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Abstract

We solve the radiative transfer problem analytically in the anisotropic, plane-parallel
atmosphere. Chandrasekhar formalized the radiative transfer process as a simultane-
ous, two-variable, non-linear, integral equation and obtained the analytical solution
of the second approximation for the isotropic plane-parallel atmosphere. We obtain
the second approximation for the anisotropic atmosphere, by integrating the first
approximation multiplied by weighting functions which are products of the scatter-
ing phase functions. We truncate the second approximation and obtain the radiance
at the top of the atmosphere as a quadratic equation with a logarithmic term in the
optical thickness. We evaluate the second approximation of the radiance at the top
of the atmosphere for Rayleigh scattering and the maritime aerosol atmosphere and
compare them with both the exact solution and the single scattering approximation.

1 Introduction

In the area of satellite remote sensing, we observe the radiance at the top of
the atmosphere (TOA) by instruments aboard satellites. And we retrieve the
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Fig. 1. Geometry of Radiative Transfer

surface reflectance and the optical thickness from the observed radiance (in-
version problem). Since there are two unknown variables for one observation,
there must be another observation or a relationship among them. In this pa-
per we ignore the surface reflectance and seek the solution only for the optical
thickness. The retrieval of the surface reflectance will be discussed in other
occasions.

We show the geometry of the radiative transfer process in Fig. 1. The layer
has the vertical optical thickness τ . The direction of the input solar radiance
�i0 is the lower bound, the direction of observation by satellites �i1 is the upper
bound, the direction of the transmitted radiation to the Earth surface�i4 is the
lower bound, the intermediate direction �i2 is the lower bound, and the other
intermediate direction�i3 is the upper bound. We employ the polar coordinate
system in which the zenith angle θ is measured from the zenith and the azimuth
angle ϕ is measured from the projection of the solar direction onto the equator.
We denote the cosine of the zenith angle and the azimuth angle of the direction
�in as μn and ϕn respectively.

We usually employ the generalized reflectance ρ in stead of radiance I,

ρ(τ,�i1,�i0) =
πI

F0|μ0| , (1)

where F0 is the solar irradiance. Since τ is considered sufficiently small to 1,
we have the first approximation,

ρ =
τP (i1, i0)

4|μ0|μ1

, (2)
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where P (�i1,�i0) is the scattering phase function. The first approximation, or
the single scattering approximation has been applied to many analyses. Since
the advent of Earth observing satellites, in particular the retrieval of the ocean
chlorophyll concentration from Coastal Zone Color Scanner (CZCS), we need
a more accurate formula. Many varieties of calculating methods have been
proposed [1,2]. Most of them comprise the forward calculation and the look-
up table. They do not give us the explicit form of ρ by τ . In this paper we
seek the quadratic form of ρ in τ as an explicit form of ρ by τ ,

ρ = c1τ + c2τ
2. (3)

We employ the iterative integration of Chandrasekhar’s integral equation to
solve the inversion problem of the radiative transfer. The radiative transfer
process in the atmosphere is governed by the integral equation, which was
first introduced by Chandrasekhar[3]. He also obtained the explicit solution of
radiative transfer in the second approximation for the isotropic plane-parallel
atmosphere. We have obtained the explicit solution of the third approxima-
tion in the isotropic plane-parallel atmosphere [7]. In this paper we extend the
second approximation developed by Chandrasekhar to the anisotropic atmo-
sphere.

In Chandrasekhar’s integral equation, there are two unknown functions: the
scattering function, S(τ,�i1,�i0) and the transmitted function, T (τ,�i4,�i0), for
which we seek the solutions (section two). We solve this simultaneous in-
tegral equation by successive iteration. The first approximation corresponds
to the single scattering approximation. Substituting the first approximation
into the integration in the original equations, we obtain the second iteration.
Adding the first approximation to the second iteration, we obtain the second
approximation for S2(τ,�i1,�i0) and T2(τ,�i4,�i0). We can continue this iterating
process and obtain series Sn(τ,�i1,�i0) and Tn(τ,�i4,�i0). If the series Sn(τ,�i1,�i0)
and Tn(τ,�i4,�i0) converge as n approaches to ∞, it satisfies Chandrasekhar’s
integral equation (subsection 3.1). We decompose the second iteration into a
power series expansion in (−τ) and obtain the quadratic form of the scattering
function (subsection 3.2).

In the process to evaluate S2(τ,�i1,�i0), we often encounter a sort of integration,

U0(τ,�i0) =

1∫

0

μ3|μ0|
μ3 + |μ0|(1 − e

− τ
μ3

− τ
|μ0| )

dμ3

μ3

. (4)

Expanding the term in the integral above into a power series in (−τ) and
integrating indefinitelythose, we obtain
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U0(τ,�i0) =

1∫

0

[−(−τ) − (
1

μ3

+
1

|μ0|)
(−τ)2

2!
− · · ·]dμ3

μ3

= [− log μ3(−τ) − (− 1

μ3

+
log μ3

|μ0| )
(−τ)2

2!
− 1

μ3

− · · ·]. (5)

Substituting μ3 = 1 a t the upper integral limit, we can obtain the upper in-
tegral value. And the coefficients of nth power in τ are separately integrated.
However at the lower limit, each integrated term becomes ∞, or has singu-
larities at μ3 = 0. For the lower limit, we must sum up all the terms on the
interval (ε, 1) and then make ε approach to 0. Briefly we can not change the
order of ”lim” and ”

∑
” at the lower integral limit.(subsection 3.3)

The problem of the radiative transfer is, thus, deduced to evaluate the value
of the series expansion at the singularity point. The authors evaluated values
of several series expansions at the singularity point, which are necessary to
obtain the second and third approximation for the isotropic atmosphere [7].

We show that, for the anisotropic atmosphere, we can exchange the order of
”lim” and ”

∑
” for the higher powers of τ . If we can exchange the order, we

can integrate each power in (−τ) separately (subsection 3.3). Based on this
consideration, we show that the coefficients of the quadratic form of the second
iteration expressed as the surface integrations of products of the scattering
phase functions on the half unit sphere (subsection 3.4 and 3.5).

Finally in section four, we evaluate the second approximations numerically
for the Rayleigh scattering and the maritime aerosol atmosphere. And the
results are compared with the single scattering approximation and the exact
solutions.

2 Radiation Transfer Process

The scattered radiance at the top of the atmosphere (TOA), I(0,�i1), is ex-
pressed with the incident intensity I(0, i0) and the scattering function S(τ, i1, i0)
as

I(0,�i1) =
1

4πμ1

∫

L

S(τ,�i1,�i0)I(0,�i0)dΩ0, (6)

where Ω0 is the solid angle subtended around the input direction�i0 and integral
domain is the lower half of the unit sphere. In the same manner the intensity
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transmitted to the Earth surface is expressed as

I(0,�i4) =
1

4π|μ4|
∫

L

T (τ,�i4,�i0)I(0,�i0)dΩ0 + exp(− τ

|μ4|)I(0,�i4). (7)

Chandrasekhar’s integral equation is expressed [3],

(
1

μ1

+
1

|μ0|)S(τ,�i1,�i0) = [1 − exp(
(−τ)

μ1

+
(−τ)

|μ0| )]P (�i1,�i0)

+
∫

U

P (�i1,�i3)S(τ,�i3,�i0)
dΩ3

4πμ3

− exp(− τ

|μ0|)
∫

U

T (τ,�i1,�i3)P (�i3,�i0)
dΩ3

4πμ3

+
∫

L

S(τ,�i1,�i2)P (�i2,�i0)
dΩ2

4π|μ2| − exp(− τ

μ1

)
∫

L

P (�i1,�i2)T (τ,�i2,�i0)
dΩ2

4π|μ2|

+
∫

U

∫

L

S(τ,�i1,�i2)P (�i2,�i3)S(τ,�i3,�i0)
dΩ2

4π|μ2|
dΩ3

4πμ3

−
∫

U

∫

L

T (τ,�i1,�i3)P (�i3,�i2)T (τ,�i2,�i0)
dΩ2

4π|μ2|
dΩ3

4πμ3

, (8)

(
1

|μ4| −
1

|μ0|)T (τ,�i4,�i0) = [exp(− τ

|μ0|) − exp(− τ

|μ4|)]P (�i4,�i0)

+
∫

L

P (�i4,�i2)T (τ,�i2,�i0)
dΩ2

4π|μ2| − exp(− τ

|μ4|)
∫

U

P (�i4,�i3)S(τ,�i3,�i0)
dΩ3

4πμ3

+ exp(− τ

|μ0|)
∫

U

S(τ,�i4,�i3)P (�i3,�i0)
dΩ3

4πμ3

−
∫

L

T (τ,�i4,�i2)P (�i2,�i0)
dΩ2

4π|μ2|

+
∫

U

∫

L

S(τ,�i4,�i3)P (�i3,�i2)T (τ,�i2,�i0)
dΩ2

4π|μ2|
dΩ3

4πμ3

−
∫

U

∫

U

T (τ,�i4,�i2)P (�i2,�i3)S(τ,�i3,�i0)
dΩ2

4π|μ2|
dΩ3

4πμ3

. (9)

The cosine of the zenith angle in the lower bound directions, which has a
”even index”, is negative. For the convenience of the following evaluation, we
replace μn by a new parameter, μ−

n which is equal to −μn for n = even. Using
the new variables, the integration on the lower half sphere is changed to the
integration on the upper half unite sphere, shown below

∫

L

f(μ2, ··)dΩ2

4π|μ2| =

2π∫

0

dϕ2

−1∫

0

f(μ2, ·, ·)(−dμ2)

4π(−μ2)

5



=

2π∫

0

dϕ2

1∫

0

f(−μ−
2 , ·, ·)dμ−

2

4πμ−
2

=
∫

U

f(−μ−
2 , ·, ·) dΩ−

2

4πμ−
2

. (10)

Since we adopt the new variable μ−
2 and the integral domain is changed to the

upper half sphere, we ommite the U for the integral domain unless the domain
has a special meaning. The cosine of the angle between the upper and lower
bound directions is thus expressed as below

cos(θe,o) = μeμo + (1 − μ2
e)

1/2(1 − μ2
o)

1/2 cos (ϕe − ϕo)

= −μ−
e μo + (1 − (μ−

e )2)1/2(1 − μ2
o)

1/2 cos (ϕe − ϕo). (11)

The phase function is assumed as a function of the angle θmn between the
directions m and n and is normalized in the whole solid angle 4π. We express
the phase function P (im, in) as below,

P (im, in) = P (cos θmn) =
∞∑

j=0

wjPj(cos θmn) (12)

where Pj(x) is the Legendre function of the first kind.

The input from the upper surface is the solar irradiance, F0, and is given with
the Dirac delta function

I(0,�i) = F0δ(�i −�i0). (13)

Substituting the solar irradiance, we obtain the generalized reflectance from
the upper layer

ρ(0,�i1) =
S(τ,�i1,�i0)

4μ1|μ0| . (14)

3 Second Approximation

3.1 Azimuth Integration and Decomposition of Second Iteration

The simultaneous integral equations of radiative transfer can be solved by
successive iteration. The first iterations are the first terms on the right-hand
side in equations (8) and (9), expressed below
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S1(τ,�i1,�i0) = (
1

μ1

+
1

μ−
0

)−1[1 − exp(
(−τ)

μ1

+
(−τ)

μ−
0

)]P (�i1,�i0), (15)

T1(τ,�i4,�i0) = (
1

μ−
4

− 1

μ−
0

)−1(exp(− τ

μ−
0

) − exp(− τ

μ−
4

))P (�i4,�i0). (16)

A new function U1(τ, μ0, μ1) is defined as

U1(τ, μ1, μ
−
0 ) = (

1

μ1

+
1

μ−
0

)−1[1 − exp(
(−τ)

μ1

+
(−τ)

μ−
0

)]. (17)

Using U1(τ, μ
−
0 , μ1), T1(τ,�i4,�i0) is rewritten as

T1(τ,�i4,�i0) = exp(− τ

μ−
0

)U1(τ, μ
−
4 , (−μ−

0 ))P (�i4,�i0). (18)

Substituting the first iterations into the integrals in the original equations, the
second iterations, ΔS2(τ,�i1,�i0) is expressed

ΔS2(τ,�i1,�i0) = (
1

μ1

+
1

μ−
0

)−1

[
∫

P (�i1,�i3)P (�i3,�i0)U1(μ
−
0 )

dΩ3

4πμ3

−
∫

P (�i1,�i3)P (�i3,�i0)U1(−μ1)
dΩ3

4πμ3

+
∫

P (�i1,�i2)P (�i2,�i0)U1(μ1)
dΩ−

2

4πμ−
2

−
∫

P (�i1,�i2)P (�i2,�i0)U1(−μ−
0 )

dΩ2

4πμ−
2

−{exp(− τ

μ−
0

− τ

μ1

) − 1} ×

{
∫
P (�i1,�i3)P (�i3,�i0)U1(−μ1)

dΩ3

4πμ3

+
∫
P (�i1,�i2)P (�i2,�i0)U1(−μ−

0 )
dΩ−

2

4πμ−
2

}

+
∫ ∫

P (�i1,�i2)P (�i2,�i3)P (�i3,�i0)U1(μ1, μ
−
2 )U1(μ3, μ

−
0 )

dΩ−
2

4πμ−
2

dΩ3

4πμ3

−
∫ ∫

P (�i1,�i3)P (�i3,�i2)P (�i2,�i0)U1(−μ−
0 , μ−

2 )U1(−μ1, μ3))
dΩ−

2

4πμ−
2

dΩ3

4πμ3

]

−{exp(− τ

μ−
0

− τ

μ1

) − 1} (19)

×
∫ ∫

P (�i1,�i3)P (�i3,�i2)P (�i2,�i0)U1(−μ−
0 , μ−

2 )U1(−μ1, μ3))
dΩ−

2

4πμ−
2

dΩ3

4πμ3

]

where the arguments in the functions U(τ,�i1,�i0) are omitted except for the
significant ones.
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Using the addition theorem of the Legendre function, we decompose the phase
function into the the Bi-Legendre functions, Pm

l (μ3), as

P (�i1,�i3) = {
∞∑

m=0

(2 − δ0,m)(
∞∑

l=m

wm
l Pm

l (μ1)P
m
l (μ3)) cos m(ϕ3 − ϕ1)}(20)

P (�i3,�i0) = {
∞∑

m=0

(2 − δ0,m)(
∞∑

k=m

wm
k Pm

k (μ3)P
m
k (−μ−

0 )) cos m(ϕ3 − ϕ0)},(21)

where δ0,m and wm
l are given as below,

δ0,m = 1 (m = 0), δ0,m = 0 (m �= 0), (22)

wm
l = wl

(l − m)!

(l + m)!
. (23)

Due to the orthogonality of the functions Pm
l (μ3) cos m(ϕ3 − ϕ1) for different

m, we obtain the integration

1

2π

2π∫

0

P (�i1,�i3)P (�i3,�i0)dϕ3

=
∞∑

m=0

(2 − δ0,m)(
∞∑

l,k=m

(−1)kwm
l wm

k Pm
l (μ1)P

m
k (μ−

0 )Pm
l (μ3)P

m
k (μ3))

× cos m(ϕ1 − ϕ0). (24)

In the same manner, we obtain the integration of the triple product of phase
functions

2π∫

0

2π∫

0

P (�i1,�i2)P (�i2,�i3)P (�i3,�i0)
dϕ2

2π

dϕ3

2π

=

2π∫

0

2π∫

0

[
∞∑

m=0

(2 − δ0,m){
∞∑

l=m

wm
l Pm

l (μ1)P
m
l (−μ−

2 )} cos m(ϕ2 − ϕ1)]

× [
∞∑

m=0

(2 − δ0,m){
∞∑

l=m

wm
l Pm

l (−μ−
2 )Pm

l (μ3)} cos m(ϕ3 − ϕ2)]
dϕ2

2π

× [
∞∑

m=0

(2 − δ0,m){
∞∑

l=m

wm
l Pm

l (μ3)P
m
l (−μ−

0 )} cos m(ϕ0 − ϕ3)]
dϕ3

2π

=
∞∑

m=0

(2 − δ0,m) cos m(ϕ3 − ϕ1)[
∞∑

a,b,c=m

(−1)a+b+c{

8



wm
a wm

b wm
c Pm

a (μ1)P
m
a (μ2)P

m
b (μ2)P

m
b (μ3)P

m
c (μ3)P

m
c (μ0)}]. (25)

We define an integration, Qm
l,k(τ, μ

−
0 ), as

Qm
l,k(τ, μ

−
0 ) =

1∫

0

Pm
l (μ3)P

m
k (μ3)U1(τ, μ1, μ

−
0 )

dμ3

μ3

. (26)

Using Qm
l,k(τ, μ

−
0 ), we obtain ΔS2

ΔS2(τ,�i1,�i0) =
1

2
(

1

μ1

+
1

μ−
0

)−1
∞∑

m=0

(2 − δ0,m) cos m(ϕ1 − ϕ0) ×

[
∞∑

l,k=m

wm
l wm

k {Pm
l (μ1)P

m
k (μ−

0 )(−1)k{Qm
l,k(τ, μ

−
0 ) − (−1)l+kQm

l,k(τ,−μ−
0 )}

+
∞∑

l,k=m

wm
l wm

k {Pm
l (μ1)P

m
k (μ−

0 )(−1)l{Qm
l,k(τ, μ1) − (−1)l+kQm

l,k(τ,−μ1)}

−{exp(− τ

μ1

− τ

μ−
0

) − 1}

×
∞∑

l,k=m

wm
l wm

k {Pm
l (μ1)P

m
k (μ−

0 )(−1)l{Qm
l,k(−μ−

0 ) + (−1)l+kQm
l,k(−μ1)}

+
1

2

∞∑
a,b,c=m

(−1)a+b+cwm
a wm

b wm
c Pm

a (μ1)P
m
c (μ−

0 )Qm
a,b(τ, μ1)Q

m
b,c(τ, μ

−
0 )

− 1

2

∞∑
a,b,c=m

(−1)bwm
a wm

b wm
c Pm

a (μ1)P
m
c (μ−

0 )Qm
a,b(τ,−μ1)Q

m
b,c(τ,−μ−

0 )]

−{exp(− τ

μ−
0

− τ

μ1

) − 1}

× 1

2

∞∑
a,b,c=m

(−1)bwm
a wm

b wm
c Pm

a (μ1)P
m
c (μ−

0 )Qm
a,b(τ,−μ1)Q

m
b,c(τ,−μ−

0 )]. (27)

In the above equation, the sign of each term is determined by the choice of
l, k, a, b, c. This determination originates from the even/odd characteristic of
the Bi-Legendre functions.

3.2 Zenith Integration of Second Iteration

The second iteration ΔS2(τ, i1, i0) is expressed in equation (27) and its com-
ponent, Qm

l,k(τ, μ), has power a series expansion in τ . In order to obtain the
quadratic form of ΔS2(τ, i1, i0), we decompose Qm

l,k(τ, μ
−
0 ) into the power se-
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ries expansion in (−τ). First we integrate U0
2 (τ, μ−

0 ) and is evaluated in the
author’s previous work [7] given below,

U0
2 (τ, i−0 ) =

1∫

0

U1(τ, μ, μ−
0 )

dμ

μ
=

1∫

0

(1 − exp(−τ

μ
− τ

μ−
0

))
μ−

0 dμ

μ−
0 + μ

(28)

= (−τ)[(C + eax(τ))
∞∑

r=0

(−τ/μ0)
r

(r + 1)r!
−

∞∑
r=0

(
∞∑

n=0

(−τ)n

(r + 1 + n)n!
)
(−τ/μ0)

r

(r + 1)r!
],

where the constant C and the function eax(p) are given as

C = γ + log τ = 0.5772 · · · + log τ, (29)

eax(p) =
∞∑

n=1

(−1)npn

nn!
, (30)

where γ is the Euler constant.

The function U0
2 (τ, μ0) is truncated as

U0
2 (τ, μ−

0 ) = (C − 1)(−τ) + {1 + (C − 1

2
)

1

μ−
0

}(−τ)2

2!
+ · · ·. (31)

We integrate the moment integration, Un
2 (τ, μ−

0 ), as below,

Un
2 (τ, μ−

0 ) =

1∫

0

μn
3U1(τ, μ3, μ

−
0 )

dμ3

μ3

. (32)

Un
2 (τ, μ−

0 ) is evaluated by partial integration and recurrence relationships (refer
to appendix 2). The coefficients of the series expansion of Un

2 (τ, μ−
0 ) in the

power (−τ) are also polynomials of 1/μ−
0 . The truncated form of Un

2 (τ, μ−
0 )

for n ≥ 1 is expressed below.

Un
2 (τ, μ−

0 ) = (−1)n(−τ) + un
2,0

(−τ)2

2!
+ un

2,1

(−τ)2

2!

1

μ−
0

+ · · ·, (33)

where un
l,k is the coefficient of (−τ)n

n!(μ−
0 )k and is given in the appendix 2. It is noted

that the coefficient of the first power (−τ) does not include μ−
0 . Substituting

Un
2 into equation(26), we obtain Qm

l,k(τ, μ) as a power series expansion in (−τ)

10



Qm
l,k(τ, μ0) =

1∫

0

mlk∑
n=0

amlk
n μn

3U1(τ, μ3, μ
−
0 )

dμ3

μ3

= (
mlk∑
n=0

amlk
n un

1,0)(−τ) + (
mlk∑
n=0

amlk
n un

2,0)
(−τ)2

2!
+ (

mlk∑
n=0

amlk
n un

2,1)
(−τ)2

2!

1

μ−
0

+ · · ·

= qmlk
1,0 (−τ) + qmlk

2,0

(−τ)2

2!
+ qmlk

2,1

(−τ)2

2!

1

μ−
0

+ · · ·, (34)

where amlk
n is the coefficient of the n degree power of the product of the Bi-

Legendre functions Pm
l (μ3) and Pm

k (μ3). The coefficient qmlk
d,e is given as below,

qmlk
d,e =

mlk∑
n=0

amlk
n un

d,e. (35)

It is noted that the coefficient of the first power (−τ) in Qm
l,k(τ, μ0) does not

include μ−
0 .

Substituting the equation (34) into the first term in the bracket of equation
(27), we obtain following.

Qm
l,k(τ, μ

−
0 )− (−1)l+kQm

l,k(τ,−μ−
0 ) = qmlk

2,1

(−τ)2

2!

2

μ−
0

+ · · · (l + k = even)

= 2qmlk
1,0 (−τ) + 2qmlk

2,0

(−τ)2

2!
+ · · · (l + k = odd) (36)

And for the case (l+k = odd), adding the second term to the above, we obtain
following,

Pm
l (μ1)P

m
k (μ0)(−1)k{Qm

l,k(μ0) − (−1)l+kQm
l,k(−μ0)},

+ Pm
l (μ1)P

m
k (μ0)(−1)l{Qm

l,k(μ1) − (−1)l+kQm
l,k(−μ1)}

= 0
(−τ)2

2!
+ · · ·. (37)

From the first and second terms in equation (27), the first power in (−τ)
vanishes and the second power emerges only for the case (l + k = even).

From the third terms in the bracket of equation (27), we only need the first
power in (−τ), because it is multiplied by another first power in (−τ). Sub-
stituting the equation (34) into this term, we obtain

11



Qm
l,k(−μ0) + (−1)l+kQm

l,k(−μ1) = 2qmlk
1,0 (−τ) + · · ·, (l + k = even)

= 0(−τ) + · · · (l + k = odd). (38)

From the fourth and fifth term, substituting the equation (34) we obtain fol-
lowing,

1

2

∞∑
a,b,c=m

(−1)a+b+cwm
a wm

b wm
c Pm

a (μ1)P
m
c (μ0)Q

m
a,b(μ1)Q

m
b,c(μ0)

− 1

2

∞∑
a,b,c=m

(−1)bwm
a wm

b wm
c Pm

a (μ1)P
m
c (μ0)Q

m
a,b(−μ1)Q

m
b,c(−μ0)

= 0(−τ)2 + · · · (a + c = even)

= [
∞∑

a,b,c=m

(−1)b+1wm
a wm

b wm
c Pm

a (μ1)P
m
c (μ0)q

mab
1,0 qmbc

1,0 ](−τ)2 + · · ·

(a + c = odd) (39)

From the sixth term in the bracket of equation (27), no (−τ)2 term emerges.

Thus we obtain the truncated second iterations,

ΔS2(τ,�i1,�i0)

=
∞∑

m=0

(2 − δ0,m)[
∞∑

(l,k)1

(−1)kwm
l wm

k (qmlk
2,1 − 2qmlk

1,0 )Pm
l (μ1)P

m
k (μ0)

+ 2(
1

μ1

+
1

μ−
0

)−1
∞∑

(a,b,c)2

(−1)b+1wm
a wm

b wm
c qmab

1,0 qmbc
1,0 Pm

a (μ1)P
m
c (μ0)]

× cos m(ϕ1 − ϕ0)
(−τ)2

2!
+ · · ·, (40)

where (l, k)1 denotes l, k ≥ m and l+k is even and (a, b, c)2 denotes a, b, c ≥ m,
a + c is odd.

It is noted that the truncated second iteration does not have a first power in
(−τ). It is also noted that the forth and fifth terms vanish for wa = 0 and
wa = 0 to all the possible combination ofa+c = 0 such as Rayleigh scattering.

3.3 Separated Integration

In this subsection we consider changing order of lim and
∑

in the integration
of the ΔS2. We begin with the integration of Un

2 (τ, i7),
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Un
2 (τ, i7) =

1∫

0

(1 − exp(−τ

μ
− τ

μ7

))
μ7μ

ndμ

μ7 + μ

=− lim
ε→0

1∫

ε

∞∑
m=1

(−τ)m

m!
(

1

μ7

+
1

μ
)m−1μn dμ

μ
. (41)

On the integral interval (ε, 1), we interchange the order of
∫ 1
ε and

∑
and divide

the summation into two parts: one is m ≤ n and the other is m > n

Un
2 (τ, i7) = −

n∑
m=1

[

1∫

0

(
μ

μ7

+ 1)m−1μn−mdμ]
(−τ)m

m!

− (−τ)n lim
ε→0

∞∑
m=1

1∫

ε

(−τ)m

(m + n)!
(

1

μ7

+
1

μ
)m−1(

μ

μ7

+ 1)n dμ

μ
. (42)

The terms of the first part of the summation (m ≤ n) are ordinary integrations
because the minimum powers in the μ in the integrand are equal to or greater
than 0 and have no singularity at μ = 0. We can interchange the order of
”lim” and ”

∑
” for these terms. If the order is possible to exchange, we can

”pick-up” each power in (−τ) separately. In other words, we can integrate the
powers in (−τ) separately. We call this part as a Separated Integration Part
(SIP).

The terms of the second part ( m > n) involve negative powers in μ or log p,
and have singularities at μ = 0. So we can not interchange the order of ”lim”
and ”

∑
” and therefore we can not integrate the terms separately. We call the

second part as latter a Non-Separated Integration Part (NIP). It is needless
to say that the NIP converges as μ approaches to 0, because it is equal to the
converged Un

2 (τ, i6) minus the bounded SIP.

We apply the above observation to equation (27).

3.3.1 The First and Second Terms

Due to the discussion in the previous subsection, we can select only the case
(l + k = even) and pick up the second power in (−τ)2 only. Pm

l (μ3)P
m
k (μ3)

is a polynomial of μ3 and its lower powers for l + k = even are given below
(refer to appendix 2),

Pm
l (μ3)P

m
k (μ3) = a0 + a2μ

2
3 + · · ·, (m + l = even), (43)

= a2μ
2
3 + a4μ

4
3 + · · ·(m + l = odd).

13



The zeroth power of (−τ), a0, is a NIP and the other higher powers of (−τ)
are SIT. Taking account of a0 = Pm

l (0)Pm
k (0), the integration above is then

divided into SIP and NIP as below,

Qm
l,k(τ, μ

−
0 ) = lim

ε→0
Pm

l (0)Pm
k (0)

1∫

ε

U1(τ, μ3, μ
−
0 )

dμ3

μ3

+

1∫

0

(Pm
l (μ3)P

m
k (μ3) − Pm

l (0)Pm
k (0))U1(τ, μ3, μ

−
0 )

dμ3

μ3

. (44)

Substituting the second power of (−τ) in the polynomial U0
2 (p0) into NIP and

truncating SIP into the second power of (−τ), we obtain

Qm
l,k(τ, μ

−
0 ) = [{1 + (C − 1

2
)

1

μ−
0

}Pm
l (0)Pm

k (0)

−
1∫

0

(Pm
l (μ3)P

m
k (μ3) − Pm

l (0)Pm
k (0))(

1

μ3

+
1

μ−
0

)
dμ3

μ3

]
(−τ)2

2!
+ · · ·. (45)

For the case (m + l = odd) the equation (45) holds becuse Pm
l (0)Pm

k (0) = 0.

3.3.2 The Third Term

We select for the case (l + k = even) and pick up the first power of (−τ) only.
We divide the integration into NIP and SIP, in the same as in equation (44).
Substituting the first power of (−τ) in the polynomial U0

2 (p0) into NIP and
truncating SIP into the first power of (−τ), we obtain

Qm
l,k(τ,−μ−

0 ) = [(C − 1)Pm
l (0)Pm

k (0)

−
1∫

0

(Pm
l (μ3)P

m
k (μ3) − Pm

l (0)Pm
k (0))

dμ3

μ3

](−τ) + · · · + · · ·. (46)

For the case (m + l = odd) the equation (46) holds becuse Pm
l (0)Pm

k (0) = 0.

3.3.3 The Fourth and Fifth Terms

We integrate following for the case (a + c = odd),
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1∫

0

1∫

0

Pm
a (μ−

2 )Pm
b (μ−

2 )Pm
b (μ3)P

m
c (μ3)U1(μ1, μ

−
2 )

dμ−
2

μ−
2

U1(μ3, μ
−
0 )

dμ3

μ3

. (47)

The lowest powers of μ−
2 and μ3 for the product Pm

a (μ−
2 ) · ·· are given below

(refer to the appendix 2),

Pm
a (μ−

2 )Pm
b (μ−

2 )Pm
b (μ3)P

m
c (μ3)

= c12(μ
−
2 )(μ3)

2 (m + b = odd, a + b = even),

= c21(μ
−
2 )2(μ3) (m + b = odd, a + b = odd),

= c01(μ3) (m + b = even, a + b = even),

= c01(μ
−
2 ) (m + b = even, a + b = odd).

(48)

For (m+ b = odd) the integration is the product of two SIP: one is for μ−
2 and

the other is for μ3. For (m+ b = even) the integration is a product of one SIP
and NIP. Then the integration is expressed for the four cases in the equation
above:

= [

1∫

0

1∫

0

Pm
a (μ−

2 )Pm
b (μ−

2 )Pm
b (μ3)P

m
c (μ3)

dμ−
2

μ−
2

dμ3

μ3

](−τ)2

+ · · (m + b = odd),

= [−(C − 1)Pm
a (0)Pm

b (0)

1∫

0

Pm
b (μ3)P

m
c (μ3)

dμ3

μ3

+

1∫

0

1∫

0

{Pm
a (μ−

2 )Pm
b (μ−

2 ) − Pm
a (0)Pm

b (0)}Pm
b (μ3)P

m
c (μ3)

dμ−
2

μ−
2

dμ3

μ3

](−τ)2

+ · · (m + b = even, a + b = even),

= [−(C − 1)Pm
b (0)Pm

c (0)

1∫

0

Pm
a (μ−

2 )Pm
b (μ−

2 )
dμ−

2

μ−
2

+

1∫

0

1∫

0

Pm
a (μ−

2 )Pm
b (μ−

2 ){Pm
b (μ3)P

m
c (μ3) − Pm

b (0)Pm
c (0)}dμ−

2

μ−
2

dμ3

μ3

](−τ)2

+ · · (m + b = even, a + b = odd). (49)

3.4 Surface Integration

We can bring back the idea of division of integration to the surface integra-
tion on the unit sphere expressed in equation (19). This division is possible,
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because the integrations in equation (19) are expressed as the summation of
the integrations of the products of Bi-Legendre functions shown in equation
(27). From the nineth integration in equation (19) no second power in (−τ)2

emerges.

3.4.1 The first four integrations

The first integration is divided into SIP and NIP expressed as below,

∫
P (�i1,�i3)P (�i3,�i0)U1(τ, μ

−
0 , μ3)

dΩ3

4πμ3

=
∫
{P (�i1,�i3)P (�i3,�i0) − P (�i1,�i

′
3)P (�i′3,�i0)}U1(τ, μ

−
0 , μ3)

dΩ3

4πμ3

+ lim
μ3→0

∫
{P (�i1,�i

′
3)P (�i′3,�i0)}U1(τ, μ

−
0 , μ3)

dΩ3

4πμ3

. (50)

where �i′3 denotes the projected direction of �i3 onto the equator in the unit
sphere. Substituting the second power of (−τ) in the polynomial U0

2 (p0) and
the truncated term of the second power into equation (50), we can obtain

∫
P (�i1,�i3)P (�i3,�i0)U1(τ, μ

−
0 , μ3)

dΩ3

4πμ3

=−[
∫
{P (�i1,�i3)P (�i3,�i0) − P (�i1,�i

′
3)P (�i′3,�i0)}(

1

μ−
0

+
1

μ3

)
dΩ3

4πμ3

]
(−τ)2

2!

+ {1 + (C − 1

2
)

1

μ−
0

}[
2π∫

0

P (�i1,�i
′
3)P (�i′3,�i0)

dϕ3

4π
]
(−τ)2

2!
. (51)

Substituting the above equations into the first and second integrations in the
bracket in equation (19), we obtain

∫
P (�i1,�i3)P (�i3,�i0)U1(μ

−
0 )

dΩ3

4πμ3

−
∫

P (�i1,�i3)P (�i3,�i0)U1(−μ1)
dΩ3

4πμ3

=−(
1

μ−
0

+
1

μ1

)[
∫
{P (�i1,�i3)P (�i3,�i0) − P (�i1,�i

′
3)P (�i′3,�i0)}

dΩ3

4πμ3

]
(−τ)2

2!

+ (C − 1

2
)(

1

μ1

+
1

μ−
0

)[

2π∫

0

P (�i1,�i
′
3)P (�i′3,�i0)

dϕ3

4π
]
(−τ)2

2!
. (52)

We evaluate the third and fourth integrations in equation (19) in the same
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manner.

3.4.2 The fifth and sixth integrations

The fifth integration is devided into SIP and NIP as below,

−{exp(− τ

μ−
0

− τ

μ1

) − 1}
∫
P (�i1,�i3)P (�i3,�i0)U1(−μ1)

dΩ3

4πμ3

=−2(
1

μ1

+
1

μ−
0

)[(C − 1)

2π∫

0

P (�i1,�i
′
3)P (�i′3,�i0)

dϕ3

4π

−
∫
{P (�i1,�i3)P (�i3,�i0) − P (�i1,�i

′
3)P (�i′3,�i0)}

dΩ3

4πμ3

]
(−τ)2

2!
+ · · ·. (53)

The equation above holds for the two cases described in (46). We can evaluate
the sixth integration in equation (19) in the same manner.

3.4.3 The seventh and eighth integrations

The seventh integration is devided into SIP and NIP as below,

∫ ∫
P (�i1,�i2)P (�i2,�i3)P (�i3,�i0)U1(μ1, μ

−
2 )U1(μ3, μ

−
0 )

dΩ−
2

4πμ−
2

dΩ3

4πμ3

=
∫ ∫

[P (�i1,�i2)P (�i2,�i3)P (�i3,�i0) − P (�i1,�i
′
2)P (�i′2,�i3)P (�i3,�i0)

−P (�i1,�i2)P (�i2,�i
′
3)P (�i′3,�i0)]U1(μ1, μ

−
2 )U1(μ3, μ

−
0 )

dΩ−
2

4πμ−
2

dΩ3

4πμ3

+
∫ ∫

P (�i1,�i
′
2)P (�i′2,�i3)P (�i3,�i0)U1(μ1, μ

−
2 )U1(μ3, μ

−
0 )

+
∫ ∫

P (�i1,�i2)P (�i2,�i
′
3)P (�i′3,�i0)U1(μ1, μ

−
2 )U1((μ3, μ

−
0 )]

dΩ−
2

4πμ−
2

dΩ3

4πμ3

= [
∫ ∫

{P (�i1,�i2)P (�i2,�i3)P (�i3,�i0) − P (�i1,�i
′
2)P (�i′2,�i3)P (�i3,�i0)

−P (�i1,�i2)P (�i2,�i
′
3)P (�i′3,�i0)}

dΩ−
2

4πμ−
2

dΩ3

4πμ3

− (C − 1)
∫ ∫

P (�i1,�i
′
2)P (�i′2,�i3)P (�i3,�i0)

dϕ2

4π

dΩ3

4πμ3

− (C − 1)
∫ ∫

P (�i1,�i2)P (�i2,�i
′
3)P (�i′3,�i0)

dΩ−
2

4πμ−
2

dϕ3

4π
](−τ)2. (54)

The equation above holds for all the cases described in (49). We can evaluate
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the eighth integration in equation (19) in the same manner.

3.5 The Result of the Second Approximation

Expanding the first approximated scattering function into a power series ex-
pansion in τ and truncating up to the second degree, we obtain

S1(τ,�i1,�i0) = [τ − (
1

μ1

+
1

|μ0|)
τ 2

2!
]P (�i1,�i0). (55)

The second iteration is expressed by the integration of the products of the
phase functions as below,

ΔS2(τ,�i1,�i0) = [(3 − 2C)Ie(�i1,�i0) + Iu(�i1,�i0) + Il(�i1,�i0) (56)

+ 2(
1

μ1

+
1

μ−
0

)−1{(C − 1)(Iuu(�i1,�i0) + Ill(�i1,�i0)) + I2
ul(�i0,�i1)}]

(−τ)2

2!
.

The coefficients are evaluated on the half unit sphere (we return the variable
μ−

2 to μ2),

Iu(�i1,�i0) =
∫

U

{P (�i1,�i3)P (�i3,�i0) − P (�i1,�i
′
3)P (�i′3,�i0)}

dΩ3

4πμ3

, (57)

Il(�i1,�i0) =
∫

L

{P (�i1,�i2)P (�i2,�i0) − P (�i1,�i
′
2)P (�i′2,�i0)}

dΩ2

4π|μ2| , (58)

Ie(�i1,�i0) =

2π∫

0

P (�i1,�i
′
3)P (�i′3,�i0)

dϕ3

4π
, (59)

Iuu(�i1,�i0) =
∫

U

2π∫

0

{P (�i1,�i
′
2)P (�i′2,�i3)P (�i3,�i0) − P (�i0,�i

′
2)P (�i′2,�i3)P (�i3,�i1)}dϕ2dΩ3

16π2μ3

,

(60)

Ill(�i1,�i0) =
∫

L

2π∫

0

{P (�i1,�i2)P (�i2,�i
′
3)P (�i′3,�i0) − P (�i0,�i2)P (�i2,�i

′
3)P (�i′3,�i1)}

dϕ3dΩ2

16π2|μ2| ,

(61)

Iul(�i1,�i0) =
∫

U

∫

L

[{P (�i1,�i2)P (�i2,�i3)P (�i3,�i0) − P (�i0,�i2)P (�i2,�i3)P (�i3,�i1)},

−{P (�i1,�i
′
2)P (�i′2,�i3)P (�i3,�i0) − P (�i0,�i

′
2)P (�i′2,�i3)P (�i3,�i1)}, (62)
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−{P (�i1,�i2)P (�i2,�i
′
3)P (�i′3,�i0) − P (�i0,�i2)P (�i2,�i

′
3)P (�i′3,�i1)}]

dΩ2dΩ3

16π2|μ2|μ3

.

Adding the first approximation to the second iteration, we obtain the second
approximation,

S2(τ,�i1,�i0) = P (�i1,�i0)τ − (
1

μ1

+
1

|μ0|)P (�i1,�i0)
(−τ)2

2!
(63)

+ {−2Ie(�i1,�i0) + 2(
1

μ1

+
1

|μ0|)
−1(Iuu(�i1,�i0) + Ill(�i1,�i0))} log τ

(−τ)2

2!

+ [Iu(�i1,�i0) + Il(�i1,�i0) + (3 − 2γ)Ie(�i1,�i0)

+ 2(
1

μ1

+
1

|μ0|)
−1{(γ − 1)(Iuu(�i1,�i0) + Ill(�i1,�i0)) + Iul(�i1,�i0)}] (−τ)2

2!
.

From the above equation, we summarize the characteristics of the second
approximation.

(1)The second approximation is not a quadratic equation of the optical thick-
ness τ but a quadratic equation with a τ 2log(τ).

(2)The second iteration ΔS2(τ,�i1,�i0) does not have the first power of τ .

(3)There exist three kinds of terms which are characterized by the number
of multiplication of the scattering phase function: single scattering, double
scattering and triple scattering. The single scattering term comes from the
first approximation. The surface integral Ie, Il, Iu are the double scattering
terms and Iuu, Ill, Iul are the triple scattering terms.

(4) For the atmosphere with a scattering phase function which does not have
the odd order Legendre functions in its series expansion in the cosine of the
angle, such as the Rayleigh scattering, there are no triple scattering terms in
the second approximation.

4 Calculation of Scattering

To evaluate the accuracy of the second approximation discussed in the previ-
ous sections, we carry out calculations for the Rayleigh and aerosol scattering
atmospheres for various cases and compare with the exact solutions. To ap-
preciate the improvement of accuracy from single scattering, we calculate the
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Fig. 2. Phase Functions

the single scattering reflectance as,

ρ(λ,�i1,�i0) =
τ(λ)ω(λ)P (i1, i0)

4μ1|μ0| , (64)

where λ is the wavelength and ω(λ) is the single scattering albedo. Figure 2
illustrates the phase function of air molecules (Raleigh scattering) as well as
for a typical maritime aerosol with relative humidity (RH) of 80.0% (denoted
as M80) at wavelength 443 nm. The Maritime aerosol model has a single
scattering albedo of 0.9929, and the Rayleigh scattering model has a single
scattering albedo of 1.0. Note that, in contrast to Rayleigh scattering function
which is symmetry in the forward and backward smatterings, the maritime
aerosol predominantly scatters in the forward direction.

4.1 The Exact Solutions

The successive-order-of-scattering (SOS) [4] method is used in solving the
radiative transfer equation (RTE) for the Rayleigh scattering atmosphere and
the aerosol scattering atmosphere. The SOS code for the ocean-atmosphere
system was developed for the atmospheric correction algorithm for the ocean
color sensors[5,6]. This code computes the upward radiance at the top and
the downward radiance at the base of the medium for the ocean-atmosphere
system. The code is capable of yielding radiances that are accurate to nearly
0.1% [5]. In the following two subsections, the reflectance computed by the
single scattering and the second approximation are compared with the exact
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Fig. 3. Comparison for Rayleigh Scattering

solutions obtained using the SOS code.

4.2 The Rayleigh Scattering Atmosphere

Figure 3 provides a quantitative evaluation of accuracy using the second ap-
proximation for a Rayleigh scattering atmosphere for the various solar-sensor
geometries and for the eight wavelengths at 412, 443, 490, 510, 670, 765, and
865 nm. The Rayleigh optical thicknesses corresponding to the eight wave-
lengths from 412 to 865 nm are 0.3185, 0.2361, 0.1560, 0.1324, 0.0938, 0.0436,
0.0255 and 0.0155 respectively. In all computations, the Rayleigh atmosphere
is treated as a plane-parallel medium without a surface boundary. Figures
3(a)-(d) show the error (%) in the computed upward reflectance as a function
of the solar zenith angle and for a sensor viewing angle of 45◦. The left and
right parts of each plot in Figure 3 corresponds to the relative azimuth angles
of 0◦ and 180◦ (principal scattering plane), respectively.

Results in Figure 3 show the significant improvement in accuracy using the
second approximation compared with the single scattering formula. Using the
new formula, the errors are all within 1% for the red and near-infrared wave-
lengths, while errors are within nearly 10% for the blue bands for zenith angles
less than 60◦. It is important to note that, with the second approximation,
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Fig. 4. Comparison of Calculation the Maritime Aerosol

the error in a given wavelength(optical thickness) is almost independent of the
solar and sensor viewing geometry.

4.3 The Maritime Aerosol Atmosphere

A realistic maritime aerosol model as in Figure 2 is used to study the efficacy
of the double scattering approximation in computing the upward reflectance.
The double scattering approximation is the second approximation without
triple scattering. Computations for various coefficients are much more involved
due predominantly to the aerosol forward scattering characteristics. Figure 4
shows examples of error (%) for sensor viewing angle of 45◦ as a function of the
solar zenith angle for the principal scattering plane. Figure 4(a)-(d) are the
results for the aerosol optical thickness of 0.05, 0.1, 0.2, and 0.3 respectively.
Again, we includ results from the single scattering approximation given by
equation (64) for comparison. Similar to the Rayleigh atmosphere case, the
aerosol atmosphere is considered as one plane-parallel layer without the surface
boundary.

The results in Figure 4 show significant improvement in accuracy using the
double scattering approximation compared with the single scattering formula,
in particular, for the part of the results with Δφ = 0◦. It is interesting to
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note that the scattering angles for the Δφ = 0◦ part ( the left part of the
plot) vary from 55◦-135◦. (all forward scattering), while the scattering an-
gles for Δφ = 180◦ (the right part of the plot) change from 135◦-180◦ (all
backward scattering). We are usually more interested in the results with the
large scattering angles because measurements with the large scattering angles
are generally accessible for satellite remote sensing. With double scattering
approximation and scattering angles > 100◦, the reflectance error is usually
within about 1% for the aerosol optical thickness of 0.05, while the error is
within about 4% for the optical thickness of 0.1. As expected, for the turbid
atmosphere, the error increases. The error is proportional to the slant path of
the optical thickness, i.e., τa/cosθ. The aerosol reflectance errors are within
about 7% and about 12% for the optical thickness of 0.2 and 0.3 respectively.

5 Conclusion

We obtain a new approximated solution in the radiative transfer problem in
the anisotropic plane-parallel atmosphere by iterating integration of Chan-
drasekhar’s integral equation.

By the second approximation, the scattering function S(τ,�i1,�i0) is expressed
as a quadratic equation in the optical thickness, τ , with terms τ 2 log (τ). It
is noted that the linear term in τ in the second approximation is identical
to the first approximation. This implies that the iterative integration method
improves the accuracy from the first approximation and approachs to the
solution of radiative transfer.

The second approximation is not a pure quadratic equation but a quadratic
equation with terms τ 2 log (τ). The ”log” term comes from the singularity
at the lower integral limit. It is possible that, by expanding log τ around
τ �= 0.0, we can obtain the quadratic equation form of the scattering function
S(τ,�i1,�i0). Rather we leave it as ”log” to insist the validity of the expression
in the range τ ≥ 0.0.

The coefficients of τ 2 and τ 2 log (τ) are evaluated by surface integrations of
products of the phase functions on the half unit sphere.

The generalized upward reflectances numerically evaluated by the second ap-
proximation for the Rayleigh atmosphere and the marinetime aerosol atmo-
sphere are very much closer to the exact solution than the single scattering
approximation. In some cases, such as the small optical thickness, they are
sufficiently close to the exact solution.
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Appendix 1, Derivation of Function Un
2 (τ, μ)

We define a new function Wn(τ) as

Wn(τ) =

1∫

0

μn
3 exp(− τ

μ3

)dμ3. (65)

W0(τ) is evaluated
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W0(τ) =

1∫

0

exp(− τ

μ3

)dμ3 = [μ3 exp(− τ

μ3

)]10 −
1∫

0

μ3{exp(− τ

μ3

)}′dμ3

= exp(−τ) − (−τ)(C + eax(τ)).

(66)

The recurrence relation of Wn(τ) is given as

Wn(τ) =
exp(−τ)

n + 1
+

(−τ)

n + 1
Wn−1(τ). (67)

We can evaluate Wn(τ) by the recurrence relation and the initial function
W0(τ). Using Wn(τ), we can derive the recurrence relation for Un

2 (τ, μ)

Un
2 (τ, μ0) = μ0[

1

n
− exp(− τ

μ0

)Wn−1 − Un−1
2 (μ0)]. (68)

Truncating the series expansion up to the second degree in (−τ), we obtain

U1
2 (τ, μ0) = −(−τ) − 3(−τ)2

4
+ C

(−τ)2

2
− 1

2

(−τ)2

μ0

, (69)

Un
2 (τ, μ0) = −(−τ)

n
− (−τ)2

2(n − 1)
− 1

2n

(−τ)2

μ0

. (n ≥ 2) (70)

Appendix 2, Lower powers of the product of the Bi-Legendre func-
tion
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Figute Captions
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Figure 1: Geometry of Radiative Transfer

Figure 2: Scattering Phase Functions

Figure 3: Calculation of Generalized Reflectances for Rayleigh Scattering

Figure 4: Calculation of Generalized Reflectances for Maritime Aerosol Scat-
tering
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