Metric Adjusted Skew Information and Uncertainty Relation

Kenjiro Yanagi*

Abstract

We show that an uncertainty relation for Wigner-Yanase-Dyson skew information proved by Yanagi(2010)[10] can hold for an arbitrary quantum Fisher information under some conditions. This is a refinement of the result of Gibilisco and Isola(2011)[4].

Mathematics Subject Classification (2010). 47A50, 94A17, 81P15
Key Words: Heisenberg uncertainty relation, Wigner-Yanase-Dyson skew information, operator monotone function, quantum Fisher information.

1 Introduction

Wigner-Yanase skew information

$$
\begin{aligned}
I_{\rho}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{1 / 2}, H\right]\right)^{2}\right] \\
& =\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}\left[\rho^{1 / 2} H \rho^{1 / 2} H\right]
\end{aligned}
$$

was defined in [9]. This quantity can be considered as a kind of the degree for noncommutativity between a quantum state ρ and an observable H. Here we denote the commutator by $[X, Y]=X Y-Y X$. This quantity was generalized by Dyson

$$
\begin{aligned}
I_{\rho, \alpha}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H\right]\right)\left(i\left[\rho^{1-\alpha}, H\right]\right)\right] \\
& =\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}\left[\rho^{\alpha} H \rho^{1-\alpha} H\right], \alpha \in[0,1]
\end{aligned}
$$

which is known as the Wigner-Yanase-Dyson skew information. Recently it is shown that these skew informations are connected to special choices of quantum Fisher

[^0]information in [3]. The family of all quantum Fisher informations is parametrized by a certain class of operator monotone functions $\mathcal{F}_{o p}$ which were justified in [7]. The Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information are given by the following operator monotone functions
\[

$$
\begin{gathered}
f_{W Y}(x)=\left(\frac{\sqrt{x}+1}{2}\right)^{2} \\
f_{W Y D}(x)=\alpha(1-\alpha) \frac{(x-1)^{2}}{\left(x^{\alpha}-1\right)\left(x^{1-\alpha}-1\right)}, \quad \alpha \in(0,1)
\end{gathered}
$$
\]

respectively. In particular the operator monotonicity of the function $f_{W Y D}$ was proved in [8]. On the other hand the uncertainty relation related to WignerYanase skew information was given by Luo [6] and the uncertainty relation related to Wigner-Yanase-Dyson skew information was given by Yanagi [10], respectively. In this paper we generalize these uncertainty relations to the uncertainty relations related to quantum Fisher informations.

2 Operator Monotone Functions

Let $M_{n}=M_{n}(\mathbb{C})\left(\right.$ resp. $\left.M_{n, s a}=M_{n, s a}(\mathbb{C})\right)$ be the set of all $n \times n$ complex matrices (resp. all $n \times n$ self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product $\langle A, B\rangle=\operatorname{Tr}\left(A^{*} B\right)$. Let \mathcal{D}_{n} be the set of strictly positive elements of M_{n} and $\mathcal{D}_{n}^{1} \subset \mathcal{D}_{n}$ be the set of strictly positive density matrices, that is $\mathcal{D}_{n}^{1}=\{\rho \in$ $\left.M_{n} \mid \operatorname{Tr} \rho=1, \rho>0\right\}$. If it is not otherwise specified, from now on we shall treat the case of faithful states, that is $\rho>0$.

A function $f:(0,+\infty) \rightarrow \mathbb{R}$ is said operator monotone if, for any $n \in \mathbb{N}$, and $A, B \in M_{n}$ such that $0 \leq A \leq B$, the inequalities $0 \leq f(A) \leq f(B)$ hold. An operator monotone function is said symmetric if $f(x)=x f\left(x^{-1}\right)$ and normalized if $f(1)=1$.

Definition 2.1 $\mathcal{F}_{\text {op }}$ is the class of functions $f:(0,+\infty) \rightarrow(0,+\infty)$ such that
(1) $f(1)=1$,
(2) $t f\left(t^{-1}\right)=f(t)$,
(3) f is operator monotone.

Example 2.1 Examples of elements of $\mathcal{F}_{\text {op }}$ are given by the following list

$$
\begin{gathered}
f_{R L D}(x)=\frac{2 x}{x+1}, \quad f_{W Y}(x)=\left(\frac{\sqrt{x}+1}{2}\right)^{2}, \quad f_{B K M}(x)=\frac{x-1}{\log x}, \\
f_{S L D}(x)=\frac{x+1}{2}, \quad f_{W Y D}(x)=\alpha(1-\alpha) \frac{(x-1)^{2}}{\left(x^{\alpha}-1\right)\left(x^{1-\alpha}-1\right)}, \alpha \in(0,1) .
\end{gathered}
$$

Remark 2.1 Any $f \in \mathcal{F}_{\text {op }}$ satisfies

$$
\frac{2 x}{x+1} \leq f(x) \leq \frac{x+1}{2}, x>0 .
$$

For $f \in \mathcal{F}_{o p}$ define $f(0)=\lim _{x \rightarrow 0} f(x)$. We introduce the sets of regular and non-regular functions

$$
\mathcal{F}_{o p}^{r}=\left\{f \in \mathcal{F}_{o p} \mid f(0) \neq 0\right\}, \quad \mathcal{F}_{o p}^{n}=\left\{f \in \mathcal{F}_{o p} \mid f(0)=0\right\}
$$

and notice that trivially $\mathcal{F}_{o p}=\mathcal{F}_{o p}^{r} \cup \mathcal{F}_{o p}^{n}$.
Definition 2.2 For $f \in \mathcal{F}_{o p}^{r}$ we set

$$
\tilde{f}(x)=\frac{1}{2}\left[(x+1)-(x-1)^{2} \frac{f(0)}{f(x)}\right], x>0 .
$$

Theorem 2.1 ([1], [3], [5]) The correspondence $f \rightarrow \tilde{f}$ is a bijection between $\mathcal{F}_{o p}^{r}$ and $\mathcal{F}_{o p}^{n}$.

3 Means, Fisher Information and Metric Adjusted Skew Information

In Kubo-Ando theory of matrix means one associates a mean to each operator monotone function $f \in \mathcal{F}_{o p}$ by the formula

$$
m_{f}(A, B)=A^{1 / 2} f\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}
$$

where $A, B \in \mathcal{D}_{n}$. Using the notion of matrix means one may define the class of monotone metrics (also said quantum Fisher informtions) by the following formula

$$
\langle A, B\rangle_{\rho, f}=\operatorname{Tr}\left(A \cdot m_{f}\left(L_{\rho}, R_{\rho}\right)^{-1}(B)\right),
$$

where $L_{\rho}(A)=\rho A, R_{\rho}(A)=A \rho$. In this case one has to think of A, B as tangent vectors to the manifold \mathcal{D}_{n}^{1} at the point ρ (see [7], [3]).

Definition 3.1 For $A \in M_{n, s a}$, we define as follows

$$
\begin{gathered}
I_{\rho}^{f}(A)=\frac{f(0)}{2}\langle i[\rho, A], i[\rho, A]\rangle_{\rho, f}, \\
C_{\rho}^{f}(A)=\operatorname{Tr}\left(m_{f}\left(L_{\rho}, R_{\rho}\right)(A) \cdot A\right), \\
U_{\rho}^{f}(A)=\sqrt{V_{\rho}(A)^{2}-\left(V_{\rho}(A)-I_{\rho}^{f}(A)\right)^{2}} .
\end{gathered}
$$

The quantity $I_{\rho}^{f}(A)$ is known as metric adjusted skew information.

Proposition 3.1 Let $A_{0}=A-\operatorname{Tr}(\rho A) I$. The following hold:
(1) $I_{\rho}^{f}(A)=I_{\rho}^{f}\left(A_{0}\right)=\operatorname{Tr}\left(\rho A_{0}^{2}\right)-\operatorname{Tr}\left(m_{\tilde{f}}\left(L_{\rho}, R_{\rho}\right)\left(A_{0}\right) \cdot A_{0}\right)=V_{\rho}(A)-C_{\rho}^{\tilde{f}}\left(A_{0}\right)$,
(2) $J_{\rho}^{f}(A)=\operatorname{Tr}\left(\rho A_{0}^{2}\right)+\operatorname{Tr}\left(m_{\tilde{f}}\left(L_{\rho}, R_{\rho}\right)\left(A_{0}\right) \cdot A_{0}\right)=V_{\rho}(A)+C_{\rho}^{\tilde{f}}\left(A_{0}\right)$,
(3) $0 \leq I_{\rho}^{f}(A) \leq U_{\rho}^{f}(A) \leq V_{\rho}(A)$,
(4) $U_{\rho}^{f}(A)=\sqrt{I_{\rho}^{f}(A) \cdot J_{\rho}^{f}(A)}$.

Remark 3.1 $I_{\rho}^{f}(A)$ is identified in [2] with $\operatorname{Cov}_{\rho}(A, A)-q \operatorname{Cov}_{\rho}^{F}(A, A)$.

4 The Main Result

Theorem 4.1 For $f \in \mathcal{F}_{o p}^{r}$, if

$$
\begin{equation*}
\frac{x+1}{2}+\tilde{f}(x) \geq 2 f(x) \tag{4.1}
\end{equation*}
$$

then it holds

$$
\begin{equation*}
U_{\rho}^{f}(A) \cdot U_{\rho}^{f}(B) \geq f(0)|\operatorname{Tr}(\rho[A, B])|^{2}, \tag{4.2}
\end{equation*}
$$

where $A, B \in M_{n, s a}$.
In order to prove Theorem 4.1, we use several lemmas.
Lemma 4.1 If (4.1) holds, then the following inequality is satisfied

$$
\left(\frac{x+y}{2}\right)^{2}-m_{\tilde{f}}(x, y)^{2} \geq f(0)(x-y)^{2}
$$

Proof. By (4.1) we have

$$
\begin{equation*}
\frac{x+y}{2}+m_{\tilde{f}}(x, y) \geq 2 m_{f}(x, y) . \tag{4.3}
\end{equation*}
$$

Since

$$
\begin{aligned}
m_{\tilde{f}}(x, y) & =y \tilde{f}\left(\frac{x}{y}\right) \\
& =\frac{y}{2}\left\{\frac{x}{y}+1-\left(\frac{x}{y}-1\right)^{2} \frac{f(0)}{f(x / y)}\right\} \\
& =\frac{x+y}{2}-\frac{f(0)(x-y)^{2}}{2 m_{f}(x, y)}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left(\frac{x+y}{2}\right)^{2}-m_{\tilde{f}}(x, y)^{2} \\
= & \left\{\frac{x+y}{2}-m_{\tilde{f}}(x, y)\right\}\left\{\frac{x+y}{2}+m_{\tilde{f}}(x, y)\right\} \\
= & \frac{f(0)(x-y)^{2}}{2 m_{f}(x, y)}\left\{\frac{x+y}{2}+m_{\tilde{f}}(x, y)\right\} \\
\geq & f(0)(x-y)^{2} . \quad(b y \quad(4.3))
\end{aligned}
$$

Lemma 4.2 Let $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \cdots,\left|\phi_{n}\right\rangle\right\}$ be a basis of eigenvectors of ρ, corresponding to the eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$. We put $a_{j k}=\left\langle\phi_{j}\right| A_{0}\left|\phi_{k}\right\rangle, b_{j k}=\left\langle\phi_{j}\right| B_{0}\left|\phi_{k}\right\rangle$. By Corollary 6.1 in [1],

$$
\begin{gathered}
I_{\rho}^{f}(A)=\frac{1}{2} \sum_{j, k}\left(\lambda_{j}+\lambda_{k}\right) a_{j k} a_{k j}-\sum_{j, k} m_{\tilde{f}}\left(\lambda_{j}, \lambda_{k}\right) a_{j k} a_{k j}, \\
J_{\rho}^{f}(A)=\frac{1}{2} \sum_{j, k}\left(\lambda_{j}+\lambda_{k}\right) a_{j k} a_{k j}+\sum_{j, k} m_{\tilde{f}}\left(\lambda_{j}, \lambda_{k}\right) a_{j k} a_{k j}, \\
\left(U_{\rho}^{f}(A)\right)^{2}=\frac{1}{4}\left(\sum_{j, k}\left(\lambda_{j}+\lambda_{k}\right)\left|a_{j k}\right|^{2}\right)^{2}-\left(\sum_{j, k} m_{\tilde{f}}\left(\lambda_{j}, \lambda_{k}\right)\left|a_{j k}\right|^{2}\right)^{2} .
\end{gathered}
$$

Proof of Theorem 4.1. Since

$$
\operatorname{Tr}(\rho[A, B])=\operatorname{Tr}\left(\rho\left[A_{0}, B_{0}\right]\right)=\sum_{j, k}\left(\lambda_{j}-\lambda_{k}\right) a_{j k} b_{k j}
$$

we have

$$
\begin{aligned}
& f(0)|\operatorname{Tr}(\rho[A, B])|^{2} \\
\leq & \left(\sum_{j, k} f(0)^{1 / 2}\left|\lambda_{j}-\lambda_{k}\right|\left|a_{j k}\right|\left|b_{k j}\right|\right)^{2} \\
\leq & \left(\sum_{j, k}\left\{\left(\frac{\lambda_{j}+\lambda_{k}}{2}\right)^{2}-m_{\tilde{f}}\left(\lambda_{j}, \lambda_{k}\right)^{2}\right\}^{1 / 2}\left|a_{j k}\right|\left|b_{k j}\right|\right)^{2} \\
\leq & \left(\sum_{j, k}\left\{\frac{\lambda_{j}+\lambda_{k}}{2}-m_{\tilde{f}}\left(\lambda_{j}, \lambda_{k}\right)\right\}\left|a_{j k}\right|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\sum_{j, k}\left\{\frac{\lambda_{j}+\lambda_{k}}{2}+m_{\tilde{f}}\left(\lambda_{j}, \lambda_{k}\right)\right\}\left|b_{k j}\right|^{2}\right) \\
= & I_{\rho}^{f}(A) J_{\rho}^{f}(B) .
\end{aligned}
$$

We also have

$$
I_{\rho}^{f}(B) J_{\rho}^{f}(A) \geq f(0)|\operatorname{Tr}(\rho[A, B])|^{2}
$$

Hence we have the final result (4.2).
By putting

$$
f_{W Y D}(x)=\alpha(1-\alpha) \frac{(x-1)^{2}}{\left(x^{\alpha}-1\right)\left(x^{1-\alpha}-1\right)}, \quad \alpha \in(0,1)
$$

we obtain the following uncertainty relation:
Corollary 4.1 ([10]) For $A, B \in M_{n, s a}$,

$$
U_{\rho}^{f_{W Y D}}(A) U_{\rho}^{f_{W Y D}}(B) \geq \alpha(1-\alpha)|\operatorname{Tr}(\rho[A, B])|^{2} .
$$

Proof. Since

$$
f_{W Y D}(x)=\alpha(1-\alpha) \frac{(x-1)^{2}}{\left(x^{\alpha}-1\right)\left(x^{1-\alpha}-1\right)}
$$

it is clear that

$$
\tilde{f}_{W Y D}(x)=\frac{1}{2}\left\{x+1-\left(x^{\alpha}-1\right)\left(x^{1-\alpha}-1\right)\right\} .
$$

By Lemma 3.3 in [10] we have for $0 \leq \alpha \leq 1$ and $x>0$,

$$
(1-2 \alpha)^{2}(x-1)^{2}-\left(x^{\alpha}-x^{1-\alpha}\right)^{2} \geq 0 .
$$

Then we can rewrite as follows

$$
\left(x^{2 \alpha}-1\right)\left(x^{2(1-\alpha)}-1\right) \geq 4 \alpha(1-\alpha)(x-1)^{2}
$$

Thus

$$
\begin{aligned}
& \frac{x+1}{2}+\tilde{f}_{W Y D}(x) \\
= & x+1-\frac{1}{2}\left(x^{\alpha}-1\right)\left(x^{1-\alpha}-1\right) \\
= & \frac{1}{2}\left(x^{\alpha}+1\right)\left(x^{1-\alpha}+1\right) \\
\geq & 2 \alpha(1-\alpha) \frac{(x-1)^{2}}{\left(x^{\alpha}-1\right)\left(x^{1-\alpha}-1\right)} \\
= & 2 f_{W Y D}(x) .
\end{aligned}
$$

It follows from Theorem 4.1 that we can give the aimed result.

Remark 4.1 In [4], the following result was given. Even if (4.1) does not necessarily hold, then

$$
\begin{equation*}
U_{\rho}^{f}(A) U_{\rho}^{f}(B) \geq f(0)^{2} \mid \operatorname{Tr}\left[\left.(\rho[A, B])\right|^{2}\right. \tag{4.4}
\end{equation*}
$$

where $A, B \in M_{n, s a}$. Since $f(0)<1$, it is easy to show (4.4) is weaker than (4.2).

References

[1] P.Gibilisoco, D.Imparato and T.Isola, Uncertainty principle and quantum Fisher information, II, J. Math. Phys., vol.48(2007), pp.072109-1-25.
[2] P.Gibilisco, F.Hiai and D.Petz, Quantum covariance, quantum Fisher information, and the uncertainty relations, IEEE Trans. Information Theory, vol.55(2009), pp.439-443.
[3] P.Gibilisco, F.Hansen and T.Isola, On a correspondence between regular and non-regular operator monotone functions, Linear Algebra and its Applications, vol.430(2009), pp.2225-2232.
[4] P.Gibilisco and T.Isola, On a refinement of Heisenberg uncertainty relation by means of quantum Fisher information, J. Math. Anal. Appl., vol 375(2011), pp.270-275.
[5] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., vol.246(1980), pp.205-224.
[6] S.Luo, Heisenberg uncertainty relation for mixed states, Phys. Rev. A, vol. $72(2005)$, p. 042110.
[7] D.Petz, Monotone metrics on matrix spaces, Linear Algebra and its Applications, vol.244(1996), pp.81-96.
[8] D.Petz and H.Hasegawa, On the Riemannian metric of α-entropies of density matrices, Lett. Math. Phys., vol.38(1996), pp.221-225.
[9] E.P.Wigner and M.M.Yanase, Information content of distribution, Proc. Nat. Acad. Sci. U,S,A., vol.49(1963), pp.910-918.
[10] K.Yanagi, Uncertainty relation on Wigner-Yanase-Dyson skew information, J. Math. Anal. Appl., vol.365(2010), pp.12-18.

[^0]: *Division of Applied Mathematical Science, Graduate School of Science and Engineering, Yamaguchi University, Ube, 755-8611 Japan. E-mail: yanagi@yamaguchi-u.ac.jp, This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Scientific Research (C), 20540175

