-論 文-

低分解能赤外衛星画像(NOAA APT)のオンライン温度変換と 精度評価

藤本 勉† 三池 秀敏^{††}

On-line Temperature Conversion and the Accuracy Evaluation for Low Resolution Infrared Satellite Image (APT) of NOAA

Tsutomu FUJIMOTO[†] and Hidetoshi MIIKE^{††}

あらまし TIROS-N 以後ノアシリーズ衛星が送信する APT 画像の温度変換手順は、従来 Nelson 提案による 図式解法が用いられてきた。本論文では、まず APT 画像の濃度値データを同画像が生成されるもとの AVHRR の出力レベルに等価なものに変換した後、AVHRR 温度較正法を準用するオンライン温度変換法を提案してい る.また、一般に APT 画像には非線形性の幾何学的ひずみが残留しており、ナビゲーションの精度に問題があ る.我々は APT 画像が生成される過程を解析し、走査線の両端の領域では APT 画像と HRPT 画像は同一の空 間分解能を有することに着目した。すなわち、この領域においては幾何学的ひずみ補正が回避できると共に、相 互の画像データの比較を行うことで温度変換精度の検証が可能である。 $-40 \sim +25^{\circ}$ C の温度範囲について調査し た結果、 $0 \sim +25^{\circ}$ C の範囲は標準偏差が 2° C 以内で、 0° C 以下の観測対象は標準偏差が $4 \sim 7^{\circ}$ C 程度であること を確認した。特に海表面温度観測等に限定した場合、APT 画像の有効活用が可能である。

キーワード NOAA, APT, 温度変換, 精度評価

1. まえがき

ノアシリーズ衛星は TIROS-N (1978) 以来,発展型 高分解能走査放射計 (AVHRR) データの直接送信を, 高解像度画像伝送サービス (HRPT) とディジタル化 自動画像伝送サービス (APT) で行っている. HRPT では4又は5チャネルの分光感度域を有す AVHRRの 出力データが,そのまま UHF帯でディジタル伝送さ れる.一方,APT では衛星内のコンピュータ (MIRP) により近赤外又は中間赤外および熱赤外の2チャネル を選択し,走査線抜き取り,データ平均化等の情報量低 減操作をディジタルのまま加えた後,システム補正用 データと共に VHF帯で時分割多重アナログ伝送され る.APT 画像は比較的簡易なシステムで受信可能であ り,APT 画像を受信して解析表示するシステムは,例 えば海洋学分野[1],[2],漁業[3],気象[4]等,多方面 において活用されている.いずれの場合も主たる利用 目的は、熱赤外チャネル輝度データを温度に変換する ことによって得られる海表面温度分布状況の把握にあ る.その際、APT 画像の濃度値データの温度への変換 が必要となる.従来温度変換手順は、TIROS-N衛星に ついて Nelson により, NOAA-NESDIS から公表され ている提案による方法が用いられてきた [5], [6]. 同法 は衛星搭載黒体炉 (ITT) の温度較正および, AVHRR の分光感度特性に基づく APT 画像の画素レベルを温 度に変換する過程にグラフを多用する、いわゆる図式 解法であり、そのままではオンライン化できないし、 結果の精度も期待できない。更にこのグラフはその後 更新されていない。APT 画像を物理情報として高度 に利用する技術の開発にあたっては、まずこの温度変 換過程を明確にする必要がある。また得られる温度の 精度は、観測対象や AVHRR の視野角により異なるの で、画像全体の平均精度[7]よりはむしろ達成できる 精度の最良値を掌握しておく必要がある。

本論文では Nelson の方法を解析し,まず APT 画 像の濃度値データを副搬送波振幅変調度に変換してシ ステム補正を行い,つぎに APT 画像が生成されるも

 [†] 宇部工業高等専門学校電気工学科,字部市
Department of Electrical Engineering, Ube National College of Technology, Ube-shi, 755 Japan
^{††} 山口大学工学部感性デザイン工学科,字部市

Department of KANSEI Design and Engineering, Yamaguchi University, Ube-shi, 755 Japan

との AVHRR の出力レベルに等価なものに変換した 後, AVHRR 温度較正法を準用するオンライン温度変 換法を提案する.この手法はその後打ち上げられたノ アシリーズ衛星についても対応可能である.提案する 温度変換法の精度検証のために行った Nelson の図式 解法による温度との比較結果から, Nelson の図式解 法は AVHRR の非線形性のため,高温域において 3°C 以上の誤差を含むことを明らかにする.

つぎに、提案する温度変換法を用いた APT 画像 の温度精度を、HRPT 画像との比較により検証する. APT 画像の精度検証に関しては Wannamaker [7]の 先駆的な報告が,我々の調査の限りにおいては,唯一 である.彼は両画像を地図上にマッピングした後,同 一地上点における観測精度を評価している.しかし, APT 画像には非線形性の幾何学的ひずみが残留して おり[8], このままではナビゲーションの精度に問題 がある.我々は、APT 画像が生成される過程を解析 し、走査線の両端の領域では APT 画像と HRPT 画 像は同一の走査線方向の空間分解能を有し、この領域 においては幾何学的ひずみ補正が回避できることに 着目して相互の比較を試みた。-40~+25°Cの温度範 囲について調査した結果, APT 画像で達成できる温 度精度は, MIRP による平均操作や受信システムの動 特性等により支配されることが判明した、すなわち、 0~+25°Cの範囲は、海表面、陸域等比較的温度こう 配の緩い領域が観測の対象となるため、これらの影響 が少なく標準偏差 2°C 以内で温度推定可能である。一 方、0°C以下の観測対象は大部分が雲域であり、これ らの影響によって急しゅんなレベル変動が鈍化してし まうため、標準偏差が4~7°Cに増加し推定精度が低 下する.よって主たる利用を,例えば海表面温度観測 等に限定すれば,有効に活用できることを述べる.

研究の背景

まず,従来用いられてきた APT 画像の熱赤外チャネ ルに対する Nelson の温度変換過程を概説する. APT 画像の温度変換は、本質的には AVHRR のものと同じ く、約 17°Cの ITT と宇宙空間の観測レベルをそれぞ れ高温,低温の参照基準点にして行う.高温参照点は、 ITT に取り付けられた 4 機の白金測温抵抗体 (PRT #1~#4)のレベルを標準階調値 (Gray scale wedge level) に変換したもの $GS_{T_1} \sim GS_{T_4}$ を,提示されて いる 4 種類のグラフを使って温度に変換し、平均して ITT の温度 T_{ITT} としたものと、AVHRR が ITT を 観測したレベル(back scan)を標準階調値に変換し たもの $GS_{\overline{\text{back scan}}}$ とにより、 $\left(GS_{\overline{\text{back scan}}}, T_{\overline{\text{ITT}}}\right)$ を 高温参照点として決定する.この4種類のグラフは, 衛星ごとに打上げ前テストの結果に基づいて更新す る必要がある.低温参照点は、AVHRR が宇宙を観測 したレベル (space scan) の平均値を標準階調値に変 換したもの $GS_{\overline{space}}$ を 0 K として, $(GS_{\overline{space}}, 0)$ とす る. 高温, 低温参照点間を内挿することにより, 標準 階調値を温度に変換する、ところが、標準階調値と温 度とは比例関係にないため、Nelson は TIROS-N の AVHRR チャネル3およびチャネル4の場合について, 特殊な目盛り間隔を有すノモグラムを提示している. この用紙を用いると高温、低温参照点間が比例配分に より直線内挿可能となる。しかし、Nelson 提案のノ モグラムはその構成が公表されておらず不明であるた め, Summers [9], および我々[10] もこの用紙をその まま利用して、その後打ち上げられたノアシリーズ衛 星に準用している。この場合、衛星のセンサの特性の 違い等に起因して発生する誤差の程度を掌握できない。 Nelson 提案は、現在のようなパーソナルコンピュー タをベースにした受信システムの使用を想定していな い図式解法であり、温度変換過程をオンライン化する うえでの難点である.

3. 温度変換

前章の Nelson の温度変換過程を解析し,後続のノ アシリーズ衛星にも適用可能な,AVHRR 温度較正法 を準用する温度変換法を提案する.以下,NOAA-11 衛星の北上パスを 1991/9/20 (周回番号 15388) およ び,1991/9/21 (周回番号 15402) に受信した APT 画 像に適用した例を交えて述べる.

3.1 信号レベルの変調度による正規化

APT 画像はアナログ変調方式で伝送されるため, 受 信側で復調後 A/D 変換されてコンピュータに取り込 まれる.復調器のゲイン,信号極性は受信側で任意に 設定可能であり,ディジタル伝送される HRPT 画像 とは異なり A/D カウント値は絶対値ではない.我々 のシステム [11] では,逆極性の復調器出力を符号付き 12 bit/sample で A/D 変換している.標準階調値と変 調度との関係は受信システムにより異なる.よって, 衛星側,受信側を含む全システムが有す非線形性およ び経時変化の排除を含めて,A/D カウント値を正規化 するため,全データをテレメータフレーム中の標準階 調値との比較によって変調度 (MI [%]) に変換し正

(E) Radiation energy to brightness temperature.

(F) AVHRR nonlinearity correction.

図1 APT 画像の温度変換ダイアグラム Fig.1 Temperature conversion diagram of APT image.

規化する [図1(A)].

上と同じく, A/D 変換のサンプリング周期は任意に 設定される. 我々のシステムでは 125 µs/sample でサ ンプリングを行っており,同期信号,宇宙走査, APT 画像信号,およびテレメータを含むチャネル A および チャネル B, それぞれ1走査線当り 2,000 サンプルの データを取得している.まず標準階調値と変調度の関 係を調査した.テレメータの中央部 30 サンプルを取 り出し, 各テレメータブロックごとに 30 フレーム, 合計 1,920 サンプルの平均を行い, 標準階調値の A/D カ ウント値と変調度 (*MI*[%]) との関係を求めた.そ の結果, 4 次式で非常に良い曲線当てはめ(相関係数 $r^2 \approx 1.000$) を行うことができた.

3.2 等価 AVHRR カウントの推定と HRPT 温度 較正手順の準用

つぎに、前節で変換した変調度(MI)と、対応する

AVHRR のカウント値(X)との関係を明らかにしな ければならない. MIRP で, 画素当り 10 ビットであ る AVHRR データの上位 (MSB) 8 ビットを取り出し て D/A 変換前の APT 画像が生成される. Summers は、標準階調値8(変調度87.0±5%)がフルレンジ (11111111₍₂₎) であるとしている。我々は独自に周回 番号 15388, および周回番号 15402の NOAA-11 衛星の APT 画像と、これが生成されるもととなった同じパス の HRPT 画像の同一サンプルを次章に述べる方法によ り特定して調査し、周回番号 15388, APT チャネル A (AVHRR CH.2) に対して X = 11.5667MI+1.1211, 周回番号 15402, APT チャネル A (AVHRR CH.2) に 対して X = 11.6667MI - 1.61778 を得た. この調査 はチャネル A, Bの違いには関係しない.よって,表1 は公称値[6]と一致するため、AVHRR データの上位 (MSB) 8ビットを同表に示すように推定する.標準 階調値8に対する MSB8ビット(推定値)を10ビッ ト化して,

$$X = \frac{11111111_{(2)} \times 2^2}{87.0} MI = 11.7241 MI$$
 (1)

として,変調度 MI を相当する AVHRR カウント X

表1 標準階調値と変調度推定値 Table 1 Gray scal wedge level and modulation index estimated.

	Modulation	MSB 8bit	Modulation	
	index		index	
	(nominal)	(estimated)	(estimated)	
Zero	0.0	00000000	0.00	
modulation	0.0	00000000	0.00	
Wedge1	10.6	00011111	10.58	
Wedge2	21.5	00111111	21.49	
Wedge3	32.4	01011111	32.41	
Wedge4	43.3	01111111	43.33	
Wedge5	54.2	10011111	54.25	
Wedge6	65.2	10111111	65.16	
Wedge7	76.0	11011111	76.08	
Wedge8	87.0	11111111	87.00	

表2 衛星搭載黒体炉温度の比較 Table 2 Comparison of the inner thermal target temperature.

	T_1	T_2	T_3	T_4	$T_{\overline{\mathrm{ITT}}}$
MI[%]	24.2	24.8	24.7	25.5	
T _{ITT} [K], obtained from ours.	291.2	291.6	291.6	292.1	291.6
T _{ITT} [K], obtained from Nelson's.	291.4	291.8	291.8	292.2	291.8

に直し、以後 AVHRR の温度較正手順を準用する [図 1(B)]. すなわち、等価 AVHRR カウントに変換した画 素レベルを、高温、低温参照点間の直線内挿により放 射エネルギー量に変換する [図 1 (D)]. つぎに、放射エ ネルギー量を温度に変換する [図 1 (E)]. 更に、Nelson は全く考慮していないが、AVHRR の非線形性の補 正を行う [図 1 (F)]. この補正量は僅少であることと、 ITT の温度に依存して変動するため手順が複雑にな り、Nelson は温度変換過程に盛り込まなかったものと 思われる.シーン温度 T_{scene} (= 205, 215,..., 320 K), ITT の温度 T_{ITT} (= 10, 15, 20°C) に対する AVHRR の非線形補正量 ΔT_{Error} (T_{scene} , T_{ITT}) が、NOAA-NESDIS から公表されている [6], [12], [13]. これより 次の手順により、内挿して図 1 (F) の温度に対する補 正量を求める.

(1) 各 T_{scene} (= 205, 215, ..., 320 K) ごとに, ΔT_{Error} (T_{scene} , T_{ITT}) を最小 2 乗法により T_{ITT} (= 10, 15, 20°C) の 2 次式で近似し, $T_{\text{ITT}} = T_{\overline{\text{ITT}}}$ の場 合の補正量を内挿して求める.

(2) $\Delta T_{\text{Error}} (T_{\text{scene}}, T_{\overline{\text{ITT}}})$ を最小2乗法により $T_{\text{scene}} (= 205, 215, \dots, 320 \text{ K}) の4 次式で近似する.$

(3) 図1(E)から得られる温度 T に、この近似式 より求まる補正量 $\Delta T_{\text{Error}} (T, T_{\overline{\text{ITT}}})$ を加える.

3.3 温度変換法の精度検証

以上により、Nelsonの図式温度変換法を使わない アップデート可能なオンライン処理に適した温度変換 手法が確立できた。この変換法の精度を ITT の温度

- 図 2 Nelson の図式解法 [5]と提案法により得た温度の比 較: NOAA-11 1991/9/20, 周回番号 15388
- Fig. 2 Comparison of the temperature derived from Nelson's chart oriented method [5] with our proposed method: NOAA-11 20 Sept. 1991, revolution number 15388.

図 3 非線形補正量: NOAA-11 1991/9/20, 周回番号 15388 Fig. 3 Nonlinearity corrections: NOAA-11 20 Sept. 1991, revolution number 15388.

において検証した.周回番号 15402 の NOAA-11 衛星 の APT チャネル B (AVHRR CH.4) に適用して ITT の温度 $T_1 \sim T_4$ K を推定した結果と,Nelson の図式解 法により得た結果とを表 2 に比較している.4 機ある 白金測温抵抗体の平均値は非常によく一致しており, その差は約 0.2 K である.

つぎに図2に周回番号15388のNOAA-11衛星の APT チャネルB(AVHRR CH.4)に適用して,各標 準階調番号に対して両温度変換法により得られた温度 を比較している。Nelsonの図式解法はAVHRRの非 線形補正を行わないため,図3に示すAVHRRの非 線形補正量がそのまま誤差に反映しており,標準階調 値が2.6より小さい(温度が約30°Cより高い)場合 には,約3°C以上低い温度を示す。

4. 温度精度推定

APT 画像から得られる温度の精度は観測対象や AVHRR の視野角により異なる.よって、画像全体の 平均精度よりはむしろ精度の最良値を掌握しておく必 要がある.気象庁気象衛星センタから CCT で提供さ れた HRPT 画像を比較の基準とし、我々が直接受信 した APT 画像の温度精度を検証した.

4.1 比較データの準備

データの比較にあたっては、APT 画像が生成される もととなった HRPT 画像の画素を特定しなければな らない。APT 画像は MIRP によって AVHRR から間 引き操作によって生成される。すなわち MIRP で、3 本ごとに走査線が抽出され、地球の球面ひずみを除去 するため、走査線データは図4に示すように AVHRR

図 4 MIRP における HRPT (AVHRR) から APT を生 成する間引き操作の概念図

Fig. 4 Conceptual illustrations of the thinning out operation to produce APT from HRPT (AVHRR) by MIRP.

の走査角により五つの領域ごとに独立した平均化処 理が行われる.このとき,走査線の両端領域(第5領 域)では平均化処理は行われない.低域フィルタによ り高周波成分が除去された後,APT 画像が送出され る.よって,APT 画像の第5領域はフィルタによって 除去される高周波成分を除いて,HRPT 画像と同じ走 査線方向の空間分解能を有す.我々は,ここに着目し て AVHRR の走査角の ±48.8° から ±55.4°の範囲で 得られる第5領域において比較を試みた.走査線当り 909 画素から構成される APT 画像においては,この領 域は画素番号 1-121 および 789-909 に相当する.また, 2048 画素から構成される HRPT 画像においては,画 素番号 1-121 および 1928-2048 に相当することになる.

我々は、APT 画像データを独立同期方式の受信シ ステムで、1 次元時系列データとして取得している. 受信完了後、テンプレートマッチングにより各走査線 の開始端にある位相同期信号を検出して、2 次元画像 として再配置し、ドップラー弓なりひずみのない画像 を構成する.受信信号レベルは、受信システムの復 調器の非線形性、経時変化等の影響を補償するため、 画像データのテレメータフレームに含まれている標 準階調を使って階調値に変換する.比較のため、まず 対応する走査線対を抽出する.APT 走査線と、すべ ての HRPT 走査線との間の相互相関係数を算出し、

図 5 NOAA-11 赤外チャネル画像の第 5 領域: 左から, APT, HRPT, HRPT, APT. 1991/9/20, 周回番 号 15388

Fig.5 The region number five of NOAA-11 infrared channel imagery: from left to right, APT, HRPT, HRPT and APT. 20 Sept. 1991, revolution number 15388.

相関係数の最も大きい HRPT 走査線を,対応する走 査線として抽出する. つぎに各走査線の第5領域に 属す画素を抽出する. NOAA-11の北上パス(周回番 号 15388)から選択した領域の, APT チャネル Bと HRPT (AVHRR) チャネル 4 を図5 に示している. 左からそれぞれ, APT の走査終了端, HRPT の走査 終了端の第5領域, HRPT の走査開始端, APT の走 査開始端の第5領域である.

比較のために準備した走査線データのプロフィルを 図6に示している。

4.2 比較実験

走査線の第5領域の全データ値を相互に調査し分 布図を描いた。領域縁部の10画素を除外し、APT 画像の画素番号11-111,および799-899に相当する画 素,HRPT 画像においては画素番号11-111,および 1938-2038の画素を相互に比較した。1,024本の走査線 を比較し図7,図8に示すA/Dカウント値の分布図を 得た。図9,図10には、APT 画像とHRPT 画像か ら得られた温度を比較している。-40~+25°Cの温度 範囲について調査した結果、0~+25°Cにおいては標 準偏差2°C以内で温度推定可能であるが、0°C以下に おいては、標準偏差が4~7°Cに増加することが明ら かになった。

4.3 議 論

(1) 調査したデータは 1991 年 6 月期のものであ

(b) Profile of scanning line, the trailing portion of the scan.

図 6 APT と HRPT の走査線プロフィル: NOAA-11 1991/9/20, 周回番号 15388

Fig.6 Profile of scanning line of APT and HRPT: NOAA-11 20 Sept. 1991, revolution number 15388.

- 図7 APT チャネル Bと HRPT チャネル 4の A/D カウン ト値散布図: NOAA-11 1991/9/20, 周回番号 15388
- Fig. 7 Scatter chart of A/D counts obtained from APT-CH.B and HRPT-CH.4: NOAA-11 20 Sept. 1991, revolution number 15388.

図 8 APT チャネル B と HRPT チャネル 4 の A/D カウン ト値散布図: NOAA-11 1991/9/21, 周回番号 15402

Fig. 8 Scatter chart of A/D counts obtained from APT-CH.B and HRPT-CH.4: NOAA-11 21 Sept. 1991, revolution number 15402.

図9 APT チャネル Bと HRPT チャネル 4 から得た温度 と標準偏差: NOAA-11 1991/9/20, 周回番号 15388 Fig.9 Brightness temperature and its standard deviation obtained from APT-CH.B and HRPT-CH.4: NOAA-11 20 Sept. 1991, revolution number 15388.

る.得られた結果は季節変動にはほとんど影響されない.

(2) 調査は走査線の第5領域に限定した.他の領 域は MIRP による平均化操作が加わるため,推定精度 は更に低下する.よって本論文の目的には十分である.

(3) APT 画像はアナログ方式で伝送されるため, 温度推定精度は受信システムの特性に依存する.特に 主搬送波(FM)復調器,副搬送波(DSB)復調器,お よびそれに続く低域フィルタの仕様設計が問題になる. 我々は,これらの定量化が困難であるため,全走査線 の比較を試み問題を回避した.得られた結果は受信シ

図 10 APT チャネル Bと HRPT チャネル 4 から得た温度 と標準偏差: NOAA-11 1991/9/21, 周回番号 15402

Fig. 10 Brightness temperature and its standard deviation obtained from APT-CH.B and HRPT-CH.4: NOAA-11 21 Sept. 1991, revolution number 15402.

ステムのシステム誤差を含んだものになっているが, 0~+25°Cの範囲は海表面,陸域等比較的温度こう配 の緩い領域が観測の対象であるので,これらの影響が 少なく結果の信頼性は高い.しかし0°C以下の観測対 象は大部分が雲域であり,これらの影響が相対的に大 きい.

5. む す び

APT 画像を科学計測用データとして高度に利用す るためには,解明しなければならない点が多く残留し ている.本論文では,まず温度変換過程について検討 し,AVHRR の温度較正手順を準用した温度変換手法 を提案した.APT 画像の温度変換法は,TIROS-N に 対する Nelson 提案以来更新されていない.本手法は, その後打ち上げられたノアシリーズ衛星に適用でき, パーソナルコンピュータをベースにした受信システム でオンライン温度変換が可能である.

APT 画像により得られる温度精度は、観測対象や AVHRR の視野角により異なるので、画像全体の平均 精度よりはむしろ精度の最良値を掌握しておくほうが 有用である.我々は、APT 画像が生成される過程を 解析し、走査線の両端の領域では APT 画像と HRPT 画像は同一の走査線方向空間分解能を有し、精度の最 良値はこの領域において得られること、更にこの領域 においては幾何学的ひずみ補正が回避できることに 着目して相互の比較を試みた.-40~+25°C の温度範 囲について調査した結果、APT 画像で達成できる温 度精度は、MIRPによる平均操作や受信システムの動 特性等により支配されることが判明した.すなわち、 0~+25°Cの範囲は、海表面、陸域等比較的温度こう 配の緩い領域が観測の対象となるため、これらによる 影響が少なく、標準偏差2°C以内で温度推定が可能で ある.一方、0°C以下の観測対象は、大部分が雲域で あり、これらの影響によって急しゅんなレベル変動が 鈍化してしまうため、標準偏差が4~7°Cに増加し、 推定精度が低下することが判明した.よって主たる利 用を、例えば海表面温度観測等に限定すれば有効に活 用できる.

謝辞 比較の基準として使用した HRPT データは, 気象庁気象衛星センタから提供された. 宇部工業高等 専門学校の田中護氏には,測定実験に御援助頂いた. ここに深く感謝する.

文 献

- 西村 司, "NOAA/APT 直接受信による黒潮のモニタ リング," リモートセンシング学誌, vol.6, no.1, pp.57-62, March 1990.
- [2] 大倉 光,西 亮,三輪 了,三嶋宣明,"人工衛星デー タによる海面温度の推定,"信学技報, no.EID93-1, July 1993.
- [3] 山本章義, "船上用 NOAA-APT 受信装置 (カラー海象 ディスプレイ)," 航水研ノート,空と海, no.8, pp.81–95, 1986.
- [4] 藤本 勉, "インターレース NOAA-APT による海霧域の 観察と,統計的テクスチュア特徴に基づく定性化,"リモー トセンシング学誌, vol.15, no.5, pp.34-44, Jan. 1996.
- [5] G. Nelson, "APT IR Channel Calibration," National Environmental Satellite Service, NOAA, U.S. Dept. of Commerce, 1978.
- [6] W. Planet Ed., "Data Extraction and Calibration of TIROS-N/NOAA Radiometers," NOAA TM NESS 107-Rev.1, NESDIS, NOAA, U.S. Dept. of Commerce, 1988.
- [7] B. Wannamaker, "An evaluation of digitized APT data from the TIROS-N/NOAA-A, -J series of meteorological satellites," Int. J. Remote Sensing, vol.5, no.1, pp.133–144, 1984.
- [8] 藤本 勉,田中 護,高浪五男,"画素再配置による気象 衛星 NOAA-APT 画像の精密グリッディング法,"1992 信 学春季全大,分冊 2, no.B-144, p.144, Nov. 1992.
- [9] R. Summers, "Educator's guide for building and operating environmental satellite receiving stations," NOAA-TR-NESDIS 44, NESDIS, NOAA, U.S. Dept. of Commerce, Feb. 1989.
- [10] 藤本 勉,田中 護, "気象衛星ノア画像処理-海面温度 の推定と雲域の除去-,"昭 62 中国連大, no.112210, p.252, Nov. 1987.
- [11] 藤本 勉,田中 護, "気象衛星画像受信システム,"昭 59 中国連大, no.62106, p.112, Nov. 1984.
- [12] W. Popham, "Appendix B to NOAA TM 107 for NOAA-

H/11," NESDIS, NOAA, U.S. Dept. of Commerce, Sept. 1988.

 M. Weinreb, G. Hamilton, S. Brown, and R. Koczor, "Nonlinearity corrections in calibration of Advanced Very High Resolution Radiometer infrared channels," J. Geophy. Res., vol.95, no.C5, pp.7381–7388, May 1990.

(平成8年4月15日受付,6月10日再受付)

藤本 勉 (正員)

昭44山口大大学院修士課程了.現在,宇 部高専・電気助教授.衛星リモートセンシ ングに関する研究に従事.電気学会,他9 学会各会員.

三池 秀敏 (正員)

昭51九大大学院博士課程了.現在,山 ロ大・工・感性デザイン工学科教授.動画 像計測処理に関する研究に従事.工博.情 報処理学会,IEEE,形の科学会,AAAS, 他3学会各会員.