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Fundamental properties for the Tsallis relative entropy in both classical and quan-
tum systems are studied. As one of our main results, we give the parametric exten-
sion of the trace inequality between the quantum relative entropy and the minus of
the trace of the relative operator entropy given by Hiai and Petz. The monotonicity
of the quantum Tsallis relative entropy for the trace preserving completely positive
linear map is also shown without the assumption that the density operators are
invertible. The generalized Tsallis relative entropy is defined and its subadditivity is
shown by its joint convexity. Moreover, the generalized Peierls—Bogoliubov in-
equality is also proven. © 2004 American Institute of Physics.
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I. INTRODUCTION

In the field of the statistical physics, Tsallis entropy was defined in Ref. 28 by S, (X)=
-=,p(x)?In, p(x) with one parameter g as an extension of Shannon entropy, where g- loganthm is
defined by In (x)= (x!"9-1)/(1—¢q) for any non-negative real number g and x, and p(x)=p(X
=x) is the probability distribution of the given random variable X. We easily find that the Tsallis
entropy S,(X) converges to the Shannon entropy —2,p(x)log p(x) as g—1, since g-logarithm
uniformly converges to natural logarithm as g— 1. Tsallis entropy plays an essential role in
nonextensive statistics, which is often called Tsalhs statistics, so that many important results have
been published from the various points of view.”? As a matter of course, the Tsallis entropy and its
related topics are mainly studied in the field of statisitical physics. However the concept of entropy
is important not only in thermodynamical physics and statistical physics but also in information
theory and analytical mathematics such as operator theory and probablhty theory. Recently, infor-
mation theory has been in progress as quantum information theory ® with the help of the operator
theory5 "2 and the quantum entropy theory % To study a certain entropic quantity is important for
the development of information theory and the mathematical interest itself. In particular, the
relative entropy is fundamental in the sense that it produces the entropy and the mutual informa-
tion as special cases. Therefore in the present paper, we study properties of the Tsallis relative
entropy in both the classical and quantum systems.

In the rest of this section, we will review several fundamental properties of the Tsallis relative
entropy, as giving short proofs for the convenience of the readers. See Refs. 7, 27, and 26, for the
pioneering works of the Tsallis relative entropy and their applications in the classical system.

Definition 1.1: We suppose a; and b; are probability distributions satisfying a;=0, b;=0, and
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27 ,a;=27b;=1. Then we define the Tsallis relative entropy between A={a;} and B={b}, for any
g=0 as

n

b

D,(A|B)=~2> a;In, -, (1)
=t a;

where g-logarithm function is defined by In,(x)= (x179—1)/(1-q) for non-negative real number x
and g, and we make a convention 0 In, 0=0.

Note that lim,_,; D,(A|B)=Dy(A|B)=3;.,a;log(a;/b;), which is known as relative entropy
(which is often called Kullback-Leibler information, divergence or cross entropy). For the Tsallis
relative entropy, the following proposition is known.

Proposition 1.2:

(1) (Non-negativity) D,(A|B)=0.

(2) (Symmetry) Dq(a,,(l), oo s Qi) I b'n'(l)’ . ,b,,(,,))=Dq(a1 P ,an[bl e ,bn).

(3) (Possibility of extention) D (ay,...,a,,0]b, ... 1by,0)=Dy(ay, ...,a,| by, ...,b,).
(4) (Pseudoadditivity)

Dq(A(l) X A(2)|B(1) X B(Z)) =Dq(A(1)|B(1)) +Dq(A(2)lB(2)) +(g- I)Dq A(l)!B(l))Dq(AQ)'B(Z))’
where

AD XA(2)={a§1)a]('2)|aJ('1) c A(l),a§-2) c A(Z)},

BW % B(2)={b§-1)b§-2)|b§1) P B(l),bf-z) c B(Z)}.

(5) (Joint convexity) For 0=\ =<1, any ¢=0 and the probability distributions A(i)={a](.i)}, B®
={b§.')} (i=1,2), we have

D,OAD + (1 - MAPINBD + (1 - \)BP) < AD (AV|BD) + (1 - MD,(AP|B®@).
(6) (Strong additivity)
Dq(al, ‘e ,ai_l,ail,aiz,am, e ,an|b1, aes ’bi—l’bil’biz’bi+l7 ‘e ,bn)

b; b,->
e S
bi’bi ’

a; a;

1- o Th

=Dy(aj, ...,a,lby, ... .b,) + b, %aiD,| —, 2
q NG a

1 1

where a;=a; +a;, b;= bi, +b;,.
Proof: (1) follows from the convexity of the function —In,(x):
n b n b
Jj=l q; =1 " 4j

(2) and (3) are trivial. (4) follows by the direct calculation. (5) follows from the generalized
log-sum inequality:

n n 2 ﬂi
S e 1nq<§-") < ( a,.>1nq = @)
i=1 a; i=1

i=1

for non-negative numbers a;,B; (i=1,2,...,n) and any ¢=0. We define the function L, for g
=0 to prove (6) as
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L(x.y)=-xIn, i—:

and

a,-l =ai(1 - S), bil = b,(l - t),

ai2 =a;s, bi2 = b[t.

Then we have

L (x1%2,91Y2) = oL g(x1,1) + X1 Lg{x2,y2) + (g = 1) Ly(x1,y1)Ly(x2,Y2) s

which implies the claim with easy calculations. |
Remark 1.3: 1. (1) of Proposition 1.2 implies

S,(A) <Ingn,

since we have

D, (A|U) =-nT(S,(A) —In, n),

for any g =0 and two probability distributions A={a;} and U={u;}, where u;=1/n, (¥), where the
Tsallis entropy is represented by

n
S,(A) =~ 21 alln, a;.
]:

2. (4) of Proposition 1.2 is reduced to the pseudoadditivity for the Tsallis entropy:

S,AD X APy =5 (AD) + 5,(AD) + (1 - g)S,(AV)S,(AD). 3)

3. (5) of Proposition 1.2 recover the concavity for the Tsallis entropy, by setting BW
={1,0,...,0}, BP={1,0,...,0}.
4. (6) of Proposition 1.2 is reduced to the strong additivity for the Tsallis entropy:

S,ay, ... $8i1,81,5 @iy Bzl - - 1) = S{ay, ... 10 1,85,04415 - 5 8p) +a?Sq(%,%).
1 (2
We finally show the monotonicity for the Tsallis relative entropy. To this end, we introduce
some notations. We consider the transition probability matrix W: A— B, which can be identified
to the matrix having the conditional probability W;; as elements, where .A and B are alphabet sets
(finite sets) and 27, W;;=1 for all i=1,...,n. By A={a§m)} and B ={b§m)}, two distinct probability
distributions in the input system A are denoted. Then the probability distributions in the output
system B are represented by WA={a](.°“t)}, WB ={b§.°“t)}, where a§.°"t)=27=1a§m)Wﬁ, bj°"t)
=2?=1b§m)Wj,-, in terms of W={Wj,~} (i=1,...,n;j=1,...,m). Then we have the following.
Proposition 1.4: In the above notation, for any ¢=0, we have

D, (WA|WB) < D,(A|B).
Proof: Applying the generalized log-sum inequality Eq. (2), we have
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By (in)
(out) (out) (in) Ei=1 bi VVﬁ
D(WA|WB) =~ Ea 1nq 0= ZEa Wiiln, S <
4 J=l =1 Ei=1 a; Wi
m n - bl (i b(m)
-2 2 af W In, (m)W 2 Ing = e =D,(Al|B).
j=1i=1 a; Jji i=1

|

We note that the above proposition is a special case of the monotonicity of f dlvergence for

the convex function f. Closing the introduction, we should also note here that the Tsallis entropy

can be derived by a simple transformation from Rényi entropy which was used before the Tsallis

one in the mathematical literature. See Ref. 4 on the details of Renyl entropy, in particular see pp.

184—191 of Ref. 4 for the relation to the structural a- entropy [or called the entropy of type 8
(Ref. 10)], which is one of the nonextensive entropies including the Tsallis entropy.

Il. QUANTUM TSALLIS RELATIVE ENTROPY AND ITS PROPERTIES

In Refs. 1 and 2, the quantum Tsallis relative entropy was defined by

- 4519
D plo) = LT @

for two density operators p and o and 0=< g <1, as one parameter extension of the definition of the
quantum relative entropy by Umegak13°

Ulplo) = Tr{p(log p - log 9)]. )

See Chap. II written by Rajagopal in Ref. 29, for the quantum version of Tsallis entropies and their
applications.

For the quantum Tsallis relative entropy D,(p|o) and the quantum relative entropy U(p|o),
the following relations are known.

Proposition 2.1 [Ruskai-Stillinger®® (see also Ref. 21)]: For the strictly positive operators
with a unit trace p and o, we have

(1) Dyp|lo)<U(p|o)<D,_,p|o) for 0<g<1.
(2) Dy plo)=<U(plo)=<D,p|o) for 1<g=2.

Note that both sides in both inequalities converge to U(p|o) as g— 1. We must extend this
definition of the Tsallis relative entropy Eq. (4) for 0<<¢=<2 and impose the invertibility on the
density operators of D,_,(p|o) for 0<g<1 and of D (p|o) for 1<g=2.

Proof: Since we have for any x>0 and >0,

1-x7* x-1
slogx= T’

the following inequalities hold for any a,b,t>0:

1-a™'b a ab’-1
a <alog b <q . 6)

t t

Let p=2\;P; and 0=2,;u;0; be the spectral decompositions. Since Z;P;=32 70;=1, then we have
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14t _—t . 1+t —t
p ot =p pta’-p
Tr[——t—— — p(log p-log 0'):| = 2 Tr[Pi{—t—- — p(log p—log o’)}Qj]
l’.’
= > Tr| P, 1)&*‘ "—lx-—x-l N+ )\ lo 0
_,'j zti:u‘j tt i10g A; Lg:u‘jj

1oger 1
= 2 (;7‘}”:“7‘ - ;)\,- ~Nlogh;+A;log le)Tr[Pin] =0.
l’.’

The last inequality in the above is due to the inequality of the right-hand side of Eq. (6). Thus we
have

1
Tr{p(log p—log 0)] < ;Tr[p“‘cr" -pl.

The left-hand side inequality is proven by a similar way. Thus setting 1—g=#(>0) in the above,
we have (1) in Proposition 2.1. Also we have (2) in Proposition 2.1, by setting g—1=+(>0). B

We next consider another relation on the quantum Tsallis relative entropy. In Ref. 11, the
relative operator entropy was defined by

—1/2

S(plo) = p"log(p V2

o Dp,

for two strictly positive operators p and o. If p and o are commutative, then we have U(p| o)
=-Ti[S(p|#)]. For this relative operator entropy and the quantum relative entropy U(p|o), Hiai
and Petz proved the following relation:

Ulplo) < - THS(plo)], ™)

in Ref. 15 (see also Ref. 16).
In our previous papers,32 we introduced the Tsallis relative operator entropy Tq(p|cr) as a
parametric extension of the relative operator entropy S(p|o) such as

—1/2 . —1/2\1
op ")

p2(p 12 _

“p"-p

’

T olo) = —

for 0=<¢<1 and strictly positive operators p and o, in the sense that
lim T,(plo) = S(p|o). (8)
q—)

Actually we should note that there is a slight difference between the two parameters g in the
present paper and A in the previous paper,32 which is an extension of Ref. 13. If p and o are
commutative, then we have Dq(p| 0)=—Ti[T,(p|0)]. Also we now have that

lim D, (plo) = Ulplo). )

These relations, Eq. (7), Eq. (8), and Eq. (9) naturally lead us to show the following theorem as a
parametric extension of Eq. (7).

Theorem 2.2: For 0<<¢g<1 and any strictly positive operators with unit trace p and o, we
have

D,(plo) < - THT(p|o)]. (10)

Proof- We denote the a-power mean #, by A# ,B=AY2(A"2BA~12)2A12 From Theorem 3.4
of Ref. 16, we have
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Ti e # ,eP] < Tr[ (1~ 2A+eB]

for any a €[0,1]. Setting A=log p and B=log o, we have

Tr[p# .07 < Tif¢lo8 ¢ *+log o]

Since the Golden-Thompson inequality Tr[e**?]< Tr{e“¢?] holds for any Hermitian operators A
and B, we have

Tr[elog % log o""] < Tr[elog pl"'elog a"] = Tr[pl—ao.a] .

Therefore

Tr[p1/2(p—1/20_p—1/2) ap1/2] < Tr[pl—ao_a]

which implies the theorem by taking a=1-gq. |
Corollary 2.3 (Hiai—Petz'>'®): For any strictly positive operators with unit trace p and o, we
have

Tr{ p(log p - log 0)] < Tip log(p*?01p')]. (11)

Proof: Tt follows by taking the limit as g— 1 in both sides of Eq. (10). |

Thus the result proved by Hiai and Petz in Refs. 15 and 16 is recovered as a special case of
Theorem 2.2.

For the quantum Tsallis relative entropy Dq(pl o), (i) pseudoadditivity and (ii) non-negativity
are shown in Ref. 1, moreover (iii) joint convexity and (iv) monotonicity for projective mesure-
ments, are shown in Ref. 2 Here we show the unitary invariance of D (p|o) and the monotonicity
of that for the trace-preserving completely positive linear map.

Proposition 2.4: For 0<¢<1 and any density operators p and g, the quantum relative entropy
D,(p| o) has the following properties.

(1) (Non-negativity) D,(p|c)=0.
(2)  (Pseudoadditivity) Dy(p1 ® p2| 01 ® 02)=Dy(p1]01)+Dylp2| 02) + (q—1)D(py | 61)D (5| 7).
(4) The quantum Tsallis relative entropy is invariant under the unitary transformation U:

D, (UpU *|UaU *) =D ,(plo).

Proof: Since it holds that f(g,x,y)=(x—x%y'"9)/(1-g)-(x~y)=0 for x=0, y=0, and 0
<g<1, we have D,(p| o) =Ti[ p— o], which implies (1), since p and o are density operators. (See
Proposition 3.16 of Ref. 21 on the so-called Klein inequality.)

(2) follows by the direct calculation.

(3) follows from the Lieb’s theorem that for any operator Z and and 0<<¢=<1, the functional
f(A,B)=Ti{Z*A’ZB"] is joint concave with respect to two positive operators A and B.

(4) is obvious by the use of Stone-Weierstrass approximation theorem. (It also can be shown
by the application of Theorem 2.5.) B

(1) of the above proposition follows from the generalized Peierls—Bogoliubov inequality
which will be shown in the next section.

In Ref. 22, the monotonicity for more generalized relative entropy was shown under the
assumption of the invertibility of the density operators. Here we show the monotonicity for the
quantum Tsallis relative entropy in the case of 0= g <1 without the assumption of the invertibility
of the density operators.

Theorem 2.5: For any trace-preserving completely positive linear map ®, any density opera-
tors p and o and 0=¢g <1, we have

D(®(p)|®(a)) < D,(plo).
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Proof: We prove this theorem in a similar way as Ref. 18. To this end, we first prove the
monotonicity of D,(p|o) for the partial trace Trp in the composite sysytem AB. Let p* and 0
be density operators in the composite system AB. From Refs. 20 and 31, there exists unitary
operators U; and the probability p; such that

A ﬁ:?;)j(z@ U)oU)+,

where #n and I present the dimension and identity operator of the system B, p*=Trg[p*?] and
4 =Trg[c*2]. By the help of the joint concavity and the unitary invariance of the Tsallis relative
entropy, we thus have

Dq(pA ellohe 1) <2 pD e U)p* 1o U)*|(I® U)d**(I® U) *)
n n j

= S pD,(0""0*) = D)%),
]

Since

Dq<pA s L|e 1) =D (oY),
n n

we thus have

D(Trg(p*®)|Tep(0*)) < D, (p*%04?). (12)

It is known” (see also Refs. 8, 18, and 19) that every trace-preserving completely positive linear
map ® has the following representation with some unitary operator U2B on the total system AB
and the projection (pure state) P? on the subsystem B,

d(p*) = Trp U4B(p* ® PEYUAE".

Therefore we have the following result, by the result of Eq. (12) and the unitary invariance of
D,(p|o) again,

D(®(p")|®(c4) < DU (o ® PHU*|U**(0* ® PPU) =Dy ® PP|o* © PP)

which implies our claim, since D (p* ® P%|o* ® PF)=D,(p*|o%). u
Setting o=(1/n)I in Theorem 2.5, we have the following corollary.
Corollary 2.6: For any trace-preserving completely positive linear unital map ®, any density
operator p and 0=<¢g<{1, we have

H,(®(p)) = H,(p),

where H,(X)=(Tir[X?]-1)/(1-q) represents the Tsallis entropy for density operator X, which is
often called the quantum Tsallis entropy.

We note that Theorem 2.5 for the fixed o, namely the monotonicity of the quantum Tsallis
relative entropy in the case of ®(0)=0, was proved in Ref. 3 to establish Clausius’ inequality.

Remark 2.7: 1t is known"® (see also Ref. 23) that there is an equivalent relation between the
monotonicity for the quantum relative entropy and the strong subadditivity for the quantum en-
tropy. However in our case, we have not yet found such a relation. Because the pseudoadditivity
of the g-logarithm function,

In, xy=1Ingx+1In;y +(1 - g)ln, x In, y,

disturbs us to derive the beautiful relation such as
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D (p(x,y)|p(x)p1)) = S,(p(x)) + S, (p(»)) = S, (p(x,7))

for the Tsallis relative entropy D (p(x,y)| p(x)p(»)), the Tsallis entropy S,(p(x)), S,(p(y)), and the
Tsallis joint entropy S,(p(x,y)), even if our stage is in the classical system.

lll. GENERALIZED TSALLIS RELATIVE ENTROPY

For any two positive operators A, B and any real number g € [0, 1), we can define the gener-
alized Tsallis relative entropy.
Definition 3.1:

Ti{A] - TH{AB9]

D,(AIB) = =T

To avoid the confusions of readers, we use the different symbol D,(-I-) for the generalized
Tsallis relative entropy.

Since Lieb’s concavity theorem is available for any positive operators A and B, the general-
ized Tsallis relative entropy has a joint convexity,

D(Si

> )\jB) <3 \DA]B). (13)
J J

for the positive number \; satisfying = 7A;j=1 and any positive operators A; and B;. Then we have
the subadditivity of the generalized Tsallis relative entropy between A;+A, and B+B,.

Theorem 3.2: For any positive operators A;, As, By, and B,, and 0<¢<1, we have the
subadditivity

Dy(A; +Agl|By + By) < D,(A4]|By) + D(A,]|B,). (14)

Proof: First we note that we have the following relation for any numbers « and 8, and two
positive operators A and B,

D,(aA||BB) = aD (A|B) - lnqur[Aqu‘q]. (15)
Now from Egq. (13), we have

Dy(MXy + MXo|N ¥y +NaY5) < MDy(Xy[|Y)) + oD (X,||Y)

for any positive operators X, X,, Y;, and Y5, and A;, Ay (\;+X\,=1). Setting A;=\;X; and B;
=NY; for i=1,2 in the above inequality, we have

2

N/

Thus we have our claim due to Eq. (15). |
As a famous inequality in statistical physics, the Peierls-Bogoliubov inequality”’6 is known.
Finally, we prove the generalized Peierls—Bogoliubov inequality for the generalized Tsallis relative
entropy in the following.
Theorem 3.3: For any positive operators A and B, 0<¢<1,

B, Ay
— |+ )\2Dq -
A Ay

4
Dq(Al +A2”B1 + BZ) = )\qu x_l

Ti{A] - (TdADY(Te[B]) '~
1-¢ '
Proof: In general, we have the following Holder’s inequality:

D,A|B) =
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ITxY]| < Tl |XFT Tl Y1, (16)

for any bounded linear operators X and Y satisfying Tr[|X]]<co and Tr[|¥|']<cc and for any
l1<s<ow and 1<t<o satisfying (1/s)+(1/f)=1. By setting X=A4, Y=B'", and s=1/q, ¢
=1/(1-¢) in Eq. (16), we have

Tr{A%B'] < (T ADU(T{BD' ",

which implies our claim. |

Note that Theorem 3.3 can be considered a noncommutative version of Eq. (2). If A and B are
density operators, then the non-negativity of the quantum Tsallis relative entropy follows from
Theorem 3.3.

IV. CONCLUSION

As we have seen, the monotonicity of the quantum Tsallis relative entropy for the trace-
preserving completely positive map was shown. Also the trace inequality between the Tsallis
quantum relative entropy and the Tsallis relative operator entropy was shown. It is remarkable that
our inequality recovers the famous inequality shown by Hiai-Petz as g— 1.
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