Memoirs of the Faculty of Science, Kyushu University Ser. A, Vol. 30, No. 1, 1976

ON LEFT HILBERT ALGEBRAS WITH RESPECT TO MINKOWSKY FORMS

By

Ken KURIYAMA (Received Oct. 24, 1975)

1. Introduction

In 1967, Professor Tomita wrote unpublished papers [4] and [5]. In those papers he introduced a notion, called a left Hilbert algebra, and proved the commutation theorem. That is, let \mathfrak{A} be a left Hilbert algebra and $\mathscr{L}(\mathfrak{A})$ be the left von Neumann algebra associated with \mathfrak{A} , then the commutation theorem $J\mathscr{L}(\mathfrak{A})J = \mathscr{L}(\mathfrak{A})'$ holds.

In this paper we define a left Hilbert algebra with respect to a Minkowsky form and give a commutation theorem.

2. Adjoint Operations with respect to Minkowsky forms

Let \mathscr{H} be a Hilbert space with an inner product (1). An hermitian sesquilinear form [,] is said to be a Minkowsky form if the following condition is satisfied:

 $\sup \{ | [\xi, \eta] |; \|\eta\| \le 1 \} = \|\xi\|.$

For the Minkowsky form [,], there exists uniquely a unitary hermitian operator U such that $[\xi, \eta] = (U\xi|\eta)$ for all $\xi, \eta \in \mathcal{H}$.

DEFINITION 2.1. Let T be a densely defined linear (respectively, conjugate linear) operator, then T^{\cup} is defined as follows.

$$[T\xi, \eta] = [\xi, T^{\cup}\eta] \quad ([T\xi, \eta] = [T^{\cup}\eta, \xi]), \quad \xi \in \mathcal{D}(T), \quad \eta \in \mathcal{D}(T^{\cup}).$$

It is evident that T^{U} is a closed operator and $T^{U} = UT^{*}U$.

PROPOSITION 2.2. Let T be a densely defined operator. Then T is

closable if and only if T^{υ} is densely defined. If T is closable, $T^{\upsilon \upsilon}$ is the closure \overline{T} of T.

PROOF. If T is a densely defined closable operator, T^* is densely defined. Since $\mathscr{D}(T^{\upsilon}) = U^{-1}\mathscr{D}(T^*) = U\mathscr{D}(T^*)$, T^{υ} is densely defined. Conversely if T^{υ} is densely defined, so is T^* and hence T is closable. If T is closable, $T^{\upsilon \upsilon} = T^{**} = \overline{T}$.

DEFINITION 2.3. A linear (conjugate linear) operator T is said to be reflexive if $T\mathcal{D}(T) \subset \mathcal{D}(T)$ and $TT\xi = \xi$ for all $\xi \in \mathcal{D}(T)$.

PROPOSITION 2.4. If T is a reflexive closable operator, \overline{T} is reflexive.

PROOF. For any $\xi \in \mathscr{D}(\overline{T})$, there exists a sequence $\{\xi_n\}$ in $\mathscr{D}(T)$ such that $\xi_n \to \xi$ and $T\xi_n \to \overline{T}\xi$. Since $\mathscr{D}(T) \ni T\xi_n \to \overline{T}\xi$ and $\xi_n = T(T\xi_n) \to \xi$, we have $\overline{T}\xi \in \mathscr{D}(\overline{T})$ and $\overline{T}(\overline{T}\xi) = \xi$. Therefore \overline{T} is reflexive.

PROPOSITION 2.5. If T is a densely defined reflexive operator, T^* and T^{υ} are reflexive.

PROOF. For any $\xi \in \mathscr{D}(T^{\cup})$ and any $\eta \in \mathscr{D}(T)$, we have $[T\eta, T^{\cup}\xi] = [T(T\eta), \xi] = [\eta, \xi].$

Thus $T^{\upsilon}\xi \in \mathscr{D}(T^{\upsilon})$ and $T^{\upsilon}(T^{\upsilon}\xi) = \xi$ for any $\xi \in \mathscr{D}(T^{\upsilon})$. Consequently T^{υ} is reflexive.

3. U-homomorphisms of Left Hilbert Algebras with respect to Minkowsky Forms

Let \mathfrak{A} be a *-algebra with an inner product (1) and a Minkowsky form [,] with respect to (1). Let \mathscr{H} be the completion of \mathfrak{A} with respect to (1) and Ube the unitary hermitian operator associated with Minkowsky form [,]. From now on, we denote the involution by \sharp .

DEFINITION 3.1. Let \mathfrak{A} be a *-algebra with an inner product (1) and a Minkowsky form [,]. \mathfrak{A} is said to be a left Hilbert algebra with respect to the Minkowsky form if the following conditions are satisfied:

- (1) $[\xi\eta, \zeta] = [\eta, \xi^*\zeta]$ for any $\xi, \eta, \zeta \in \mathfrak{A}$;
- (2) For any ζ∈ 𝔄
 a mapping: 𝔄 ∋ η→ζη is continuous.

- (3) \mathfrak{A}^2 is dense in \mathfrak{A} .
- (4) The mapping: $\mathfrak{A} \in \xi \to \xi^*$ is closable as conjugate linear operator on \mathscr{H} .

EXAMPLE. Let \mathscr{H} be a Hilbert space, U be a unitary hermitian operator on \mathscr{H} and M be a U-involutive algebra with a cyclic separating vector ξ_0 , where the U-involution means $X^{U} = UX^*U$. We set $\mathfrak{A} = M\xi_0$ and define the product and the involution by;

$$(X\xi_0)(Y\xi_0) = XY\xi_0 \quad \text{for all} \quad X, Y \in M$$
$$(X\xi_0)^* = X^{\upsilon}\xi_0 \quad \text{for all} \quad X \in M$$

Then \mathfrak{A} is a left Hilbert algebra with respect to the Minkosky form associated with U.

PROOF. For any X, Y and $Z \in M$, we have

$$[(X\xi_0)(Y\xi_0), Z\xi_0] = [XY\xi_0, Z\xi_0] = [Y\xi_0, X^{U}Z\xi_0] = [Y\xi_0, (X\xi_0)^*(Z\xi_0)].$$

Hence the equation (1) of definition 3.1. is satisfied. For each $X \in M$ and $Y \in M'$, we have

$$[(X\xi_0)^{\sharp}, Y\xi_0] = [X^{\cup}\xi_0 Y\xi_0] = [\xi_0, XY\xi_0] = [\xi_0, YX\xi_0] = [Y^{\cup}\xi_0, X\xi_0].$$

Therefore the map: $X\xi_0 \rightarrow (X\xi_0)^*$ is closable by proposition 2.2 and the density of $M'\xi_0$. Consequently we get that \mathfrak{A} is a left Hilbert algebra with respect to the Minkowsky form. Q. E. D.

We denote the continuous extension of the map: $\mathfrak{A} \ni \eta \rightarrow \xi \eta$ by $\pi(\xi)$.

PROPOSITION 3.2. Let \mathfrak{A} be a left Hilbert algebra with respect to a Minkowsky form. Then π is a non-degenerate U-involutive representation of \mathfrak{A} on \mathscr{H} .

PROOF. For any ξ , η and $\zeta \in \mathfrak{A}$, we have

$$[\pi(\xi)\eta,\,\zeta] = [\xi\eta,\,\zeta] = [\eta,\,\xi^*\zeta] = [\eta,\,\pi(\xi^*)\zeta]$$

so that $\pi(\xi^*) = \pi(\xi)^{\cup}$.

We denote the U-adjoint of the map: $\mathfrak{A} \in \xi \rightarrow \xi^*$ by F and the closure of the map by S respectively.

DEFINITION 3.3. Let \mathcal{D}^* and \mathcal{D}^b denote domains of S and F. We

Q. E. D.

denote $S\xi$ by ξ^* , $\xi \in \mathcal{D}^*$, and $F\xi$ by ξ^b , $\xi \in \mathcal{D}^b$. Take and fix an η in \mathcal{D}^b . Define operators a and b by:

 $a\xi = \pi(\xi)\eta$ and $b\xi = \pi(\xi)\eta^b$, $\xi \in \mathfrak{A}$.

Then a and b are both densely defined operators.

PROPOSITION 3.4. *a* is closable, and $b \subset a^{\cup}$.

PROOF. We have, for each $\xi, \zeta \in \mathfrak{A}$,

 $[a\xi, \zeta] = [\pi(\xi)\eta, \zeta] = [\eta, \pi(\xi^*)\zeta] = [\eta, \xi^*\zeta]$

$$= [\zeta^* \xi, \eta^b] = [\xi, \pi(\zeta)\eta^b] = [\xi, b\zeta];$$

so that $a^{\cup} \supset b$. Therefore it follows from proposition 2.2, that a is closable. Let $\pi'(\eta)$ denote closure of a.

DEFINITION 3.5. If $\pi'(\eta)$, $\eta \in \mathcal{D}^b$ is bounded, then η is called π' -bounded. Let \mathfrak{A}' denote the set of all π' -bounded elements. For each $\xi \in \mathscr{H}$ and $\eta \in \mathfrak{A}'$, define a product of ξ and η by: $\xi\eta = \pi'(\eta)\xi$.

PROPOSITION 3.6. If η belongs to \mathcal{D}^b and x belongs to the strong closure of $\pi(\mathfrak{A})$, then $\pi'(\eta)$ commutes with x. In particular, we have $\pi'(\mathfrak{A}') \subset \pi(\mathfrak{A})'$.

PROOF. The Proposition is proved analogously with Lemma 3.1 in [3], For each $\xi_0 \in \mathfrak{A}$ and $\eta \in \mathcal{D}^b$, we show $\pi(\xi_0)\pi'(\eta) \subset \pi'(\eta)\pi(\xi_0)$. For any ξ in \mathfrak{A} and ζ in definition domain of $\pi'(\eta)^{\cup}$, we have

$$[\pi'(\eta)\xi, \pi(\xi_0)\zeta] = [\pi(\xi_0^*\xi)\eta, \zeta] = [\pi'(\eta)\xi_0^*\xi, \zeta]$$
$$= [\xi_0^*\xi, \pi'(\eta)^{\upsilon}\zeta] = [\xi, \pi(\xi_0)\pi'(\eta)^{\upsilon}\zeta] .$$

Hence we have

$$\begin{bmatrix} \pi'(\eta)\xi, \ \pi(\xi_0)\zeta \end{bmatrix} = \begin{bmatrix} \xi, \ \pi(\xi_0)\pi'(\eta)^{\cup}\zeta \end{bmatrix}$$

for any $\xi \in \mathscr{D}(\pi'(\eta))$ and $\zeta \in \mathscr{D}(\pi'(\eta)^{\cup})$.

Thus we have $\pi(\xi_0)\pi'(\eta)^{\upsilon} \subset \pi'(\eta)^{\upsilon}\pi(\xi_0)$, and $\pi(\xi_0)\pi'(\eta) \subset \pi'(\eta)\pi(\xi_0)$.

In the next place, we show that for each η in \mathcal{D}^b and x in the strong closure of $\pi(\mathfrak{A})$, $\pi'(\eta)$ commutes with x.

We can find a sequence $\{\xi_n\}$ in \mathfrak{A} such that

$$\lim \pi(\xi_n)\zeta = x\zeta;$$
$$\lim \pi(\xi_n)\pi'(\eta) = x\pi'(\eta)\zeta.$$

Then we get

$$\lim \pi'(\eta)\pi(\xi_n)\zeta = \lim \pi(\xi_n)\pi'(\eta)\zeta = x\pi'(\eta)\zeta.$$

From the closedness of $\pi'(\eta)$, $x\zeta$ belongs to $\mathscr{D}(\pi'(\eta))$ and $\pi'(\eta)x\zeta = x\pi'(\eta)\zeta$. Thus $\pi'(\eta)$ commutes with x. This completes the proof.

PROPOSITION 3.7. \mathfrak{A}' is a *-algebra with a involution: $\eta \rightarrow \eta b$. Furthermore π' is a U-involutive anti-representation of \mathfrak{A}' on \mathscr{H} .

PROOF. This is proved analogously with Lemma 3.2 in [3]. If η is π' -bounded, η^b belongs to \mathcal{D}^b by Proposition 2.5. And it is trivial $\pi'(\eta^b) = \pi'(\eta)^0$. Hence we get η^b is π' -bounded. Take any two elements η_1 and η_2 in \mathfrak{A}' . We prove $\eta_1\eta_2$ belongs to \mathfrak{A}' and

$$(\eta_1\eta_2)^b = \eta_2^b \eta_1^b$$

 $\pi'(\eta_1\eta_2) = \pi'(\eta_2)\pi'(\eta_1)$

For each $\xi \in \mathfrak{A}$, we have

$$\begin{bmatrix} \xi, \eta_1 \eta_2 \end{bmatrix} = \begin{bmatrix} \xi, \pi'(\eta_2)\eta_1 \end{bmatrix} = \begin{bmatrix} \pi'(\eta_2)\xi, \eta_1 \end{bmatrix}$$
$$= \begin{bmatrix} \pi'(\eta_2^b)\xi, \eta_1 \end{bmatrix} = \begin{bmatrix} \pi(\xi)\eta_2^b, \eta_1 \end{bmatrix}$$
$$= \begin{bmatrix} \eta_2^b, \pi'(\eta_1)\xi^* \end{bmatrix} = \begin{bmatrix} \pi'(\eta_1^b)\eta_2^b, \xi^* \end{bmatrix}$$
$$= \begin{bmatrix} \eta_2^b \eta_1^b, \xi^* \end{bmatrix},$$

so that $\eta_1\eta_2$ belongs to \mathscr{D}^b and $(\eta_1\eta_2)^b = \eta_2^b \eta_1^b$. Moreover we have, for each $\xi \in \mathfrak{A}$,

$$\|\pi'(\eta_1\eta_2)\xi\| = \|\pi(\xi)\eta_1\eta_2\| = \|\pi(\xi)\pi'(\eta_2)\eta_1\|$$
$$= \|\pi'(\eta_2)\pi(\xi)\eta_1\| = \|\pi'(\eta_2)\pi'(\eta_1)\xi\|$$
$$\leq \|\pi'(\eta_2)\| \|\pi'(\eta_1)\| \|\xi\|,$$

so that $\eta_1\eta_2$ is π' -bounded. Thus $\eta_1\eta_2$ belongs to \mathfrak{A}' . It is trivial that $\pi'(\eta_1\eta_2) = \pi'(\eta_2)\pi'(\eta_1)$. This completes the proof.

If \mathfrak{A}' is dense in the Hilbert space \mathscr{D}^b , we can define a closed operator $\pi(\xi)$, $\xi \in \mathscr{D}^*$ as the closure of a operator:

$$\mathfrak{A}' \in \eta \longrightarrow \pi'(\eta)\xi.$$

DEFINITION 3.8. Let \mathfrak{A}' be dense in \mathscr{D}^b . If $\pi(\xi), \xi \in \mathscr{D}^*$ is bounded, then ξ is called π -bounded. Let \mathfrak{A}'' denote the set of all π -bounded elements. For each $\xi \in \mathfrak{A}''$ and $\eta \in \mathscr{H}$, define a product of ξ and η by:

 $\xi\eta = \pi(\xi)\eta.$

For \mathfrak{A}'' we obtain the same properties as \mathfrak{A}' .

PROPOTION 3.10. If \mathfrak{A}' is dense in \mathscr{D}^b , then we get the following results: (1) \mathfrak{A}'' is a left Hilbert algebra with respect to the Minkowsky form with the involution: $\mathfrak{A}'' \ni \xi \rightarrow \xi^*$;

- (2) I is contained in I" as a *-subalgebra;
- (3) π is a U-involutive representation of \mathfrak{A}'' on \mathscr{H} ;
- (4) $\pi(\mathfrak{A}'') \subset \pi'(\mathfrak{A}')'$.

PROPOSITION 3.10. If \mathfrak{A}' is dense in \mathfrak{D}^b , then we get

$$\mathfrak{A}' = \mathfrak{A}''' = \mathfrak{A}^{(5)} = \cdots$$
$$\mathfrak{A}'' = \mathfrak{A}^{(4)} = \cdots$$

PROOF. It is trivial that \mathfrak{A}''' is contained in \mathfrak{A}' . Take an η in \mathfrak{A}' . From the π' -boundedness of η , there exists $\gamma > 0$ such that $\|\pi(\xi)\eta\| \leq \gamma \|\xi\|$, $\xi \in \mathfrak{A}$. For any ξ in \mathfrak{A}'' , we can choose a sequence $\{\xi_n\}$ in \mathfrak{A} with

$$\lim \xi_n = \xi$$

then we have

$$\begin{aligned} \|\pi'(\eta)\xi_n - \pi'(\eta)\xi_m\| &= \|\pi'(\eta)(\xi_n - \xi_m)\| \\ &= \|\pi(\xi_n - \xi_m)\eta\| \\ &\leq \gamma \|\xi_n - \xi_m\|, \end{aligned}$$

so that $\{\pi'(\eta)\xi_n\}$ is a convergence sequence. From the closedness of $\pi'(\eta)$, ξ belongs to the domain of $\pi'(\eta)$ and we have

$$\pi'(\eta)\xi = \lim \pi'(\eta)\xi_n.$$

Hence

$$\|\pi'(\eta)\xi\| = \lim \|\pi'(\eta)\xi_n\| \leq \gamma \lim \|\xi_n\| = \gamma \|\xi\|.$$

Therefore η belongs to $\mathfrak{A}^{\prime\prime\prime}$. This completes the proof.

4. A Commutation Theorem

PROPOSITION 4.1. Let \mathfrak{A} be a left Hilbert algebra with respect to a Minkowsky form. If \mathfrak{A} contains a unit element *l*, then $\pi(\mathfrak{A})' = \pi'(\mathfrak{A}') = \pi'(\mathfrak{A}')''$.

PROOF. From Proposition 3.6, we obtain $\pi'(\mathfrak{A}')$ is contained in $\pi(\mathfrak{A})'$. Take an element x in $\pi(\mathfrak{A})'$. We have, for each ξ in \mathfrak{A} ,

$$[\xi^*, xl] = [\pi(\xi^*)l, xl] = [x^{\upsilon}\pi(\xi^*)l, l]$$
$$= [\pi(\xi^*)x^{\upsilon}l, l] = [x^{\upsilon}l, \pi(\xi)l]$$
$$= [x^{\upsilon}l, \xi],$$

so that xl belongs to \mathcal{D}^b and $(xl)^b = x^{\cup}l$. Furthermore we have, for each ξ in \mathfrak{A} ,

$$\pi'(xl)\xi = \pi(\xi)xl = x\pi(\xi)l = x\xi,$$

so that xl belongs to \mathfrak{A}' and $\pi'(xl) = x$. Hence x belongs to $\pi'(\mathfrak{A}')$. This completes the proof.

PROPOSITION 4.2. Let \mathfrak{A} be a left Hilbert algebra with respect to a Minkowsky form which satisfies the following conditions:

- (1) \mathfrak{A} contains a unit element l;
- (2) For each η in \mathfrak{A} , the map: $\mathfrak{A} \ni \xi \rightarrow \xi \eta$ is continuous;
- (3) The involution: $\mathfrak{A} \ni \xi \rightarrow \xi^*$ is continuous. Then we have $\pi(\mathfrak{A})' = \pi'(\mathfrak{A})'' = \pi'(\mathfrak{A}')$.

PROOF. It follows from the condition (2) that \mathfrak{A}' contains \mathfrak{A} . Since \mathfrak{A}' is dence in the Hilbert space \mathscr{D}^b , we can define \mathfrak{A}'' . From Proposition 4.1, we have

$$\pi(\mathfrak{A})'' = \pi'(\mathfrak{A}')' = \pi(\mathfrak{A}'') = \pi(\mathfrak{A}'')''.$$

Now take x in $\pi'(\mathfrak{A})'$. Then we have, for each η in \mathfrak{A} ,

$$\pi(xl)\eta = \pi'(\eta)xl = x\pi'(\eta)l = x\eta,$$

in the proof of Proposition 3.10, we find that xl belongs to \mathfrak{A}'' and $x = \pi(xl)$.

Hence x belongs to $\pi(\mathfrak{A}'')$.

On the other hand, $\pi(\mathfrak{A}'')$ is contained in $\pi'(\mathfrak{A})'$. Therefore we obtain

 $\pi'(\mathfrak{A})'' = (\pi'(\mathfrak{A})')' = \pi(\mathfrak{A}'')' = \pi(\mathfrak{A})''' = \pi(\mathfrak{A})'.$

This completes the proof.

We denote $\pi(\mathfrak{A})''$ by $\mathscr{L}(\mathfrak{A})$.

THEOREM 4.3. Let \mathfrak{A} be as in Proposition 4.2. Then there exists a reflexive bounded operator S on \mathscr{H} such that $S\mathscr{L}(\mathfrak{A})S = \mathscr{L}(\mathfrak{A})'$.

PROOF. Let S be the continuous extension of the map:

$$\mathfrak{A} \ni \xi \longrightarrow \xi^{\sharp}.$$

From Proposition 2.4., S is reflexive i.e.,

 $S^2 = 1$.

Take a ξ in \mathfrak{A} . We have, for each η in \mathfrak{A} ,

$$S\pi(\xi)S\eta = S\pi(\xi)\eta^* = S(\xi\eta^*)$$
$$= \eta\xi^* = \pi'(S\xi)\eta,$$

so that

$$S\pi(\xi)S=\pi'(S\xi).$$

Hence we get $S\pi(\mathfrak{A})S = \pi'(\mathfrak{A})$. Therefore we have, from Proposition 4.2.,

$$S\pi(\mathfrak{A})''S = (S\pi(\mathfrak{A})S)'' = \pi'(\mathfrak{A})''$$
$$= \pi(\mathfrak{A})',$$

so that

$$S\mathscr{L}(\mathfrak{A})S = \mathscr{L}(\mathfrak{A})'.$$

COROLLARY. Let \mathfrak{A} be as in Theorem 4.3. If \mathfrak{A} satisfies the following condition:

$$[\xi^*, \eta^*] = [\eta, \xi], \qquad \xi, \eta \in \mathfrak{A},$$

then $\mathscr{L}(\mathfrak{A})$ is anti-*-isomorphic to $\mathscr{L}(\mathfrak{A})'$.

PROOF. We easily obtain

$$[S\xi, S\eta] = [\eta, \xi], \quad \xi, \eta \in \mathscr{H}.$$

That is, S is a U-unitary operator. Hence the map: $\mathscr{L}(\mathfrak{A}) \ni x \rightarrow SxS$ is an anti-*-isomorphism.

References

- [1] J. DIXMIER, Les algèbre d'opérateurs dans l'espace hilbertien, Gauthier-villars, Paris, 2 é edition 1969.
- [2] M. G. KREIN, Introduction to the geometry of indefinite J-spaces and to the theory of operators in those spaces, Amer. Math. Soc. Transl. 93 (1970), 103–176.
- [3] M. TAKESAKI, Tomita's Theory of Modular Hilbert Algebras and its Applications, Lecture Notes, Springer 128 (1970).
- [4] M. TOMITA, Quasi-standard von Neumann algebras, mimeographed note, (1967).
- [5] M. TOMITA, Standard forms of von Neumann algebras. The Vth Functional Analysis Symposium of the Math. Soc. of Japan, Sendai. (1967).