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Abstract 

A ladder lattice model is studied analytically to understand the coupling between the 

acoustic and optical phonons. When the optical phonon becomes soft at a G-point, 

the anticrossing between the two branches takes place. In a simple case, the optical 

spectral intensity vanishes around the anticrossing wave number. The coupled 

spectral function is not a simple superposition of two damped harmonic forms. It is 

shown that the off-diagonal component of static susceptibility for the elastic and 

polar waves is decisive to obtain the correct spectral intensity.  
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1. Introduction 

Softening of optical phonon mode at a G-point is one of the mechanism to induce 

ferroelectricity.[1,2] Raman scattering measurements demonstrated that the soft phonon 

frequency vanished at the ferroelectric transition temperature.[3] Vigorous neutron scattering 

experiments revealed soft optical branches in 1960’s.[4,5] Usually, lattice vibrations have 

been considered to show a damped harmonic oscillator form, which has been helpful to 

represent the phonon spectrum.[6]  

If the optical mode couples with an acoustic phonon, then the spectral function should be 

modified. Couplings between elastic and polarization waves were investigated in late 1960’s 

and early 1970’s to understand complicated spectra observed in BaTiO3, PbTiO3, AlPO4, KDP 

and other crystals, especially around the phase transition.[7-12] 
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On the other hand, interesting dielectric materials called relaxor have been investigated 

widely. A decade ago, a peculiar behavior was found in the optical phonon spectrum of 

relaxor; the soft optical branch disappeared in the long wave-length region around the 

characteristic temperature range of relaxor. This phenomenon was called ‘waterfall’, because 

the dispersion relation looked like a waterfall.[13,14] For a few years, it was considered that 

this is one of the peculiar properties of relaxor. But recently the similar behavior of the optical 

phonon has been reported in pure crystal NaNbO3,[15] whose dispersion relation resembles 

that of KNbO3.[16] These facts may suggest that the waterfall-like dispersion is not 

characteristic in relaxor but may be popular in dielectric crystals under some conditions. 

Recently we have studied a coupling between the acoustic and optical phonons in a simple 

lattice model, called ladder lattice, that can display soft optical phonons.[17] It was found that 

the spectral intensity of the optical mode vanishes around the anti-crossing with the acoustic 

branch. Such disappearance of the optical branch has not been discussed previously. In order 

to investigate what is difference between the previous study and ours, we reinvestigate the 

ladder lattice model from the point of view of the traditional treatment of the coupling. 

 

2. Ladder Lattice 

A unit cell of ladder lattice is composed of two kind of atoms, whose displacements are 

demoted by nu  and nv , where n is the number of the cell. The unit cell may be simple or 

base centered form as shown in Fig. 1(a). Two kinds of atoms are denoted by open and closed 

circles, respectively. If a transverse wave propagates along the horizontal line and the atomic 

displacement is in phase within each layer as shown with arrows, then the lattice is equivalent 

of a linear chain represented in Fig. 1(b). The equations of motion are written as following:  
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where 0K , 1K  and 2K  are coupling constants, and 1g  and 2g  are damping coefficients 

for mass m and M atoms, respectively. Even if the mass M atom lies at other position in the 

unit cell, for example at body center, this model can be modified easily. 

  The dispersion relation consists of two branches; acoustic and optical ones. The optical 
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frequency at a G point, 
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may be lower than the zone boundary frequency of the acoustic branch, if the coupling 0K  

between the two kinds of atoms is small enough. Then the anticrossing between optical and 

acoustic branches may happen. 

In our previous paper, we used the phonon normal coordinates as representative variables 

to represent spectral function. Here let’s consider the coordinate of the center of mass and the 

relative coordinate which are defined as 
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Assuming the periodic boundary condition, we perform the Fourier transformation of (1) and 

(3) as iqn

q
qn

iqn

q
qn ex

N
xeX

N
X pp 22 1,1 åå ==  , and obtain the following equations; 

0

0

oa
2

oo

ao
2

aa

=D+G++G+

=D+G++G+

qqqqq

qqqqq

XXxxx

xxXXX




w

w
.     (4) 

Here, the wave number dependent coefficients are defined as; 
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Eqs. (5) and (6) give bare acoustic and optical phonon frequencies, respectively, if the 

coupling coefficient (7) is neglected. Figure 2 demonstrates the dispersion relation when the 

damping terms are neglected. The broken lines indicate (5) and (6); uncoupled dispersion. 

When the coupling coefficient (7) works, the anticrossing of the acoustic and optical branches 
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can be recognized as shown by solid curves.  

 

3. Spectral Function 

  The neutron (or light) scattering intensity by phonon is represented with the use of the 

relaxation function as[18] 
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where the dynamical structure factor mf  of mode m is given explicitly as the following; 

21
21

WW
X ebebf -- +=   and  21

21
WW

x eb
M
meb

m
Mf -- -= .   (10) 

Here 1b , 1W  and 2b , 2W  are the neutron scattering length and the Debye-Waller factor of 

atoms of mass m and M, respectively. 

  The Laplace transformation of the relaxation function of X and x, for example, is defined as 
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From the Langevin-type eq. (4), we obtain the following relation for the relaxation functions; 
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Here  

qq XXXX -º* ,  etc.       (13) 

are the static susceptibility, and are calculated exactly for the ladder model. It is easily shown 

that the off-diagonal component *Xx  is vanishing at a G-point, however, the term makes 

an important effect on the spectral function if the anticrossing between the acoustic and 

optical branches takes place.  

  The contour maps of the scattering intensity are plotted in Fig. 3. The model parameters are 

m=1, M=2, 1K =0.05, 2K =2, 1g =0.2, 2g =0.15, 1b =2, 2b =1 and 21 WW = =0. With 

decreasing 0K , the optical frequency )0(optw  decreases with eq. (2). The anticrossing 
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between two branches takes place at a wave number xq , around where the optical phonon 

intensity disappears. If the optical phonon is soft enough at a G-point, the weak optical mode 

is immersed under the wing of the acoustic branch; however, optical phonon exists anyhow. 

 

4. Discussions 

  In the above calculation, we chose (2) as the representative variables. These coordinates 

correspond to the elastic and polarization waves in the traditional theories. Another choice of 

variables is phonon normal coordinates )1(qQ  and )2(qQ  as in our previous paper.[17] The 

similar relation holds for the relaxation function 

 )0()(),( )()(

0

nmw
mn w qq

ti QtQedtq -
-¥

ò=X      (14) 

as 

 

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷÷
ø

ö
çç
è

æ
G+G

GG+
=

=÷÷
ø

ö
çç
è

æ
XX
XX

÷÷
ø

ö
çç
è

æ

G+-G
GG+-

2)2(

2)1(

2221

1211

2221

1211

22
22

21

1211
22

0

0

)2(
)1(

Q

Q

i
i

ii
ii

w
w

wwww
wwww

 .   (15) 

The equation form of (12) and (15) are similar, but (15) is simpler because the last matrix of 

the right hand side is diagonal. The explicit matrix elements in (15) have been given in our 

previous paper. 

Since these two set of coordinates are related by linear transformation with each other, and 

the dynamical equation (1) is linear on the coordinates, we can expect the same spectral 

intensity for both formulations. This is true, and we get the same spectral intensity both from 

(12) and (15), so far as the off-diagonal element in the right hand side of (12) is taken into 

account. 

However, if the off-diagonal component *Xx  in (12) is neglected, the spectral intensity 

differs a little. A numerical result is demonstrated in Fig. 4. The left figure is the correct 

intensity contours given from either (12) or (15). But the right one is calculated by omitting 

the off-diagonal component *Xx . The dispersion frequencies manifested by the ridge lines 
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are almost identical with each other formulations. The distinguished difference is the 

vanishing intensity of the optical branch around the anticrossing wave number. 

As shown in the previous paper, vanishing optical intensity stems from the wave number 

dependence on the oscillator strength )(2 qf  of the optical mode in (9);  

 qq cossin)( 21 21
2

WW e
M

be
m

bqf -- +-= ,     (16) 

where qsin  and qcos  are the matrix elements to diagonal the original bilinear equation (1) 

into the normal coordinates of phonons. On the other hand, xf  given by (10) is a constant. 

Therefore the coupling between X and x through the off-diagonal element *Xx  in (9) 

should not be neglected except for a G-point where *Xx =0, if the optical branch anticrosses 

with the acoustic branch. 

The anticrossing point in our ladder lattice is a wave number that satisfies[17] 

 0cossin
=+-

Mm
qq ,       (17) 

so the vanishing of the optical phonon intensity does not coincide exactly with the 

anticrossing. It depends on scattering lengths and Debye-Waller factors, however, the lengths 

and factors usually take the same order of magnitude. Therefore we could expect that the 

optical phonon intensity may vanish around the anticrossing point. Of course the expression 

(16) depends on the unit cell structure in actual crystals. 

Any way, in order to obtain the soft phonon frequency experimentally, the fitting function 

must be carefully considered, if the soft optical mode anticrosses with the acoustic mode, as 

in the case of ferroelectric transition of displacive-type character. The waterfall-like spectra in 

some perovskite crystals will be explicitly investigated in near future. 
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Figure 1.  Unit cell of ladder lattice; a three dimensional image (a) and a one dimensional 

image (b).   
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Figure 2.  Dispersion relation of ladder lattice.  Solid lines represent the acoustic and 

optical phonon branches for parameters m=1, M=2, 0K =0.1, 1K =0.2 and 2K =2. Broken 

lines show the uncoupled dispersions aw  and ow  calculated without the D term in (4). 

 



Ferroelectrics (submitted June, 2010) 
RUNNING TITLE:  Vanishing Soft Mode in Phonon Spectrum 

9 
 

 

Figure 3.  Contour map of spectral intensity for the ladder lattice model. Log-scaled intensity 

is shown for parameters m=1, M=2, 1K =0.05, 2K =2, 1g =0.2, 2g =0.15, 1b =2, and 2b =1. 

When 1.00 £K , the optical branch with small wave number q<0.1 disappears under the wing 

of the acoustic branch. 

 

 

 

Figure 4. Contour map of the spectral intensity. The optical branch disappears around 

05.0x @q  if the coupling is properly taken into account (left), however, no anomaly is 

manifested without coupling (right). The model parameters are m=1, M=2, 0K =0.1, 1K =0.05, 

2K =2, and 1g = 2g =0.05 (small damping terms are assigned to demonstrate phonon branches 

sharply).  


