{\prime \prime}}=\frac{\sin ((k+1) \theta)}{\sin \theta} \Im_{w_{k+1}^{\prime \prime}}+\left(\omega_{2}(t)-\omega_{2}\left(w_{k}^{\prime \prime-1}(t)\right)\right) \Im_{w_{k}^{\prime \prime}}
\end{aligned}
$$

Remark 8.1. Note that the Weyl group of type G_{2} is $I_{2}(6)$ upto a length normalization in the positive roots.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Reading, MA: Addison-Wesley.
[2] I.N. Bernstein, I.M. Gelfand and S.I. Gelfand, Schubert cells and the cohomology of the spaces G/P, L.M.S. Lecture Notes 69, Cambridge Univ. Press, 1982, 115-140.
[3] S. Billey, Kostant polynomials and the cohomology ring for G/B, Duke Math. J. 96 (1999), no. 1, 205-224.
[4] A. Borel, Linear Algebraic Groups. Second edition., Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.
[5] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
[6] N. Bourbaki, Groupes et Algèbre de Lie IV - VI, Masson, Paris, 1981.
[7] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287301.
[8] W. Fulton and P. Pragacz, Schubert Varieties and Degeneracy Loci, Springer Lecture Notes in Math. 1689 (1998).
[9] M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25-83.
[10] H. Hiller, The geometry of Coxeter groups, Research Notes in Mathematics, 54. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.
[11] James E. Humphreys, Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.
[12] S. Kaji, Schubert calculus, seen from torus equivariant topology, Trends in Mathematics - New Series, Volume 12, no.1, 71-90, 2010.
[13] Allen Knutson, A Schubert calculus recurrence from the noncomplex W-action on G / B, arXiv:math/0306304v1.
[14] Andrew Kresch and Harry Tamvakis, Double Schubert polynomials and degeneracy loci for the classical groups, Annales de l'institut Fourier, 52 no. 6 (2002), 1681-1727
[15] S. Kumar, Kac-Moody groups, their Flag varieties and representation theory, Progress in Mathematics 204. Birkhäuser Boston Inc., Boston, MA, 2002.
[16] A. Lascoux and M. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447-450.

Department of Mathematical Sciences, Faculty of Science
Yamaguchi University
1677-1, Yoshida, Yamaguchi 753-8512, Japan
E-mail address: skaji@yamaguchi-u.ac.jp

[^0]: Date: August 2, 2012.
 2000 Mathematics Subject Classification. Primary 57T15; Secondary 14M15.
 Key words and phrases. equivariant cohomology, flag variety, Schubert calculus, Coxeter group.
 This work was supported by KAKENHI, Grant-in-Aid for Young Scientists (B) 22740051, and Bilateral joint research project with Russia (2010-2012), Toric topology with applications in combinatorics.

