
Letter Forma, 23, 19–23, 2008

Self-Organized Feature Extraction in a Three-Dimensional Discrete
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We investigated self-organized patterns formed by a FitzHugh–Nagumo model in three-dimensional space.
We found functional orders in the model. The edge plane structure was autonomously extracted from an initial
cubic pattern. As in a two-dimensional model, the edge points and edge lines developed spontaneously in this
model. These edge structures were obtained when parameters were in a specific region. We can interpret that
the reaction-diffusion system has a function of self-organized feature extraction when the model is in a discrete
condition of space.
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1. Introduction
Living things form various patterns spontaneously, in-

cluding body forms, skin-surface patterns, and heartbeat
rhythms. It is known that the reaction-diffusion models
also form patterns that have a similar structure to such self-
organized patterns (e.g., Meinhardt and Klinger, 1987). In
particular, Kondo and Asai (1995) successfully simulated
the growth dynamics of skin-surface patterns on several
types of fish using a reaction-diffusion model. The appear-
ance of self-organized patterns is not limited to organisms.
The Belousov-Zhabotinsky (BZ) reaction is a well-known
example; the chemical reaction generates a spatio-temporal
pattern spontaneously. It is interesting that a phenomenon
on photosensitive BZ reaction generates the contour and/or
reversal pattern of an input pattern induced by a light source
(Kuhnert et al., 1989). Reaction-diffusion models can also
be applied to simulate the pattern formations appearing in
these chemical reactions. Many numerical studies on the
behavior of reaction-diffusion models were restricted to one
or two spatial dimensions. However, several characteris-
tic three-dimensional structures have been reported recently
(Leppänen et al., 2002; Shoji et al., 2007).

The photosensitive BZ reaction’s self-organization of the
contour and/or reversal structure of the input pattern is a
type of image processing. However, these specific struc-
tures do not remain stationary. For application to the field
of image processing, it is important that the pattern ob-
tained is stationary. If the pattern does not become sta-
tionary after sometime, we must be able to decide man-
ually the time when the process should stop. Nomura et
al. (1999) reported that a FitzHugh–Nagumo model pro-
duced stationary patterns like those obtained by typical im-
age processing. The functions of edge point and edge line
extractions and image segmentation were found in numeri-
cal simulations. These functions of the FitzHugh–Nagumo
model were found in coarse calculations of approximation
for spatial differences (Ebihara et al., 2003). Our main in-

terest in this study is to clarify the behaviors of the reaction-
diffusion model in three dimensions that adopted rough
approximation in space. Throughout this study, we use
the term “discreteness” to indicate roughness for approx-
imation of differential equations, and consider “discrete
reaction-diffusion model” and “discrete system” as a sys-
tem that has little spatial connection between neighboring
cells: little diffusion or large spatial intervals. In the dis-
crete reaction-diffusion models, there are few studies deal-
ing with three-dimensional pattern formations. Many re-
searchers regarded such discrete regions useless as an ap-
proximation of differential equations.

In this study, we investigated the discrete reaction-
diffusion model in three dimensions. We found that the
model spontaneously organized the edge plane structure of
an initial cubic pattern. We also confirmed that the model
extracted the edge points and edge lines of the pattern in a
self-organized fashion. The edge plane structure was ob-
served only in the three-dimensional models.

2. Related Research
Leppänen et al. (2002) compared pattern formations in

three dimensions and two dimensions. They investigated a
general Turing system and the Gray-Scott model in their nu-
merical simulations. Ohta and co-workers studied a three-
dimensional Turing pattern for a type of FitzHugh–Nagumo
model, the Brusselator, and the Gray-Scott model in numer-
ical simulations (Shoji et al., 2007). They searched var-
ious parameters and reported several categories of three-
dimensional structure. However, they did not report any
feature extraction functions, which the discrete reaction-
diffusion models have. Nomura et al. (1999) reported that
the FitzHugh–Nagumo model (Eqs. (1) and (2)) behaved as
a system realizing self-organized image processing, includ-
ing edge point/line detection and image segmentation as sta-
tionary patterns. Although the FitzHugh–Nagumo equation
was proposed originally as a model of active pulse trans-
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Fig. 1. Nullclines of a FitzHugh–Nagumo system that is bistable
(b = 10.0) (a) and monostable (b = 1.0) (b). The filled circles indicate
stable points. a = 0.25 in both cases.

mission on nerve axons (Nagumo et al., 1962), they applied
it as a model of feature extraction from images. Image-
processing-like functions in the reaction-diffusion model
were reported only in their study.

The FitzHugh–Nagumo model is represented by the fol-
lowing equations,

∂u

∂t
= Du∇2u + 1

ε
{u(u − a)(1 − u) − v}, (1)

∂v

∂t
= Dv∇2v + u − bv, (2)

where activator u and inhibitor v are variables. Du and Dv

are diffusion coefficients of u and v, respectively. a, b, and
ε are positive constants. Image-processing-like behaviors
appeared when the system had a discrete nature (Ebihara et
al., 2003), i.e., the spatial interval 	x was moderately large
or the diffusion coefficients Du and Dv were moderately
small. In addition, the functions of the model for edge
detection or image segmentation have robustness against
noise (Ebihara et al., 2003). Thus, it is expected that the
model can be applied to image or signal processing as a
noise-robust model.

Figure 1 shows nullclines of Eqs. (1) and (2) when Du

and Dv equal zero. When the model has two stable points
(i.e., the model is bistable; see Fig. 1(a)), it yields a seg-
mented image as a binarization of the input pattern because
the value of each element of the model settles down at ei-
ther stable point in the bistable system. When the model
has only one stable point (i.e., the model is monostable;
Fig. 1(b)), it yields the edge points or edge lines of the in-
put pattern. It appears that the diffusion coefficients Du and
Dv affect the number of stable points of the system, and the
system turns bistable only in the edge regions (see detailed
discussion in Subsec. 4.2).

3. Numerical Simulations and Results
We focused on the FitzHugh–Nagumo model for two

reasons. (1) This study follows the previous research of

Nomura et al. (1999) and Ebihara et al. (2003). It is easy to
compare the results of this study with that of their research.
(2) The model is a well-known system with a sufficiently
studied mechanism (Rocoreanu et al., 2000).

For computer simulation, we adopted the explicit Euler
method of finite difference schemes (Smith, 1996) on the
FitzHugh–Nagumo equation (Eqs. (1) and (2)). The cell
size was 	x , the number of cells was N = 50, and the
temporal interval was represented as 	t . There was no flux
at any of the boundaries of the system; the so-called Neu-
mann condition was adopted. The initial condition shaped
a solid cube (see Fig. 2). We performed a numerical sim-
ulation varying the diffusion coefficients Du and Dv , while
keeping the ratio Dv/Du = 4.0 because our purpose was to
investigate the relationship between the system’s discrete-
ness and its behavior. We visualized spatial distributions
of the magnitude of the activator u (from 0.0 to 1.0) using
MayaVi*1 ver. 1.5: a data visualizing software.

When Du and Dv were sufficiently large (Du = 4.0 ×
10−2 and Dv = 1.6 × 10−1), three-dimensional wave prop-
agation appeared as expected (see Fig. 3). On the other
hand, Fig. 4 represents a result when Du was at its smallest
value (Du = 4.0 × 10−5) in the current numerical simula-
tions. The edge points of the given shape as the initial con-
dition of the simulations appeared as a convergent pattern
in this case. When Du was 5.0 × 10−5, the edge lines ap-
peared (Fig. 5). These results were similar to the results in
two dimensions (Nomura et al., 1999; Ebihara et al., 2003).
Moreover, as shown in Fig. 6, we obtained the edge plane
structure of the initial shape when Du was 1.5 × 10−4. The
static edge plane structure can be regarded as a characteris-
tic pattern self-organized in the three-dimensional model.
In addition, we performed a numerical simulation for a
sphere-shaped initial condition and obtained the edge plane
on the same parameter values for the cube shape.

4. Discussion
4.1 Patterns obtained by the FitzHugh–Nagumo model

We found a function of self-organized feature extraction
that appeared in a three-dimensional FitzHugh–Nagumo
model. The function includes extraction of the edge planes
of the initial shape in three-dimensional space. Other func-
tions of feature extractions (edge point/line detection) were
also confirmed in three dimensions as well in two dimen-
sions when Du and Dv were moderately small. When Du

and Dv were too small, the value of all the cells settled at
zero. In the current numerical simulations, we observed
the three-dimensional wave propagation, edge point, line,
and plane structures. We also observed a so-called Turing
pattern at N = 100 (see Fig. 7); however, we could not
confirm the pattern clearly at N = 50. More efforts are re-
quired in parameter searching of numerical simulations of
the FitzHugh–Nagumo model to observe various other Tur-
ing patterns and to compare these patterns with previous
spatial patterns in reaction-diffusion systems.

We explained that the calculation steps of each sim-
ulation were sufficient for obtaining stationary patterns
through discussion of a characteristic timescale τ of the

*1http://mayavi.sourceforge.net/
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Fig. 2. A given shape as an initial condition of the system. (a) shows a distribution of u shaped solid cube with u = 1.0. (b) represents a sliced image
of (a).

Fig. 3. Wave propagation in a three-dimensional FitzHugh–Nagumo model. The lower half of distributions of u at the 0th step (a), 100th step (b), 500th
step (c), and 940th step (d) are shown. The parameters are Du = 4.0 × 10−2, Dv = 1.6 × 10−1, a = 0.1, b = 1.0, ε = 1.0 × 10−4, 	x = 0.01, and
	t = 1.0 × 10−4.

Fig. 4. A time series of the edge point structure observed in a discrete system with Du = 4.0 × 10−5 and Dv = 1.6 × 10−4. The lower half of
distributions of u at the 1600th step (a), 1700th step (b), 1900th step (c), and 5000th step (d) are visualized. The other parameters are a = 0.1,
b = 1.0, ε = 1.0 × 10−4, 	x = 0.01, and 	t = 1.0 × 10−4.

Fig. 5. A time series of the edge line structure observed in a discrete system with Du = 5.0 × 10−5 and Dv = 2.0 × 10−4. The lower half of
distributions of u at the 1600th step (a), 1700th step (b), 1900th step (c), and 5000th step (d) are visualized. The other parameters are a = 0.1,
b = 1.0, ε = 1.0 × 10−4, 	x = 0.01, and 	t = 1.0 × 10−4.



22 K. Miura et al.

Fig. 6. A time series of the edge plane structure found at Du = 1.5 × 10−4 and Dv = 6.0 × 10−4. The lower half of distributions of u at the 1600th step
(a), 1700th step (b), 1900th step (c), and 5000th step (d) are visualized. The other parameters were a = 0.1, b = 1.0, ε = 1.0 × 10−4, 	x = 0.01,
and 	t = 1.0 × 10−4.

Fig. 7. A three-dimensional Turing pattern found at a = 0.2, b = 5.0, ε = 1.0 × 10−3, 	x = 0.01, 	t = 1.0 × 10−5, Du = 1.0 × 10−2,
Dv = 4.0 × 10−2, and N = 100. The lower half of the isosurface u = 0.5 at the 300000th step is visualized.

Fig. 8. Nullclines of Eqs. (3) and (4) at Dv = 1.0 (a), Dv = 4.0 (b), and Dv = 12.0 (c). 	x = 0.01 and a = 0.1 in each case. The solid lines
indicate that vi+1 + vi−1 is small (0.0), and the dashed lines show that vi+1 + vi−1 is sufficiently large (0.2). Sufficiently large discreteness results in
a non-uniform number of stable points in space according to distributions of the inhibitor value v, which almost depends on the activator value u (a).
The number of stable points is identical in space in (b) and (c).

system (see details in Kitamori and Kitamura (1996)). If
a dynamic system shows an exponential decay, the quanti-
tative state of the system becomes 1/e after τ passes. In the
FitzHugh–Nagumo model (Eqs. (1) and (2)), the estimated
value of characteristic τ is 0.1 for parameters that yield both
edge detection (Figs. 4 to 6) and a Turing pattern (Fig. 7).
We also estimated τ for a Turing pattern generated by the
Oregonetor model (refer figure 12 in Nomura et al., 1997)
and obtained τ = 1.0. In each case (edge detection, the Tur-
ing pattern of the FitzHugh–Nagumo model, and that of the
Oregonetor models), states of the patterns were still non-
stationary just as τ passed, but settled into steady patterns
after around tens of times τ passed in each case.
4.2 A brief theory of extracting the edge structures in

the FitzHugh–Nagumo model
Here, we consider the FitzHugh–Nagumo system in one

spatial dimension, for better understanding of the discus-
sion. It seems that the generality of the theory of the one-

dimensional system is retained when it is adopted in three
dimensions. In addition, we assume that Du is zero. We
have confirmed that edge structures also appear in this case.
First, we adopt a central difference in space and obtain the
following Eqs. (3) and (4),

dui

dt
= 1

ε
{ui (ui − a)(1 − ui ) − vi }, (3)

dvi

dt
= r ′(vi+1 − 2vi + vi−1) + ui − bvi , (4)

where r ′ represents Dv/(	x)2. The subscript i = 1, 2,

. . . , N is a spatial index. Equations (5) and (6) represent
nullclines of Eqs. (3) and (4), respectively (see also Fig. 8),

vi = ui (ui − a)(1 − ui ), (5)

vi = 1

b + 2r ′ ui + r ′(vi+1 + vi−1)

b + 2r ′ , (6)

where b, r ′, vi+1, and vi−1 are positive.
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When Dv is moderately small or 	x is moderately large
(i.e., r ′ is moderately small), the number of stable points
varies spatially depending on the values of neighboring in-
hibitors vi+1 and vi−1. The system has two stable points
where the term vi+1 +vi−1 is small, whereas the system has
only one stable point around the origin where the value of
vi+1 + vi−1 is sufficiently large, because the line drawn by
Eq. (6) moves too far into the upper region to maintain two
stable points (see Fig. 8(a)). On one hand, when r ′ is too
small, all spatial components of the system have one stable
point, as shown in Fig. 8(b). On the other hand, when r ′

is too large, all components of the system have two stable
points, as shown in Fig. 8(c). The sum of the neighboring
cells’ inhibitor values is smaller in the edge cells than in
other cells. The reason is that outer-side edge cells have al-
most zero inhibitor value v, since the value almost depends
on the activator value u. Thus, the model extracts the edge
structures under moderate spatial discreteness. In three di-
mensions, the sum of neighboring inhibitors is larger than
that in one dimension. Indeed, it becomes more complex
when Du is not zero. In such cases, the cubic curve drawn
by Eq. (5) also changes its profile.

5. Conclusion
In this study, we have reported on functional pattern

formations in three spatial dimensions for the FitzHugh–
Nagumo model. We confirmed that the proposed model
self-organized the edge plane structure and the edge
point/line structure when the system was discrete; the dif-
fusion coefficients were moderately small. The former ap-
peared as a characteristic structure in the three-dimensional
discrete reaction-diffusion system. The latter is a common
structure in one and/or two dimensions. As the diffusion
coefficients increased, the extracted pattern differed in the
edge points, lines, and planes, in that order.

For a sphere-shaped initial condition, we also confirmed
that we obtained the edge plane structure. According to a
previous study (Nomura et al., 2007), the model in two di-
mensions extracted the edge lines for arbitrary figures, e.g.,

a photograph of a building. We consider that edge detec-
tion for an arbitrary three-dimensional object is possible
by analogy with the two-dimensional result. Nevertheless,
we must confirm whether the model can obtain the edge
planes for any arbitrary three-dimensional complex-shaped
object. If the proposed model extracts it, the field of three-
dimensional visualization, e.g., visualization of computed
tomography, might be an application of this study. It is also
important to confirm whether the behavior is influenced by
the discretization scheme using other schemes, e.g., the fi-
nite element method.
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