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Abstract. The gradient-based technique is one of the popular methods to determine 

optical flow (apparent two-dimensional velocity field). It can be classified into two 

broad categories: the global optimization and the local optimization. Horn and Schunck 

proposed the spatial global optimization to constrain the estimated velocity field. In this 

study, a new approach is proposed to extract the reliable optical flow fields. This is the 

gradient-based spatio-temporal optimization with combination of local and global 

approach. Main point is the introduction of aspatio-temporal measure (locally averaged) 

of the error function in the conservation equation. Experiments have been made to 
confirm the performance of the proposed method and to clarify the difference of 

characteristics between them. 

1. Introduction 

Determining optical flow (HORN, 1986; SINGH, 1991; JAHNE, 1995) is one of the 
most important problems in the processing of image sequence. A number of different 
approaches to determine optical flow have been proposed including gradient-based, 
correlation-based, energy-based and phase-based methods. A recent survey is due to 
BARRON et al. ( 1994 ), where the different approaches were compared on a series of 
synthetic and real images. In the gradient-based method, it can be classified into two broad 
categories: the global optimization (HORN and SCHUNCK, 1981; NAGEL and ENKELMANN, 

1986; CHAUDHURY and MEHROTRA, 1995; BLACK and ANANDAN, 1996) and the local 
optimization (KEARNEY et al., 1987; VERRI et al., 1990; NOMURA et al., 1991; ZHANG et 

al., in press). 
HORN and SCHUNCK (1981) are the pioneers of using the gradient-based global 

optimization. They use the spatial global optimization to constrain the estimated velocity 
field under the assumption that neighboring points on the objects have similar velocities 
and the velocity field of the brightness patterns in the image varies smoothly almost 
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everywhere. The approach can be viewed as" The spatial global optimization". CHAUDHURY 
and MEHROTRA ( 1995) proposed the modified Horn and Schunck method. They modified 
the Horn and Schunck approach to include a temporal smoothness. We can view the 
modified Hom and Schunck approach proposed by Chaudhury and Mehrotra as" The spatia­
temporal global optimization". BLACK et al. (1996) proposed the robust estimation of 
multiple motions approach. Instead of the traditional least-squares error function, they 
used an error function (for example, Lorentizian function) which is robust for handling 
the problem of discontinuities occurring at motion boundaries. They also described a 
regularization technique, which uses a robust version of the standard optical flow 
constraint equation and a robust first-order smoothness term. They considered the local 
average smoothness of velocity in a spatial neighborhood (e.g. a 3 x 3 neighborhood). 
Based on Horn and Schunck approach, in this report, we proposed a new approach to 
extract the reliable optical flow fields. This is the gradient-based spatia-temporal 
optimization with combination of local and global approach. The performance of the 
proposed method is confirmed by use of synthetic and real image sequences. 

2. The Spatial Global Optimization 

Let the image brightness function at the point (x, y) in the image plane at time t be 
E(x, y, t). Assuming that the brightness of a particular point in the image plane is constant, 
we have the well-known conservation equation (HORN and SCHUNCK, 1981 ): 

(1) 

where the Ex, Ey, and E1 denote the partial derivatives of image brightness with respect to 
x, y and t, respectively, the u and v denote the two unknown components of velocity vector 
(u, v). The conservation equation (l) provides one linear equation in the variables u and 
v. As a consequence, the optical flow cannot be determined at a point in the image 
independently of neighboring points without introducing additional constraints. 

Hom and Schunck introduce the spatial global smoothness constraint as the additional 
constraint. They assume that neighboring points on the objects have similar velocities and 
the velocity field of the brightness patterns in the image varies smoothly almost 
everywhere. The estimation of optical flow is obtained by minimizing 

(2) 

where a2 denotes a suitable weighting factor, Eb denotes a local measure of errors in the 
conservation equation at a pixel site, 

(3) 
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and Ec denotes the measure of smoothness in the velocity field (see Fig. 1), 

(4) 

Horn and Schunck used the calculus of variation to minimize the total error given by Eq. 
(2), obtaining 

(5) 

where \72 = ()2f(()x2) + ()2f(()y2) is the Laplacian. Using the approximation to the Laplacian 
(HORN and SCHUNCK, 1981), V 2u = u - u and V 2v = v- v, from Eq. (5) we can obtain 

(6) 

where the local average u and v are defined as follows (see Fig. 11 in Appendix B) 

- 1 { } U· · =- U· · +U· · +U· · +U· · l,j,l 6 1-l,j,l l,j+l,t l+l,j,t l,j-l,t 

1 { } +- u. . +u. . +u· . +u· . 12 1-l,j-l,t 1-l,j+l,t l+l,j+l,t l+l,j-l,t , 

- 1 { } V· · =- V· · + V· · + V· · + V· · l,j,t 6 1-l,j,T l,j+l,t l+l,j,T l,j-l,t 

1 { } +- V· · +V· · +V· · +V· · . 12 1-l,j-l,t 1-l,j+l,t l+l,j+l,t l+l,j-l,t 

3. Proposed Method 

3.1. The spatia-temporal measure of error 
In Eq. (3), Horn and Schunck used E& denoting the local measure of errors in the 

conservation equation at a pixel site. Since Eq. (2) is estimated from discrete images, the 
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estimation of optical flow will be inaccurate due to noise in the imaging process and 
sampling measurement error. We introduce a spatia-temporal measure to reduce the error. 
Considering a small spatia-temporal volume 8v =Ox· 8y· 8t around a considerable pixeL An 
averaged error function is defined as 

(7) 

A local constancy of the optical flow ( u, v) is assumed to evaluate the error function in the 
small spatia-temporal volume 8v = 8x·8y-8t. Generally, the conventional local optimi­
zation approach is designed to minimize the error function directly (with the linear least­
squares method or other minimization method, (e.g., KEARNEY et al., 1987; NOMURA et 
al., 1991; ZHANG et al., in press)). Here, we try to combine the local optimization and 
global optimization approach, assuming that the optical flow (u, v) is constant in a small 
spatia-temporal volume 8v = 8x-8y-8t, and the neighboring points (among small spatia­
temporal volumes 8v) on the objects have similar velocities and the velocity field varies 
smoothly. 

3.2. The spatia-temporal measure of smoothness 
Horn and Schunck use the spatial measure of smoothness in the velocity field (see 

Fig. 1) to minimize the square of the magnitude of the gradient of the optical flow in the 
velocity plane (Eq. ( 4) ). Considering the spatia-temporal continuity of the velocity fields 
in the image sequence, we introduce a concept of spatia-temporal smoothness (see Fig. 
2). The spatia-temporal measure of smoothness is defined as (CHAUDHURY and MEHROTRA, 
1995) 

I 
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Fig. I. The spatial measure of smoothness in the velocity field. 
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Fig. 2. The spatial-temporal measure of smoothness in the velocity fields. 

(8) 

3.3. Determining optical flow with spatia-temporal optimization 
The solution of optical flow is obtained by minimization of the sum of the spatio-

A A 

temporal error function Eb (Eq. (7)) and the spatio-temporal measure of smoothness Ec 

(Eq. (8)). Let the total errors to be minimized be 

(9) 

where a2 denotes a suitable weighting factor. Using the calculus of variation (see 

Appendix A) we obtain 

a2V~,u = LE;u+ LExEyv+ LExE, 
8v 8v 8v 

(10) 

a 2v;yr v = L EyE xu+ L E;v + L EYE, 
8v 8v 8v 

where 
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(II) 

is a Laplacian operator. Using the approximation to the Laplacian (see Appendix B), 
Vxy?u = u- u and Vxyh = v- v, from Eq. (10) we obtain (see Appendix A) 

(12) 

where the local average u and v are defined as a weighted sum of neighboring points in 
3 x3 x3 volume(seeFig. 12 in Appendix B). When we compare between the conventional 
method (the global optimization method by Horn and Schunck, Eq. (6)) and the proposed 
method (Eq. (12)) the mainly improved points are: 

1) We introduce the averaged error function Eb (Eq. (7)) instead of E& (Eq. (3)) to 
estimate the errors for the rate of change of image brightness. Equation (7) assumes that 
the optical flow (u, v) is constant in a small spatio-temporal volume 8v = 8x-8y·8t. We 
evaluate the errors in the conservation equation in a small spatio-temporal volume 8v but 
not at a pixel site (x, y, t). This means that we combine the global and local constraints to 
estimate optical flow fields. 

2) We use the spatio-temporal measure of smoothness Ec (Eq. (8), Fig. 2) instead 
of the spatial measure of smoothness Ec (Eq. (4), Fig. 1) in the velocity fields. Horn and 
Schunck consider one velocity plane (Fig. 1) under the assumption that neighboring 
points on the objects have similar velocities and the velocity field of the brightness 
patterns in the image varies smoothly almost everywhere. We consider the plural velocity 
planes (Fig. 2) and introduce the spatio-temporal measure of smoothness in the velocity 
fields. We assume that neighboring points (among small spatio-temporal volumes 8v) on 
the objects have similar velocities and the velocity field (on plural velocity planes) of the 
brightness patterns in the image varies smoothly almost everywhere. 

3) We use the spatio-temporal global optimization (Eq. (9)) instead of the spatial 
global optimization (Eq. (2)) to determine optical flow. We minimized the total errors (Eq. 
(9)) on plural image planes but not on one image plane s (see Eq. (2)). It is expected to 
obtain high resolution and high reliability of optical flow field. The performance of the 
proposed method is confirmed by the experiments below. 
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4. Experiments 

In this section, we try to apply the proposed method to determine optical flow fields. 

We compare the proposed method with the conventional gradient-based methods (spatial 

global optimization, HORN and SCHUNCK, 1981 and spatio-temporal global optimization, 

CHAUDHURY and MEHROTRA, 1995) and discuss the performance of the proposed method. 

The experimental data includes two synthetic image sequences and one real image 
sequence. 

4.1. Experimental images analysis 
4.1.1 Yosemite sequence (synthetic data*) 
The Yosemite sequence has a resolution of 316 x 252 pixels and 15 frames. The 

brightness is quantified into 256 steps. The Yosemite sequence is a complex test scene. In 
the scene, the cloud has a translational motion with a speed of2 pixels/frame, while speed 

in the lower left is about 4-5 pixels/frame. However, the brightness of cloud changes with 
respect to time and space. The landscape (mountains, valley, etc.) moves against depth 
direction. Then, motion field expands. Namely, the motion field has divergence char­

acteristics. This sequence is challenging because of the range of velocities, occluding 
edges between the mountains and at the horizon, divergence and non-uniform illumination. 

Figure 3 shows the 1st and 1Oth frames of the synthetic image sequence. The theoretical 
optical flow field is shown in Fig. 4. 

(a) (b) 

Fig. 3. The Yosemite sequence: (a) 1st frame and (b) lOth frame. 

*The image sequence of Yosemite is obtained from the ftp-site of ftp.csd.uwo.ca. 
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4.1.2 Diverging Tree sequence (synthetic data*) 
In the Diverging Tree sequence, the camera moves along its line of sight, the focus 

of expansion is at the center of the image, and the image speeds vary from 1.29 pixels/ 
frame on the left side to 1.86 pixels/frame on the right. The size of the Diverging Tree 
sequence is 150 x 150 pixels and 40 frames. The brightness is quantified into 256 steps. 
Figure 5 shows the 5th and 25th frames of the synthetic image sequence. The theoretical 
optical flow field is shown in Fig. 6. 

4.1.3 Toy car sequence (real data) 
The usefulness of the proposed method is also tested with real image sequence. We 

took sequential images of toy car motions on floor through a TV camera with sampling 
frequency of 30Hz. The size of the Toy car sequence is 236 x 110 pixels and 40 frames. 
Brightness is quantified into 256 steps. The toy car moves from lower left to upper right. 
Figure 7 shows the lOth and 25th frames of the Toy car sequence. 

4.2. Experimental results 
In this section, we report the quantitative performance of the conventional gradient­

based methods (spatial global optimization, HORN and SCHUNCK, 1981 and spatia-tem­
poral global optimization, CHAUDHURY and MEHROTRA, 1995) and the proposed method 
on the synthetic image sequences. We also show the optical flow fields produced by the 

Fig. 4. Theoretical optical flow field of Yosemite sequence. 

*The image sequence of Diverging Tree is obtained from the ftp-site of ftp.csd.uwo.ca. 
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(b) 

Fig. 5. The Diverging Tree sequence: (a) 5th frame and (b) 25th frame. 
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Fig. 6. Theoretical optical flow field of Diverging Tree sequence. 
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methods on the real image sequence. We try to determine optical flow fields by use of the 
following three methods. First, we use the conventional gradient-based method (HORN 
and SCHUNCK, 1981, 1986). 

Spatial Global Optimization (SGO): HORN and SCHUNCK (1981, 1986) combined 
the basic constraint equation with a spatial global smoothness term to constrain the 
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(a) 

(b) 

Fig. 7. The Toy car sequence: (a) lOth frame and (b) 25th frame. 

Fig. 8. The optical flow fields determined by SGO: Horn and Schunck. (a) Yosemite sequence, (b) Diverging 
Tree sequence and (c) Toy car sequence. 
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estimated velocity field v = (u, v) (Eq. (2)). We used a= 0.5 and 100 iterations as sug­
gested by BARRON et al. (1994) in testing below. Two consecutive images are used to 
compute the partial derivatives using a 2 x 2 x 2 spatia-temporal neighborhood (HORN and 
SCHUNCK, 1981 ). The results of optical flow fields obtained by the method are shown in 
Figs. S(a)-(c). 
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Second, Spatio-Temporal Global Optimization (STGO): CHAUDHURY and 
MEHROTRA ( 1995) proposed the modified Horn and Schunck approach. They modified 
the Horn and Schunck approach to include a temporal smoothness. Then, the approach can 
process multiframe. In the experiment we test the modified Horn and Schunck approach 
using a= 0.5 and 100 iterations. Five frames of images are used to compute three velocity 
planes. The partial derivatives are estimated by using a 3 x 3 x 3 spatio-temporal 
neighborhood. The results of optical flow fields obtained by the modified Horn and 
Schunck approach are shown in Figs. 9(a)-(c). 

Third, we use the proposed Spatio-Temporal Optimization with combination of 
Local and Global approach (STOLG): We combined the spatio-temporal error function 
with the spatio-temporal measure of smoothness in the velocity fields (Eqs. (7) and (8)) 
to constrain the estimated velocity field v = (u, v) (Eq. (9)). Since we use the spatia­
temporal optimization, the proposed approach can process not only two successive frames 
(as Horn and Schunck did) but also the multiframe. We use five frames of images to 
compute three velocity planes. The partial derivatives are estimated by using a 3 x 3 x 3 
spatio-temporal neighborhood. We used a= 0.5 and 100 iterations as the same condition 
before. The results of optical flow fields obtained by the proposed method are shown in 
Figs. lO(a)-(c). 

The optical flow fields obtained by the conventional gradient-based method (Horn 
and Schunck, see Fig. 8) and the modified Horn and Schunck approach (see Fig. 9) have 

(a) 

Fig. 9. The optical tlow fields determined by STGO: modified Horn and Schunck (C HAUDHUR Y and MEHROTRA, 
I 995). (a) Yosemite sequence, (b) Diverging Tree sequence and (c) Toy car sequence. 
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Fig. 9. (continued). 
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serious errors. When we apply the proposed spatia-temporal optimization under the 

assumption ofEqs. (7) and (8), optical flow fields are improved apparently (see Fig. 10). 

For more detailed and quantitative evaluation see Table 1 in Subsection 4.3. However, for 

Yosemite sequence, reduction of the error at foreground mountain surface and at the cloud 
position are not satisfactory, because there are the aperture problem and the spatio-
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Fig. 10. The optical flow fields determined by STOLG: Proposed method. (a) Yosemite sequence, (b) Di­
verging Tree sequence and (c) Toy car sequence. 



The Spatio-Temporal Optimization to Determine Optical Flow 313 

(c) 

_ I {pixcUframe) 

Fig. 10. (continued). 

temporal non-uniform illumination. The texture of foreground mountain surface has only 
pinstriped, it is easy to encounter the aperture problem. When we try to determine motion 
fields by the gradient-based method, we have to consider the aperture problem. In order 
to overcome the shortage, it seems effective to introduce a spatial presmoothing (e.g. 
Gaussian spatial presmoothing) based on the image sequence (ZHANG et al., in press) or 
the hierarchical approach (GLAZER, 1983). For the spatio-temporal non-uniform illumi­
nation, in our latest report (ZHANG et al., in press), we introduced the pixel-based temporal 
filtering and the extended constraint equation with spatio-temporallocal optimization to 
cope with the problem. The further research considering the spatio-temporal non-uniform 
illumination with spatio-temporal optimization combining local and global approach is 
expected. 

4.3. Error measurement 
We tested the proposed algorithm on the synthetic and real images. For the 

experiment on the synthetic images where the correct motion fields are known, we can use 
the angular measure of error used by BARRON et al. (1994) to evaluate the results. They 

measure the error between the correct velocity vc = (u, v) and the estimate ve = (u, v) as 
the angle between the unit vectors in 30 space, 

_ _ (u,v,l) 

v3 = ~ u2 + v2 + 1 . 
(13) 

The angular error between the correct vector v3c and the estimate v3e is 

1/f E = arccos( V3c · V3e ). (14) 
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Table I. Summary of the Diverging Tree and Yosemite sequence optical flow fields results. 

Algorithm Diverging Tree Yosemite 

Ave. error Std. dev Ave. error Std. dev 

Horn and Schunck 12.02 I 1.73 31.69 31. I 8 
Horn and Schunck (modified) 5.20 4.92 18.41 23.37 
Proposed method 2.41 1.39 9.41 14.81 

The error comparison of the proposed method with the conventional gradient-based method (HORN and 
SCHUNCK, 1981) and the modified Horn and Schunck approach (CHAUDHURY and MEHROTRA, 1995). The 
compared methods provide I 00% density of optical flow vector. The preprocessing of image sequence is not 
introduced. 

The error comparison of the proposed method with the conventional gradient-based 
method (HORN and SCHUNCK, 1981) and the modified Horn and Schunck approach 
(CHAUDHURY and MEHROTRA, 1995) is summarized in Table 1, which lists the average 
and standard deviation of the angular error. The proposed method records better per­
formance. 

5. Conclusions 

In this paper, a new approach is proposed to extract the reliable optical flow field, this 
is the gradient-based spatio-temporal optimization with combination of local and global 
approach. We combined the spatio-temporal measure of error with the spatio-temporal 
measure of smoothness in the velocity fields (Eqs. (7) and (8)) to constrain the estimated 
velocity field v = (u, v) (Eq. (9)). The mainly improved points based on Horn and Schunck 
method are: 

1) We use the spatio-temporal error function Eb (Eq. (7)) instead of Eb (Eq. (3)) 
to estimate the errors for the rate of change of image brightness. We evaluate the errors 
in the conservation equation in a small spatio-temporal volume ov but not at a pixel site 
(x, y, t). This means that we combine the global and local constraints to estimate optical 
flow fields. 

2) We use the spatio-temporal measure of smoothness Ec (Eq. (8), Fig. 2) instead 
of the spatial measure of smoothness Ec (Eq. (4), Fig. 1) in the velocity fields. We consider 
the plural velocity planes (Fig. 2) but not one velocity plane (Fig. 1). We introduce the 
spatio-temporal measure of smoothness in the velocity fields, assuming that the optical 
flow (u, v) is constant in a small spatio-temporal volume ov = ox-Oy·Ot and neighboring 
points (among small spatio-temporal volumes ov) on the objects have similar velocities 
and the velocity field (on plural velocity planes) of the brightness patterns in the image 
varies smoothly almost everywhere. 
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3) We use the spatio-temporal global optimization (Eq. (9)) instead of the spatial 
global optimization (Eq. (2)) to determine optical flow. We minimized the total errors (Eq. 
(9)) in plural image planes v but not in one image plane s (see Eq. (2)). 

Since we adopted the spatio-temporal measure of error (locally averaged) and spatio­
temporal measure of smoothness with spatio-temporal optimization, we obtained high 
resolution and high reliability of the determined optical flow fields compared to the 
conventional gradient-based global optimization methods. The performance of the 
proposed method was confirmed by the analysis of two synthetic image sequences and one 
real image sequence. Further investigation considering the spatio-temporal non-uniform 
illumination with spatio-temporal optimization combining local and global approach is 
expected. 
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Appendix A: The Spatio-Temporal Optimization with Combination Local and Global 
Approach 

The total errors to be minimized can be written as (Eq. (9)) 

(Al) 

where 

(A2) 

(A3) 

Denoting 

(A4) 

The general formulation of the variation integral for the optical flow field reads as 
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The corresponding Euler-Lagrange equations are (HORN and SCHUNCK, 1986; JAHNE, 
1995): 

(A6) 

The discrete representation of Eq. (A2) can be written as 

Eh = I.(Exu+Eyv+E1 ( (A7) 
8v 

Inserting the Lagrange function (Eq. (A4)) into the Euler-Lagrange differential equation 
(Eq. (A6)) yields the following differential equation: 

(A8) 

Denoting a Laplacian operator: 

2 a2 a2 a2 
V'xvt =--2 +--2 +-2 · . ax dy dt 

Equation (A8) can be rewritten as 
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a2'V~1u= I,E;u+ LExEyv+ LExEt> 
ov ov ov 

(A9) 

a2V~1 v =I, EyE xu+ I, E;v +I, EyEr. 
ov ov ov 

Using the approximation to the Laplacian (see Appendix B), 'Yxy?u = u- u and 'Yxy1
2v = 

v- v, Eq. (A9) can be written as 

(AlO) 

Equation (A 1 0) provides two linear equations in the variables u and v. Solving Eq. (A 1 0) 
we obtain 

u =~{a'[( a2 + p; )u -(p,E, )v-p,E,] 
+(p,E, )( p,E, )-(pA)(p; )}, (Al2) 
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From Eqs. (A 11 )-(A 13) we can obtain the solution of optical flow ( u, v). When assuming 

and 

(A14) 

in a small volume 8v = 8x·Oy·bt, we get the simple solution: 

(A15) 

Appendix B: The Approximation to the Laplacian 

In HORN and SCHUNCK method ( 1981 ), Laplacian is denoted as 

1112 1/6 1112 

1/6 -1 116 

1/12 116 1112 

Fig. ll. The Laplacian is estimated by 9 neighboring points (3 x 3) in one velocity plane. 
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I/56 2/56 1/56 

2/56 4/56 2/56 

I/56 2/56 I/56 

2/56 4/56 2/56 

4/56 -1 4/56 

2/56 4/56 2/56 

I/56 2/56 1/56 

2/56 4/56 2/56 

1/56 2/56 1/56 

Fig. 12. The Laplacian is estimated by 27 neighboring points (3 x 3 x 3) in three velocity planes. 

2 a2 a2 
V' =--2 +--2. ax ay 

They use 9 neighboring points (3 x 3) to approximate the Laplacians of u and v in one 
velocity plane (Fig. 11). In the proposed spatio-temporal optimization combining local 
and global approach, however, we need to approximate the Laplacian: 

2 a2 a2 a2 
V' xyt =--? +--2 +-2-. ax- ay at 

We use 27 neighboring points (3 x 3 x 3) to approximate the Laplacians of u and v in three 
velocity planes (Fig. 12). 
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