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1. Introduction

In 1967, Professor Tomita wrote unpublished papers [4] and [5]. In those
papers he introduced a notion, called a left Hilbert algebra, and proved the
commutation theorem. That is, let 2 be a left Hilbert algebra and #(2) be the
left von Neumann algebra associated with A, then the commutation theorem
JZ(M)J =2(W) holds.

In this paper we define a left Hilbert algebra with respect to a Minkowsky
form and give a commutation theorem.

2. Adjoint Operations with respect to Minkowsky forms

Let o# be a Hilbert space with an inner product (1). An hermitian sesquili-
near form [ , 7] is said to be a Minkowsky form if the following condition is
satisfied :

sup {I[S, 7115 Inll =1}k =II<ll.

For the Minkowsky form [ , ], there exists uniquely a unitary hermitian opera-
tor U such that [&, #]=(Ué&|y) for all &, ne#.

DerFiNITION 2.1. let T be a densely defined linear (respectively, con-
jugate linear) operator, then TV is defined as follows.

[TE n1=[¢ TUnl ([TE, n1=[T"4, &1, {e2(T), nea(T).
It is evident that TV is a closed operator and TV=UT*U.

PrROPOSITION 2,2, Let T be a densely defined operator. Then T is
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closable if and only if TV is densely defined. If T'is closable, TVV is the closure
Tof T.

Proor. If Tis a densely defined closable operator, T* is densely defined.
Since 2(TV)=U"12(T*)=U2(T*), T' is densely defined. Conversely if
TV is densely defined, so is T* and hence T is closable. If T is closable, TVY
=T¥**=T

DEeFINITION 2.3. A linear (conjugate linear) operator T is said to be
reflexive if T2(T)< 2(T) and TT¢=¢ for all ¢ € 2(T).

ProrosiTION 2.4. If Tis a reflexive closable operator, T is reflexive.

Proor. For any &€ 2(T), there exists a sequence {&,} in 2(T) such that
¢&—¢ and TE,-TE. Since 9(T)s T¢,—TE and &,=T(T¢,)—~¢, we have T¢
€ 2(T) and T(TE)=¢&.  Therefore Tis reflexive.

ProrosiTION 2.5. If T is a densely defined reflexive operator, T* and
TY are reflexive.

Proor. For any (e 2(TV) and any ne2(T), we have [Ty, T'(]=
[T(Ty), E1=In, €]

Thus TU(e 2(T') and TY(Tv¢)=¢ for any éeD(TV). Consequently
TV is reflexive.

3. U-homomorphisms of Left Hilbert Algebras with respect to Minkowsky
Forms

Let A be a *-algebra with an inner product (1) and a Minkowsky form [ , ]
with respect to (1). Let 5 be the completion of U with respect to (1) and U
be the unitary hermitian operator associated with Minkowsky form [ , 1.
From now on, we denote the involution by #.

DEerFINITION 3.1. Let U be a #-algebra with an inner product (1) and a
Minkowsky form [ , ]. U is said to be a left Hilbert algebra with respect
to the Minkowsky form if the following conditions are satisfied:

(1) [&n, {=[n, &*] for any &, n, (e UA;
(2) Foranyée¥

a mapping: A 3 n—E&x is continuous.
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(3) A2 is dense in A.
(4) The mapping: We é—-EF is closable as conjugate linear operator on 7.

ExAMPLE. Let s# be a Hilbert space, U be a unitary hermitian operator
on s and M be a U-involutive algebra with a cyclic separating vector &,, where
the U-involution means X¥=UX*U. We set A=M¢, and define the product
and the involution by;

(XE)(YE)=XYE, forall X,YeM
(X&)F=XY¢, forall XeM

Then U is a left Hilbert algebra with respect to the Minkosky form associated with
U.

Proor. For any X, Y and Z e M, we have
[(XE0) (Yeo), ZEo1=[XYE0, ZE]=[YE0, X ZEo]=[YEo, (XE0)*(ZE0)] -

Hence the equation (1) of definition 3.1. is satisfied. For each Xe M and Ye M’,
we have

[(Xgo)#, on]=[Xuonfo]=[éo: XY50]=[50a YX50:|=[YU€0’ Xfo] .

Therefore the map: X¢,—(X¢&,)* is closable by proposition 2.2 and the density of
M’E,. Consequently we get that U is a left Hilbert algebra with respect to the
Minkowsky form. Q.E.D.

We denote the continuous extension of the map: U 35— é&n by n(é).

ProposiTION 3.2. Let U be a left Hilbert algebra with respect to a
Minkowsky form. Then = is a non-degenerate U-involutive representation of
A on 7.

Proor. For any &, 1 and { € U, we have
[(On, {1=[&n, (=1[n, &*{T=[n, n(¢*)]
so that n(&¥)=r(&)V. Q.E.D.

We denote the U-adjoint of the map: W e £—£* by F and the closure of the
map by S respectively.

DerFiNiTION 3.3. Let 2% and 2% denote domains of S and F. We
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denote S¢ by &, £ € D¢, and FE by &b, e @b, Take and fix an  in 2%, De-
fine operators a and b by:

al=n(n and bl=n(®n’, LeWU
Then a and b are both densely defined operators.
ProrosiTION 3.4. ais closable, and b<aV.
Proor. We have, for each &, {e ¥,
[ag, (=[x, (=In, n(EHI=[n, &*(]
=[{*, n*1=L¢, n(On*1=[¢, b];

so that aV> b. Therefore it follows from proposition 2.2, that a is closable.
Let #'(n) denote closure of a.

DermniTION 3.5. If 7'(y), ne€ 2® is bounded, then # is called =’-bounded.
Let A’ denote the set of all #’-bounded elements. For each e and neW,
define a product of ¢ and # by: én=7'(n)t.

ProrositioN 3.6. If n belongs to 2% and x belongs to the strong closure
of n(A), then 7'(y) commutes with x. In particular, we have #'(U)ca(A)'.

Proor. The Proposition is proved analogously with Lemma 3.1 in [3],
For each &, and ne 2%, we show m(éy)n'(n)ca’(nn(&;). For any & in A
and { in definition domain of 7'(r)Y, we have

[7' )¢, n(€o)(1=[m(E§Im, {1=[n"(1)¢Ee, L]
=[5, #'()°L1=[¢, mEo)m'(m (] .
Hence we have
[m(m¢, n€o){1=L¢, n(Eo)n'(n) (]
forany ¢e2(n'(n)) and (e2(n'(n)Y).
Thus we have n(¢o)n'(n)’ =m'(n)'n(fo), and n(éo)n'(m) =m'(M(Co)-

In the next place, we show that for each # in 2% and x in the strong closure
of n(A), n’'(n) commutes with x.

We can find a sequence {&,} in U such that
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limn(&,){=x{;

lim n(&,)7" () = x7'(N)C.
Then we get

lim 7' ()n(&,)C =lim (€, )m’' ()l = xn’'(n)C.

From the closedness of n'(n), x{ belongs to 2(7'(y)) and #'(Mx{=xn'(n){. Thus
7'(n) commutes with x. This completes the proof.

ProrosiTION 3.7. W is a =*-algebra with a involution: y—yb. Fur-
thermore =’ is a U-involutive anti-representation of 2’ on 7.

Proor. This is proved analogously with Lemma 3.2 in [3]. If 5 is ='-
bounded, n® belongs to @* by Proposition 2.5. And it is trivial n'(n®)=='(n)".
Hence we get #° is n’-bounded. Take any two elements #; and 5, in A'. We
prove 1,1, belongs to A’ and

(nim2)> =n’n}

'(nn2) =n'(n)n'(ny) -

For each £, we have
L&, mna1=L¢, 7' ]=[n'(n2)¢; 4]

=['(19)E, n,]=[n(n% 111

=[n4, n'(n)E¥1=[n'(nPn’, &*]

=[nbn%, &°1,
so that 7,7, belongs to 2% and (n,%,)*=n%14%. Moreover we have, for each e ¥,

7' (nym2)E N = () anll = 1= E)n'(n2)n. |
=17’ (2)m(n 1l = 7' ()7’ ()€l

= EACA R EACHI R4 B

so that #,%, is n’-bounded. Thus 5,7, belongs to A’. It is trivial that 7'(y,1,)
=n'(n)n'(n,). This completes the proof.

If U is dense in the Hilbert space 2%, we can define a closed operator n(£),
¢ e 9% as the closure of a operator:
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Wen— a'(n)e.

DerFiniTION 3.8. Let U be dense in 2°b. If n(f), éeP* is bounded,
then € is called n-bounded. Let 2UA” denote the set of all n-bounded elements.
For each £ € A" and n € 52, define a product of ¢ and 5 by:

En=n(En.
For W” we obtain the same properties as ’.

PropoTION 3.10. If A’ is dense in 2?, then we get the following results:

(1) A is a left Hilbert algebra with respect to the Minkowsky form with
the involution: A" > E—E¥;

(2) U is contained in A” as a =-subalgebra;

(3) = is a U-involutive representation of 2" on ##;

4 m(ANY<=r'(AY.

ProposiTION 3.10. If 9’ is dense in 2%, then we get
W =UA"=UG) =...
W =P =....

Proor. It is trivial that A" is contained in WA’'. Take an 5 in A'. From
the n'-boundedness of #, there exists y>0 such that |z(E)n] Zy|&ll, EeU. For
any ¢ in A", we can choose a sequence {£,} in U with

limé,=¢,
then we have
7 (s — 7' MNEmll = 17" (1) (€= E)
=& — il
=7&n—Eull,

so that {n'(n)é,} is a convergence sequence. From the closedness of #'(y), &
belongs to the domain of #n'(y) and we have

n'(Né=limn'(n)¢,.
Hence

1" ()&l =lim |2’ (m)E,l Sy lim |l =1I€0 -
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Therefore #n belongs to A”. This completes the proof.

4. A Commutation Theorem

PropoSITION 4.1. Let A be a left Hilbert algebra with respect to a Mink-
owsky form. If U contains a unit element /, then a(W)' =='(A)=="(A")".

Proor. From Proposition 3.6, we obtain 7'(2’) is contained in =(2A)'.
Take an element x in 7(A)’. We have, for each £ in U,

[&%, x=[n(¢N], xI]=[x"=(ENL, 1]
=[n(*x"1, =[x"1, n(c)!]
=[x"1, £],
so that xI belongs to 2% and (xI)>=xvl. Furthermore we have, for each £ in ¥,
m' (D =n(xl=xn(E)l=x¢,

so that xI belongs to W and ='(xl)=x. Hence x belongs to #'(W’). This com-
pletes the proof.

ProprosITION 4.2. Let U be a left Hilbert algebra with respect to a Min-
kowsky form which satisfies the following conditions:

(1) A contains a unit element /;
(2) For each in ¥,
the map: A > é—¢&n is continuous;
(3) The involution: A £—E&* is continuous.
Then we have a(W) =7'(W)"=='(W").

Proor. It follows from the condition (2) that A’ contains A. Since WA’
is dence in the Hilbert space 2%, we can define €”. From Proposition 4.1, we
have

n(g[)ll = nl(g{l)l —_ TC(QI”) = TE(Q[II)”‘
Now take x in #'(2)’. Then we have, for each # in U,
m(xDn=n'(n)xl=xn'(n)l=x1,
in the proof of Proposition 3.10, we find that xI belongs to U” and x=mn(xl).
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Hence x belongs to m(A”).
On the other hand, n(A”) is contained in ='(A)'. Therefore we obtain

7,EI(QI)II p— (TCI(QI)I), —_ TE(QIII)I = TE(QI)”I o n(g[)l.
This completes the proof.

We denote 7(U)" by £(AN).

THEOREM 4.3. Let U be as in Proposition 4.2. Then there exists a re-
flexive bounded operator S on s such that SL(W)S=2(N).

Proor. Let S be the continuous extension of the map:
WU E— &5,
From Proposition 2.4., S is reflexive i.e.,
§2=1.
Take a £ in A. We have, for each  in U,
Sn(&)Sn=Su(&* =S(¢n*)
=n&* =m'(Sn,
so that
Sm(E)S=n'(SE).
Hence we get Sr(WS=='(W). Therefore we have, from Proposition 4.2.,
Sm(AY"S =(Sn(WS)" =='(W)"
=n(A),
so that
SLS=2(N)'.

CoROLLARY. Let A be as in Theorem 4.3. If A satisfies the following
condition:

[E5 n*l=[n, &1, & ned,
then #(A) is anti-x-isomorphic to Z(A)'.
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Proor. We easily obtain

[S¢ Snl=[n, &1, <& nest.

That is, S is a U-unitary operator. Hence the map: #(U)> x—SxS is an anti-
x-isomorphism.

[11]
[21
(31
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[5]
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