Metric Adjusted Skew Information and
Uncertainty Relation
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Abstract. We show that an uncertainty relation for Wigner-Yanase-Dyson skew

information proved by Yanagi(2010)[10] can hold for an arbitrary quantum Fisher
information under some conditions. This is a refinement of the result of Gibilisco

and Isola(2011)[4].
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1 Introduction

Wigner-Yanase skew information

SAH) = STr [0 H)]
= TrlpH?] = Tr[p"?Hp"/*H]

was defined in [9]. This quantity can be considered as a kind of the degree for non-
commutativity between a quantum state p and an observable H. Here we denote
the commutator by [X,Y] = XY — Y X. This quantity was generalized by Dyson

(H) = STrllile", H) (o, H)

= Tr[pH?| —Tr[p“Hp* *H],a € [0,1]

which is known as the Wigner-Yanase-Dyson skew information. Recently it is shown
that these skew informations are connected to special choices of quantum Fisher
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information in [3]. The family of all quantum Fisher informations is parametrized
by a certain class of operator monotone functions F,, which were justified in [7].
The Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information
are given by the following operator monotone functions
2
Vi+1
) = (Y52

(x —1)*

x® —1)(xt—2 —1)
respectively. In particular the operator monotonicity of the function fyyp was
proved in [8]. On the other hand the uncertainty relation related to Wigner-
Yanase skew information was given by Luo [6] and the uncertainty relation related
to Wigner-Yanase-Dyson skew information was given by Yanagi [10], respectively.
In this paper we generalize these uncertainty relations to the uncertainty relations
related to quantum Fisher informations.

fwyp(z) = a(l — Oé)( , a€(0,1),

2 Operator Monotone Functions

Let M,, = M, (C)(resp. M, 50 = M, 54(C)) be the set of all n x n complex matrices
(resp. all n x n self-adjoint matrices), endowed with the Hilbert-Schmidt scalar
product (A, B) = Tr(A*B). Let D,, be the set of strictly positive elements of M,
and D! C D, be the set of strictly positive density matrices, that is DL = {p €
M,|Trp=1,p > 0}. If it is not otherwise specified, from now on we shall treat the
case of faithful states, that is p > 0.

A function f : (0,+00) — R is said operator monotone if, for any n € N, and
A,B € M, such that 0 < A < B, the inequalities 0 < f(A) < f(B) hold. An
operator monotone function is said symmetric if f(x) = zf(2z™!) and normalized if
=1,

Definition 2.1 F,, is the class of functions f : (0, +00) — (0, +00) such that
(1) f1) =1,
(2) tf(7h) = f(1),

(3) f is operator monotone.

Example 2.1 Ezamples of elements of F,, are given by the following list

2 1\? —1
fRLD(ZE) = - —19—61’ fWY(iU) = (ﬁ; ) ) fBKM(l') = Togx’
fsrp(z) = vl (z—1)° ,a€(0,1).

5 fWYD(x):a(l_a)(

z® —1)(zt=2 —1)



Remark 2.1 Any f € F,, satisfies

2 z+1
a:—i—l_f() 2

, x> 0.

For f € F,, define f(0) = lim,,o f(x). We introduce the sets of regular and
non-regular functions

Fop =S € Foplf(0) # 0}, F5, = {f € Fopl f(0) = 0}
and notice that trivially F,, = F7, U F, .
Definition 2.2 For f € F), we set

f(x):% (x+1)— (z -1, >0.

Theorem 2.1 ([1], [3], [5]) The correspondence f — f is a bijection between Fop
and F7 .
op

3 Means, Fisher Information and Metric Adjusted
Skew Information

In Kubo-Ando theory of matrix means one associates a mean to each operator
monotone function f € F,, by the formula

mf(A, B) _ 141/2‘]0(14—1/2314—1/2)141/27

where A, B € D,. Using the notion of matrix means one may define the class of
monotone metrics (also said quantum Fisher informtions) by the following formula

(A, B)ps =Tr(A -mys(Ly, Rp)il(B))a

where L,(A) = pA, R,(A) = Ap. In this case one has to think of A, B as tangent
vectors to the manifold D} at the point p (see [7], [3]).

Definition 3.1 For A € M, ., we define as follows

f(0) . .
154) = 2900, 41,100, A1,
Cf(A) Tr(mg(Ly, Rp)(A) - A),

) = \V,(A) = (V,(A) — 1] (A))2

The quantity I /{f (A) is known as metric ad]usted skew information.
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Proposition 3.1 Let Ay = A —Tr(pA)I. The following hold:
(1) IJ(A) = I](Ao) = Tr(pAf) — Tr(mi(Ly, Ry)(Ao) - Ao) = V,(A) — CJ(Ao),
(2) JI(A) = Tr(pAf) + Tr(mg(L,, Ry)(Ao) - Ao) = V,(A) + Cf(Ao),

(3) 0 < IJ(A) <UJ(A) <V,(A),

(4) UJ(A) =/ I}(A) - T (A).

Remark 3.1 I/(A) is identified in [2] with Cov,(A, A) — qCovl (A, A).

4 The Main Result

Theorem 4.1 For f € F,,, if

T ) 2 2f(), (4.1
then it holds
Ul (A) - UI(B) = f(0)|Tr(p[A, B])|%, (4.2)

where A, B € M, .
In order to prove Theorem 4.1, we use several lemmas.

Lemma 4.1 If (4.1) holds, then the following inequality is satisfied

(x;y) —m(a.y)? > f(0)(x —y)”

Proof. By (4.1) we have

r+y
2

miey) = uf (g)

+mp(z,y) > 2mg(z,y). (4.3)

Since




we have

)2 —mg(z,y)’

(5
_ ‘”;Ly_mf(x,y) xgermf(:v,y)
i i |

_ SO -y {x;y +mf(a:,y)}

> fO)(x—y)?  (by (43))

O
Lemma 4.2 Let {|¢1), |p2), -, |dn)} be a basis of eigenvectors of p, corresponding

to the eigenvalues {A1, Ao, -+, A\ }. We put ajp = (¢j|Ao|dk), bjx = (¢;|Boléw). By
Corollary 6.1 in [1],

1
I1(A) = 3 E (Aj + A\)ajrar; — E m(Aj, Ak)@rag,
j7k ij

1
J/J:(A) = 5 Z<)\J + )\k)ajkakj + Z mf()\j> )\k>ajkakj7

(UJ(A)? = i <Z()\j + )\k)!ajkP) - (Z mf()\w)\k)!ajk!?) :

Proof of Theorem 4.1. Since

Tr(p[A, B]) = Tr(plAo, Bol) = 3" (A — AeJasibis,
J.k
we have

FO)|Tr(plA, B])?

2

< Zf(0)1/2|>\j_)\k||ajk||bk_j|>

7.k

2 1/2 2
j k

< Z{(]T) _mf(/\jaAk)Q} ajkbkj)

7.k

A+ A

< Z{ 3 k_mf(/\j%k)}!@jﬁ)

Jk
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A+ A )
« <;{ - +mf(Aj,Ak)} by | )

= IJ(A)J/(B).

We also have
I1(B)J](A) = f(0)|Tr(p[A, B])|.

Hence we have the final result (4.2).

By putting

(z — 1)
(o= Dt = 1)
we obtain the following uncertainty relation:

Corollary 4.1 ([10]) For A, B € M, s,
2
U e (AU 2 (B) > a1 — o) |Tr(p[A, B)P.

fwyp(z) = a(l — a) , a€(0,1),

Proof. Since

(z— 1)
z — 1) (2l — 1)’

fwyp(z) = a(l — a)(
it is clear that i ]
fwyp(z) = E{x +1— (2% =)' - 1)}
By Lemma 3.3 in [10] we have for 0 < o <1 and z > 0,
(1—2a)*(x —1)* = (z* —z'7*)? > 0.
Then we can rewrite as follows

(22 — 1)(z*17 — 1) > 4a(l — a)(z — 1)

Thus
P20 Fwvo(@)
= r+1-— %(xa — (2> —1)
= %(x“ + 1)z +1)
> 2a(1 - a) s _(f)(_x}z .y
= 2fwyp(z).

It follows from Theorem 4.1 that we can give the aimed result.
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Remark 4.1 In [}/, the following result was given. Even if (4.1) does not neces-
sarily hold, then
US(AUL(B) > f(0)*|Tr[(p[A, B])I?, (4.4)

where A, B € My, so. Since f(0) < 1, it is easy to show (4.4) is weaker than (4.2).
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