Uncertainty Relation on Wigner-Yanase-Dyson
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Abstract. We give a trace inequality related to the uncertainty relation of
Wigner-Yanase-Dyson skew information. This inequality corresponds to a
generalization of the uncertainty relation derived by S.Luo [7] for the quantum
uncertainty quantity excluding the classical mixture.
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1 Introduction

Wigner-Yanase skew information

A1) = STr[ o )]
= TrlpH* — Tr[p"*Hp'*H]

was defined in [9]. This quantity can be considered as a kind of the degree for non-
commutativity between a quantum state p and an observable H. Here we denote
the commutator by [X,Y] = XY — Y X. This quantity was generalized by Dyson

oalH) = STrl(l", H)) (il H])

= Tr[pH?| - Tr[p*Hp'  *H],a € [0,1]

which is known as the Wigner-Yanase-Dyson skew information. It is famous that
the convexity of I,,(H) with respect to p was successfully proven by E.H.Lieb in
[6]. From the physical point of view, an observable H is generally considered to be
an unbounded opetrator, however in the present paper, unless otherwise stated, we
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consider H € B('H) represents the set of all bounded linear operators on the Hilbert
space ‘H, as a mathematical interest. We also denote the set of all self-adjoint
operators (observables) by L£,(H) and the set of all density operators (quantum
states) by S(H) on the Hilbert space H. The relation between the Wigner-Yanase
skew information and the uncertainty relation was studied in [8]. Moreover the
relation between the Wigner-Yanase-Dyson skew information and the uncertainty
relation was studied in [4, 10]. In our paper [10], we defined a generalized skew
information and then derived a kind of an uncertainty relation. In the section 2, we
discuss various properties of the Wigner-Yanase-Dyson skew information. Finally
in section 3, we give our main result and its proof.

2 Trace inequalities of Wigner-Yanase-Dyson skew
information

We review the relation between the Wigner-Yanase skew information and the un-
certainty relation. In quantum mechanical system, the expectation value of an
observable H in a quantum state p is expressed by Tr[pH]|. It is natural that
the variance for a quantum state p and an observable H is defined by V,(H) =
Tr(p(H — Tr[pH]|I)?| = Tr[pH?| — Tr[pH]?. Tt is famous that we have

VU(AV,(B) > {ITrplA, B (21)

for a quantum state p and two observables A and B. The further strong results was
given by Robertson and Schrédinger

Vi(AWV,(B) ~ [Cou,(A, B)F > {|Tr{plA, B,

where the covariance is defined by Cov,(A, B) = Tr[p(A—Tr[pA|I)(B —Tr[pB|I)].
However, the uncertainty relation for the Wigner-Yanase skew information failed.
(See [8, 4, 10])

I(AV(B) > {ITrlo(A, B

Recently, S.Luo introduced the quantity U,(H ) representing a quantum uncertainty
excluding the classical mixture:

Up(H) = \JVo(H)? — (V,(H) — 1,(H))?, (2.2)

then he derived the uncertainty relation on U,(H) in [7]:

U(A)U,(B) 2 1[TrlplA, Bl 23



Note that we have the following relation
0 < I,(H) < U,(H) < V,(H). (2.4)

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4). In
this section, we study one-parameter extended inequality for the inequality (2.3).

Definition 2.1 For 0 < a <1, a quantum state p and an observable H, we define
the Wigner-Yanase-Dyson skew information

o) = STrl(ilp", Ho) il Ho))
= TrlpHg] — Tr(p®Hop'~* Ho| (2.5)

and we also define

ToalH) = STrl{e", HoHp'*, Ho})

= Tr[pHg] + Tr[paHopl_o‘HO], (2.6)

where Hy = H — Tr{pH|I and we denote the anti-commutator by {X,Y} = XY +
YX.

Note that we have
ST, Hol) o' o] = 5Tr{(lo", )l 1)
but we have

1 —a 1 a -«
S Trle™ Ho}{p'™", Ho}] # 5 Tr{p™ HH{p'™*, H}).
Then we have the following inequalities:

I

P

since we have Tr[p/2Hp'/?H] < Tr[p*Hp'~*H]. (See [1, 2] for example.) If we
define

(H) < 1(H) < J,(H) < J,a(H). (2.7)

UpalH) = \JVo(H)? — (Vy(H) — 1,.0(H))?, (2.8)

as a direct generalization of Eq.(2.2), then we have
0<1,,(H)<U,o(H)<U,(H) (2.9)

due to the first inequality of (2.7). We also have

Upa(H) = \/Lpa(H) T, o H).
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From the inequalities (2.4),(2.8),(2.9), our situation is that we have
0 < La(H) < L,(H) < U,(H)

and
0<1,,(H)<U,o(H) <U,(H).

Our concern is to show an uncertainty relation with respect to U, (H) as a direct
generalization of the inequality (2.3) such that

Upa(A)Upa(B) 2 /T [p[A, B (2.10)

On the other hand, we introduced a generalized Wigner-Yanase skew information
which is a generalization of the inequality (2.10), but different from the Wigner-
Yanase-Dyson skew information defined in (2.5) and gave the following theorem in
[11].

Theorem 2.1 For 0 < «a <1, a quantum state p and an observable H, we define a
generalized Wigner-Yanase skew information by

(e l—« 2]
(== m))

(o 11—« 2
({=r=m}) |

1
K,o(H)= ET’I‘

and we also define

1
Lp,a(H) = §T7’

and

WoalH) =/ Kpal H) Ly (H).

Then for a quantum state p and observables A, B and « € |0, 1], we have

(—pa +2p1_a>2 (A, B]

2

Wyl AW (B) > 7 T

1
4

3 Main Theorem

We give the main theorem as follows;

Theorem 3.1 For a quantum state p and observables A, B and 0 < o < 1, we have

Upal AUy a(B) 2 a(1 — a)|TrlplA, B])P. (3.1)



We use the several lemmas to prove the theorem 3.1. By spectral decomposition,
there exists an orthonormal basis {¢1, ¢s, ...} consisting of eigenvectors of p. Let
A1, A2, ... be the corresponding eigenvalues, where >~ ' A; = 1 and A\; > 0. Thus, p
has a spectral representation

pP= Z )\i|¢z‘><¢i|- (3.2)

Lemma 3.1

Lpa(H) =) (N4 A = ATAT = AN (il Holo) .

i<j

Proof of Lemma 3.1. By (3.2),

,0H§ = Z )\i|¢i><¢i|H3'

=1

Then 00
TrlpHJ) = ZA (@il Hlos) = > Xl Holen)||> (3.3)
i=1
Since
aHO Z)\a|¢z sz’HO
and ~
P Hy = 37 N0,) (64 Ho
i=1
we have
aH(]pl QHO Z/\OO\1 a|¢z ¢1’H0’¢]><¢J|HO
7,7=1
Thus
a l—a _ - ayl—a
Trip*Hop  *Ho] = Z)‘i A; @il Hold5) (5] Holdi)
ij=1
= ZA?A;_O‘ (¢ Holop) |- (3.4)
ij=1



From (2.5), (3.3), (3.4),

Lpo(H ZA [ Holoa) 1> — Z/\”‘Al (¢l Holos) |
7,7=1
= D i = AT @il Holo)
ij=1
= D (A = AT = AN (s Hol o) .
i<j
O
Lemma 3.2
H) 2 ) (A A5+ AP+ AN (il Holg) |
i<j
Proof of Lemma 3.2. By (2.6), (3.3), (3.4), we have
Jpa(H) = ZA Holon) [P + 30 AT (6 Holo) P
7,7=1
= D AT (@il Holgy)
ij=1
= 2ZA| (@il Holga) > + > (N + APA;™) (@il Holg;)
i#j
= 22 Ail(@il Holga) P+ (A + Ay + ATAT™ + AN (6] Holoy)
1<j
> Z()\i + N AN AN (o] Holoy) .
i<j
O
Lemma 3.3 For anyt >0 and 0 < a <1, the following inequality holds;
(1—2a)*(t—1)* = (t* —t7*)* > 0. (3.5)



Proof of Lemma 3.3. If @ = 0 or L or 1, then it is clear that (3.5) is satisfied.

2
Now we put

F(t) = (1—2a)*(t— 1) — (t* — ')
We have

/

And we also have

1

and

m

F(t)
= 4o(l —2a)(1 —a)t™27 " —4a(1 — 20)(1 — a)t?>*3

1 1
= do(l —20)(1 — «) (t1+2a — t3—20‘) .

F(t) =2(1—2a)* —2at*™ ' —2(1 — a)t' > 4+ 8a(1 — a).

F(t) =2(1 — 20)* — 2a(2a — 1)t**2 = 2(1 — a)(1 — 2a)t™**

If L <a <1, then 1+2a > 3—2a. Then it is easy to show that F'" () <0 for ¢t < 1
and F"'(t) > 0 for ¢t > 1. On the other hand if 0 < o < %, then 14 20 < 3 — 20v.
Then it is easy to show that F"'(t) < 0 for t < 1 and F"'(t) > 0 for t > 1. Since
F"(1) =0, we can get I (t) > 0. Since F'(1) = 0, we also have ' (t) < 0 for t < 1
and F'(t) > 0 for t > 1. Since F(1) = 0, we finally get F(t) > 0 for all ¢ > 0.

Therefore we have (3.5).

Ai
Proof of Theorem 3.1. We put ¢t = 3 n (3.5). Then we have
J

oo (3 (- () ) e

And we get
(1=20)%(X = X)* = (APAT* = A7N)2 >0
and
(X = A% = (AP = A7) > da(l — a) (A — Ay)?
and
X+ 27 = ATAT + A7OA)? > da(l — a) (N — A))*
Since

TriplA, B]] = Tr[p[Ao, Bo]

O

(3.6)



= 2i1ImTr[pAyBo)
= 2ilm ZO” — i) (@il Aolp) (9| Boldi)

1<j

= 2@2 ) Im{gi|Aold;){(Di| Boldi),

i<j

TrplA, Bl = 21> (A = X Im (il Aol6;) (] Bolo)|

1<J

23 |\ = Al Im(¢il Aolé;) (| Bol i)

1<j

IN

Then we have

Tr[p[A, B> < 40> 1A = Ajl1Tm{ 6] Aol ) (651l 0) [}

i<j
By (3.6) and Schwarz inequality,

(1 = a)|TrplA, B]]?

< ol = a){D I\ = MlTm{es] Aolé;) (@] Boléi) |}
1<J
= {Z 2v/a(l = o)A = N |[Tm{pi| Aol d;) (851 Boldi)| }
i<j
< {g 2v/a(1 — o)X — X |[(dil Aol )1 (¢ | Bol i) |}
< {ZJ{ A4 A)7 = AFATC AN 26l Aol d) (5] Bol i) 12
< ij + A = ATATY = AT (] Aol 6)
1<J

X (A A+ ATATE AN (] Bol6) -

1<j

Then we have
Iya(A)J,a(B) > a(l — a)|Tr[p[A, B]]|*.

We also have
Iya(B)J,a(A) > a(l — a)|Tr[pA, B]]|*.

Hence we have the final result (3.1). O

Remark 3.1 We remark that (2.3) is derived by putting o = 1/2 in (3.1). Then
Theorem 3.1 is a generalization of the result of Luo [7].
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Remark 3.2 We remark that Conjecture 2.3 in [11] does not hold in genaral. The
Conjecture is (2.10). A counterexample is given as follows. Let

0 0 0 1 1
(8 1) (5 0) e (Vo) s

Lo(A) T, a(B) = Lo(B)],o(A) = 0.22457296 - - -
and |Tr[p[A, B]]|> = 1. These imply

(@ NV
=

We have

1
Upa(A)U,o(B) = 0.22457296 - - - < Z\Tr[p[A, BJJ|? = 0.25.

On the other hand we have
Upa(A)U, o(B) > a(1 — a)|Tr[p[A, B]]|> = 0.2222222 - - - .
We also give a counterexample for Conjecture 2.10 in [11]. The inequality

1 pa_f_plfa
UP,Oé<A)Up,a(B> Z leTT[(T

1s not correct in general, because LHS = 0.22457296---, RHS = 0.23828105995 - - -.

)[4, B]]I”

Remark 3.3 In the recent literature another generalization for inequality (2.3) has
been proved in [5] as follows; for any p, A,B and 0 < a <1

UpalA)Upa(B) = 1ITrl(p — o M)[A, B

However we gave the counter example for this inequality. Let

4 0 0 0 i 0 010 5
p=| 0 % 0 |, A= = 00 |,B=|100 =7
0o 0 2 0 00 000

64

Then we have

Upa(A)U, (B) = 0.00170898 - - -,

1
217l - pl?*=1[A, B]]|* = 0.00610351 - - - .
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