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Abstract-We investigated pattern formations in a 
three-dimensional discrete FitzHugh-Nagumo model. We 
found self-organization of the edge planes structure of an 
initial cubic pattern in three dimensions. As same as 
in two-dimensional model, self-organization of the edge 
points and the edge lines were also developed sponta­
neously in the three-dimensional model. These pattern for­
mations can be regarded as a function of feature extraction 
self-organized in the three-dimensional discrete reaction-. 
diffusion system. 

1. Introduction 

Spatial/temporal order is sometimes self-organized in an 
open system far from equilibrium. Pattern formation on the 
skin surface of some kinds of animal and chemical waves in 
Belousov-Zhabotinsky (BZ) reaction are one of examples 
of them. It is interesting that a .phenomenon on photosen­
sitive BZ reaction generates the contour and/or the reversal 
pattern of an input light pattern [1]. For simulating forma­
tion of these patterns, reaction-diffusion models are often 
adopted [2]. Many numerical simulations of the pattern 
formation were restricted to one or two spatial dimensions. 
However, several particular structures of three dimensions 
have been reported recently [3, 4]. It seems important to 
study three-dimensional self-organized structures because 
we live in three-dimensional worlds. 

The above pattern formation induced by photosensitive 
BZ reaction brings the contour and/or the reversal struc­
ture of the input pattern like image processing. However, 
these specific patterns do not remain stationary at all. On 
the other hand, Nomura et al. [5] reported that a FitzHugh-
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Figure 1: Nullclines of the FitzHugh-Nagumo system of 
bistable (b = 10.0) (a) and monostable (b = 1.0) (b). The 
filled circles mean stable points. a = 0.25 in both cases. 

Nagumo model brought stationary patterns like typical im­
age processing. The functions of the pattern formation are 
extracting edge points, edge lines, and image segmentation 
in numerical simulations. Ebihara et al. [6] also showed 
that spatial discreteness or small value of diffusion coeffi­
cients was important factor for obtaining those stationary 
patterns. Our main interest in this study is to clarify the 
behavior of the discrete reaction-diffusion model in three 
dimensions. On discrete reaction-diffusion models, there 
are few researches dealing with three-dimensional pattern 
formation. Throughout this study, we regard the term "dis­
crete system" as a system that has small spatial connection 
between neighboring cells: a few diffusion or large spatial 
interval. 

The purpose of this study is to investigate pattern forma­
tions of the discrete reaction-diffusion model in three di­
mensions. We confirmed that the model extracted the edge 
points and the edge lines of an initial cubic pattern in a 
self-organized fashion. And we found that the edge planes 
structure of the pattern was organized spontaneously. The 
edge planes structure appears only in three-dimensional 
model. 

2. Related researches 

2.1. Pattern fonnation in three dimensions 

Leppanen et al. [4] discussed on comparison between 
pattern formations in three dimensions and in two dimen­
sions. They investigated a general Turing system and the 
Gray-Scott model in their numerical simulations. Ohta and 

(a) (b) 
Figure 2: A given shape for initial condition of the system. 
A distribution of u shaped solid cube and its value was u = 
1.0 (a). (b) represents a sliced image of (a). 
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(a) (b) (c) (d) (e) 
Figure 3: A wave propagation in three-dimensional FitzHugh-Nagumo model. A half oflower part of distributions of u at 
Oth step (a), 50th step (b), 100th step (c), SOOth step (d), and 940th step (e) are shown. Du = 4.0 x w-2, Dv = 1.6 x w-t, 
a= 0.1, b = 1.0, e = 1.0 X 10-4, fl.x = 0.01, M = 1.0 x 10-4. 

co-workers studied the pattern formation in three dimen­
sions for a type ofFitzHugh-Nagumo model, the Brussela­
tor, and the Gray-Scott model in numerical simulations [3]. 
They searched various parameters and reported several cat­
egories of three-dimensional structure. However, they did 
not mention a discreteness of the system, e.g., no parame­
ter searching for various values of diffusion coefficients or 
spatial intervals. 

2.2. Image processing like behavior by the FitzHugh­
Nagumo model 

As mentioned above, Nomura et al. [5] reported that 
the FitzHugh-Nagumo model (Eqs. (l) and (2)) be­
haved as self-organized image processing, including edge 
points/lines detection and image segmentation. 

au 2 1 at = Du V u + ; {u(u- a)(1 - u)- v}, (1) 

av 
at (2) 

where activator u and inhibitor v are variables. Du and Dv 
are diffusion coefficients of u and v, respectively. a, band 
e are constant parameters. Image processing like behav­
iors mentioned above appeared when the system was dis­
crete [6], i.e., the spatial interval fl.x was moderately large 
or the diffusion coefficients Du and Dv were moderately 
small. 

Figure 1 shows null clines of the Eqs. ( 1) and (2) when Du 
and Dv equal to zero. As the model is under bistable system 
(see Fig. l(a)), this system yields segmented image as a 
binarization of the input pattern This is easy to understand 
because the value of each element of the model settle down 
at either stable point in the bistable system. While, as the 
model is under monostable system (Fig. 1(b)), this system 
yields the edge points or the edge lines of the input pattern. 
It seemed that the diffusion coefficients Du and Dv affect the 
number of stable points of the system, and the system turns 
bistable only on the edge regions (see detailed discussion 
in subsection 4.2). 

3. Pattern formation in three-dimensional FitzHugh­
Nagumo model 

For computer simulation, we adopted the explicit Euler 
method on the FitzHugh-Nagumo equation (Eqs. (1) and 

(2)). The cell size was fl.x and the number of the cell 
was N = 50, and temporal interval was represented as M. 
There were no flux at all the boundaries of the system; so­
called Neumann condition was adopted. The initial con­
dition shaped a solid cube (see Fig. 2). We carried on a 
numerical simulation varying the diffusion coefficients Du 
and Dv, because our purpose is to investigate relationship 
between discreteness of the system and three-dimensional 
pattern formation. 

When the diffusion coefficients were sufficiently large 
(Du = 4.0 X 10-2 and Dv = 1.6 X 10-t ), three-dimensional 
wave propagation appeared as expected (see Fig. 3). On 
the other hand, Fig. 4 represents a result when Du was the 
smallest value (Du = 4.0 x w-5) in current numerical sim­
ulations. The edge points of the given shape for initial con­
dition appeared as a convergent pattern in this case. When 
D11 was 5.0 x 10-s, the edge lines appeared (Fig. 5). These 
results were similar to the results in two dimensions [5]. 
Moreover, as shown in Fig. 6, we obtained the edge planes 
structure of the initial shape when Du was 1.5 X 1 0-4. The 
static edge planes structure can be regarded as a character­
istic pattern self-organized in three-dimensional model. 

Additionally, we carried out a numerical simulation for 
sphere shaped initial condition and obtained the edge plane 
on the same parameter values for the cube shape; 

4. Discussions 

4.1. Pattern formation 

We found a function of self-organized feature extrac­
tion that appeared in three-dimensional FitzHugh-Nagumo 
model. The function includes extraction of the edge planes 
of the initial shape in three-dimensonal space. Other fea­
ture extractions (on edge points/lines detection) were also 
confirmed in three dimensions as well in two dimensions 
when the diffusion coefficients D11 and Dv were moderately 
small. When Du and Dv were too small, the value of all the 
cells settle down at zero. 

In current numerical simulations, we observed the three­
dimensional wave propagation, the edge points structure, 
the edge lines structure, and the edge planes structure. We 
also observed so-called Thring pattern in N = 100 (see 
Fig. 7), however we could not confirm the pattern clearly 
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Figure 4: A time evolution of the edge points structure observed in the discrete system with Du = 4.0 X w-5, Dv = 
1.6 x 10-4. A half oflower part of distributions of u at 1600th step (a), 1700th step (b), 1900th step (c), 2500th step (d), 
and 5000th step (e) are visualized. The other parameters are a= 0.1, b = 1.0, e = 1.0 X lo-4, Ax= 0.01, At= 1.0 X 10-4. 

00 00 ~ 00 00 
Figure 5: A time evolution of the edge lines structure observed in the discrete system with Du = 5.0x 10-5, Dv = 2.0x 1 o-4. 
A half oflower part of distributions of u at 1600th step (a), 1700th step (b), 1900th step (c), 2500th step (d), and 5000th 
step (e) are visualized. The other parameters are a= 0.1, b = 1.0, e = 1.0 x 1o-4, Ax= 0.01, At= 1.0 X 10-4. 

w 00 ~ 00 00 
Figure 6: A time evolution of the edge planes structure found in Du = 1.5 x 10-4 and Dv = 6.0 X 10-4. A half of lower part 
of distributions ofu at 1600th step (a), 1700th step (b), 1900th step (c), 2200th step (d), and 5000th step(e) are visualized. 
The other parameters were a= 0.1, b = 1.0, e = 1.0 x 1o-4, Ax= 0.01, At= 1.0 x 10-4. 

in N = 50. Various parameters searching are needed in the 
proposed FitzHugh-Nagumo model to observe more vari­
ous Turing patterns. 

Figure 7: A three-dimensional Thring pattern found in a = 
0.2, b = 5.0, e = 1.0 X 10-3, Du = 1.0 X 10-2, Dv = 
4.0x 10-2, Ax= 0.01, and At= l.Ox w-4• Ahalfoflower 
part of the isosurface u = 0.5 at 300000th step is visualized. 

4.2. A brief theory of extracting the edge structures in 
the FitzHugh-Nagumo model 

Here, we consider the FitzHugh-Nagumo system in one 
spatial dimension, for better understanding of the discus­
sion. It seems not to lose the generality of the theory for 
adopting it in three dimensions. In addition, we assume 
that Du is zero. We have confirmed that the edge structures 
appear also in such case. First, we adopt a central differ­
ence in space and obtain the following Eqs. (3) and (4); 

du· 1 dr' = ~ {Uj(Ui- a)(l - Uj)- Vj}, (3) 

= r'(v;+t- 2v; + V;-t) + u;- bv;, (4) 

where r' represents Dv/(Axf. The subscript i = 1, 2, ... ,N 
is a spatial index. Equations (5) and (6) represent nullclines 
ofEqs. (3) and (4), respectively (see also Fig. 8); 

(5) 
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Figure 8: Nullclines ofEqs_ (3) and (4) at r = 4.0 (a), r = 1.0 (b), and r = 12.0 (c). Ax= 0.01 and a= 0.1, b = 1.0 
in each case. The solid lines represent nullclines when vi+1 + v;_1 is small (0.0) and the dashed lines show that when 
v;+1 + VH is sufficiently large (0.2). Efficiently large discreteness results in non-uniform number of stable point in space 
followed by a distribution of the inhibitor value v (a). In the other cases, numbers of stable point are identically in space 
(b),(c). 

Uj r(Vi+1 + V;-1) 
V; = b + 2r' + b + 2r' ' (6) 

where b, r, Vi+l> and Vi-I are positive. 
When Dv is moderately small or Ax is moderately large 

(i.e., r is moderately small), a number of the stable point 
varies spatially followed by the values of neighboring in­
hibitors Vi+I and Vi-I· The system has two stable points 
where the term Vi+1 + v;-1 is small, whereas the system 
has only one stable point around the origin where value 
ofv;+t + V;-t is efficiently large, because the line drawn by 
Eq. (6) moves to too upper region (see Fig. 8(a)). On one 
hand, when r is too small, all spatial components of the 
system have one stable point as shown in Fig. g(b ). On the 
other hand, when r is too large, all components of the sys­
tem have two stable points as shown in Fig. 8( c). The sum 
of neighboring ce11s' inhibitor values is smaller in the edge 
cells than in the other cells. The grounds is that outer-side 
cells of the edge have almost zero inhibitor values v, since 
the inhibitor value almost depends on the activator value u. 
Thus, the model extracts the edge structures under moder­
ate discreteness. In three dimensions, total sum value of 
neighboring inhibitor is larger than that in one dimension. 
Indeed, it becomes more complex when the Du is not to 
zero. In such cases the cubic curve drawn by Eq. (5) also 
changes its profile. 

5. Conclusion 

In this study, we reported the research on the pattern 
formation in three spatial dimensions for the FitzHugh­
Nagumo model. We confirmed that the proposed model 
self-organized the edge planes structure and the edge 
points/lines structure in the discrete system; the diffusion 
coefficients were moderately small. The former appeared 
as one of characteristic structure in the three-dimensional 
discrete reaction-diffusion system. The latter is common 
structure in one and/or two dimensions. As the diffusion 
coefficients increased, extracted pattern was changed the 
edge points, the edge lines, and the edge planes in order. 

For sphere shaped initial condition, we also confirmed to 
obtain the edge plane structure. For more general shaped 

initial condition, we are required more effort and more 
computing power. According to a previous work [7], the 
model in two dimensions extracted the edge lines for arbi­
trary figures, e.g., a photograph of building. We consider 
that the edge detection for three-dimensional arbitrary ob­
ject is possible because of an analogy of two-dimensional 
result. Nevertheless, we must confirm to obtain the edge 
planes for any arbitrary object in three dimensions. H the 
proposed model extracts it, the field of three-dimensional 
visualization, e.g., visualization of computed tomography 
might be one of application of this work. 
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