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RESPECTTO

   1. Introduction

   In 1967, Professor Tomita wrote unpublished papers [4] and [5]. In those
papers he introduced a notion, called a left Hilbert algebra, and proved the

commutation theorem. That is, let or be a left Hilbert algebra and Y(E!D be the

left von Neumann algebra associated with ut, then the commutation theorem

JY(S}DJ=Y(ut)' holds.
   In this paper we define a left Hilbert algebra with respect to a Minkowsky

form and give a commutation theorem.

   2. Adjoint Operations with respect to Minkowsky forms

   Let X be a Hilbert space with an inner product (1). An hermitian sesquili-

near form [ , ] is said to be a Minkowsky form if the following condition is

satisfied :

                    sup {l[(i, n]l; llnll Si}- IICiIl •

For the Minkowsky form [ , ],.there exists uniquely a unitary hermitian opera-

tor U such that [C, n] ==(Ueln) for all 4, nE rw•

   DEFiNiTioN 2.1. Let T be a densely defined linear (respectively, con-
jugate linear) operator, then TU is defined as follows.

      [T4, n] = [4, T" n] ([T4, n] == [TUn, 4]), 4e 9(T), ne 9(T").

It is evident that TU is a closed operator and TU = UT*U.

   PRoposlTIoN2,2, Let T be a densely defined operator. Then T is
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closable if and only if TV is densely defined. If Tis closable, TUU is the closure

Tof T.

   PRooF. If Tis a densely defined closable operator, T" is densely defined.

Since e(TU)==U-i9(T*)=Ue(T*), TU is densely defined. Conversely if
TU is densely defined, so is T* and hence Tis closable. If Tis closable, TUU
= T**= T.

    DEFiNiTioN2.3, A linear (conjugate linear) operator T is said to be
refiexive if T9(T)c9(T) and TT4 =4 for all 4E9(T).

   PRoposiTioN 2.4. If Tis a reflexive closable operator, T-is reflexive.

   PRooF. For any4G9(T), there exists a sequence {4.} in 9(7) such that
C.-.e and Te.-T4. Since e(T)gT4..T'4 and 4,==T(T4.).e, we have T-4
ee(T) and T(T4)=e. Therefore Tis reflexive.

    PRoposiTioN2.5. If T is a densely defined reflexive operator, T* and
TU are reflexive.

   PRooF. For any 4E9(TU) and any ne9(T), we have [Tn, TV4]=
[T(Tn), e] -[n, C]•

   Thus TU4E9(TU) and TU(T"4)=4 for any eE9(T"). Consequently
   -tTU is reflexive.

   3. U-homomorphisms of Left HilbertAlgebras with respect to Minkowsky
       Forms

   Let ut be a *-algebra with an inner product (1) and a Minkowsky form [ , ]

with respect to (1). Let ff be the completion of ut with respect to (1) and U

be the unitary hermitian operator associated with Minkowsky form [ , ].
From now on, we denote the involution by #.

   DEFINITioN 3.1. Let ut be a *-algebra with an inner product (1) and a
Minkowsky form [ , ]. ut is said to be a left Hilbert algebra with respect
to the Minkowsky form if the following conditions are satisfied:

(1) [en, C]= [n, 4"4] for any e, n,Ceut;

(2) For any 4e ut
    a mapping: ut g n.eq is continuous.
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(3) ut2 is dense in ut.

(4) The mapping: ute4.e# is closable as conjugate linear operator on .;ee.

   ExAMpLE. Let .Jee be a Hilbert space, U be a unitary hermitian operator
on .;eP and M be a U-involutive algebra with a cyclic separating vector 4o, where

the U-involution means XU=UX"U. We set ut=M4o and define the product
and the involution by;

               (X4o)(Y4o)=XY4o forall X, YEM

               (X4o)'=XU4o forall XeM
Then ut is a left Hilbert algebra with respect to the Minkosky form associated with

U.

   PRooF. For any X, Yand ZeM, we have

      [(xe,)(y4,), z4,] =[xy4,, z4,] -[y4,, xuz4,]= [ye,, (x4,)#(z4,)] .

Hence the equation (1) of definition 3.1. is satisfied. For each XeM and YeM',

we have

    [(X4o)", YCo] = [X"4o Y4o] == [4o, XYeo] = [4o, YX4o] == [YV 4o, X4o] •

Therefore the map: .r4o.(X4o)# is closable by proposition 2.2 and the density of

M'4o. Consequently we get that ut is a left Hilbert algebra with respect to the

Minkowsky form. Q. E. D.
   We denote the continuous extension of the map: ut g n.en by z(e).

   PRoposiTioN3.2. Let ut be a left Hilbert algebra with respect to a
Minkowsky form. Then z is a non-degenerate U-involutive representation of
ut on .if.

   PRooF. For any 4,nand4Eut, we have

               [z(4)n, 4] = [4n, C] = [n, 4#4] = [n, n(4")C]

so that z(4")=n(4)U. Q.ED.
   We denote the U-adjoint of the map: ute4-4# by F and the closure of the
map by S respectively.

   DEFINiTIoN3.3. Let 9# and .9b denote domains of S and F. We
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denote S4 by e", 4e9#, and F4 by 4b, 4e9b. Take and fix an ny in 9b. De-
fine operators a and b by:

                a4==z(4)n and b4 :n(4)nb, 4Gut.

Then a and b are both densely defined operators.

   PRoposlTioN 3.4. a is closable, and bcaU.

   PRooF. We have, for each 4, Ceut,

               [a4, C] = [z(4)n, 4] = [n, n(C")4] = [n, 4"4]

                  =- [4"4, nb] -= [4, z(4)nb] = [C, b4] ;

so that aUDb. Therefore it follows from proposition 2.2, that a is closable.

    Let z'(n) denote closure of a.

    DEFiNiTioN 3.5. If n'(n), ne@b is bounded, then n is called z'-bounded.
Let ut' denote the set of all z'-bounded elements. For each 4E.T and neut',
define a product of 4 and n by: 4n=z'(n)4•

    PRoposiTioN 3.6. If n belongs to 9b and x belongs to the strong closure
of z(ut), then z'(n) commutes with x. In particular, we have z'(ut')cz(ut)'.

    PRooF. The Proposition is proved analogously with Lemma 3.1 in [3],
For each 4oeut and ne9b, we show z(Co)z'(n)cz'(n)n(4o). For any 4 in or
and C in definition domain of n'(q)U, we have

            [n'(n)4, z(4o)C] - [z(484)n, 4] - [z'(n)484, 4]

                         =[e'o4, z'(n)U4] == [e, z(4o)z'(n)uC] .

Hence we have

              [z'(n)4, z(4o)4] = [C, z(4o)z'(n)U4]

                  forany Ce9(z'(n)) and 4e9(z'(n)U).

Thus we have z(4o)n'(n)Ucn'(n)Un(4o), and z(4o)z'(n)cn'(n)z(4o).

    In the next place, we show that for each n in 9b and x in the strong closure

of n(Qt), z'(n) commutes with x.

    We can find a seguence {4,} in ut such that



            On left Hilbert algebras with respect to Minkowsky forms 107

                       limn(4,,)4 =xC;

                       lim z(4,)n'(n) = xz'(n)4•

Then we get

                lim z'(n)z(4.)4 == lim z(4.)z'(n)C = xn'(n)C.

From the closedness of z'(n), x4 belongs to 9(z'(ny)) and n'(n)x4==xz'(n)4. Thus

n' (n) commutes with x. This completes the proof.

   PRoposiTioN 3.7. !t' is a *-algebra with a involution:n-Årnb. Fur-
thermore n' is a U-involutive anti-representation of ut' on .if.

   PRooF. This is proved analogously with Lemma3.2 in [3]. If n is z'-
bounded, nb belongs to 9b by Proposition 2.5. And it is trivial z'(nyb)==z'(n)U.

Hence we get nb is z'-bounded. Take any two elements nyi and n2 in ut'. We

prove qin2 belongs to ut' and

                        (nin2)b=nb2nbi

                        n'(nin2) =z'(n2)z'(qi) .

For each 4E ut, we have

                 [e, nin2] = [e, z'(n2)ni] = [z'(n2)4, nyi]

                        - [n'(nyb2)C, ni] - [z(4)qb2, nyi]

                        = [nb2, n'(ni)e#] = [z'(n9)nyb2, 4"]

                        = [n b2nbi, 4"] ,

so that nin2 belongs to 9b and (nin2)b=nyb2n9. Moreover we have, for each 4 E ut,

             IIz'(nin2)CII :IIz(4)niny2II==Iiz(e)fl'(n2)nyiil

                      = : II z'(n2)n(4)ni ll - lln'(n2)z'(ni)eIl

                      S 11z'(n2)il Ilz'(ni)il I14il ,

so that nin, is z'-bounded. Thus nin2 belongs to ut'. It is trivial that n'(nin2)

=n' (q2)n'(ni). This completes the proof.

    If ut' is dense in the Hilbert space 9b, we can define a closed operator z(4),

e E 9# as the closure of a operator:
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                        ut' E n . z'(n)C.

   DEFiNiTioN3.8. Let ut' be dense in 9b. If z(4),4e9# is bounded,
then C is called z-bounded. Let ut" denote the set of all z-bounded elements.
For each eE ut" and ne rw, define a product of 4 and n by:

                           Cn = n(4)n•

   For ut" we obtain the same properties as ut'.

   PRopoTioN 3.10. If ut' is dense in eb, then we get the following results:

   (1) ut" is a left Hilbert algebra with respect to the Minkowsky form with
the involution: ut"g g--År4#;

   (2) or is contained in ut" as a *-subalgebra;

   (3) z is a U-involutive representation of ut" on .Y;

   (4) z(ut")cz'(ut')'.

   PRoposiTioN 3.10. If ut' is dense in 9b, then we get

                    or, ,. utt" .. ut(5) .. ...

                    utn=ut(4)=....

   PRooF. It is trivial that ut"' is contained in ut'. Take an n in ut'. From
the z'-boundedness of n, there exists 7ÅrO such that 11z(4)nll S.711411, CEut• For

any 4 in or", we can choose a sequence {4.} in ut with

                           liM 4n = 4,

then we have

                 II n'(n)4. - z'(n)4.Il - II z'(n) (4, - 4.) ll

                              = ll n(4. - 6.)n ll

                               $7ll g.- 4.11 ,

so that {z'(n)4.} is a convergence sequence. From the closedness of z'(n),4
belongs to the domain of z'(n) and we have

                        z'(n)4 = lim z'(n)4.•

Hence

               lln'(n)4Il =lim lln'(n)4,ll 57lim 114,ll =7114ll •
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Therefore n belongs to ut"'. This completes the proof.
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   4. ACommutationTheorem

   PRoposiTioN 4.1. Let ut be a left Hilbert algebra with respect to a Mink-
owsky form. If ut contains a unit element l, then z(E}I)'=:z'(wr') =z'(ut')".

   PRooF. From Proposition 3.6, we obtain z'(ut') is contained in z(ut)'.
Take an elementxin z(QD'. We have, for each4in ut,

             [4", xl] == [z(C")l, xl] = [xUz(e")l, l]

                   = [n(4")x"l, l]=[xUl, n(4)l]

                   =[xul, 4],

so that xl belongs to eb and (xl)b=xUl. Furthermore we have, for each 4 in ut,

                    n'(xl)4 = z(4)xl == xz(4)l= x4,

so that xl belongs to ut' and z'(xl)=x. Hence x belongs to z'(or'). This com-
pletes the proof.

   PRoposiTioN 4.2. Let ut be a left Hilbert algebra with respect to a Min-
kowsky form which satisfies the following conditions:

(1) ut contains a unit element l;

(2) For each n in M,

     the map: utg 4.4n is continuous;
(3) The involution: utg4.e# is continuous.

    Then we have z(E}I)' =n'(QD"=z'(ut').

   PRooF. It follows from the condition (2) that ut' contains ut. Since ut'
is dence in the Hilbert space eb, we can define ut". From Proposition 4.1, we

have

                   n(QD"=z'(ut')'=z(utt')=z(ut")n.

Now take x in z'(Qt)'. Then we have, for each n in ut,

                    z(xDn=z'(n)xl=xz'(n)l=xn,

in the proof of Proposition 3.10, we find that xl belongs to ut" and x= n(xD.
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Hence x belongs to z(ut").

    On the other hand, n(or") is contained in n'(E}D'. Therefore we obtain

               n'(ut)" = (z'(ut)')' = z(ut")' = z(ut)M = z(E}D'.

This completes the proof.

    We denote z(QI)" by Y(QI).

    THEoREM4.3. Let ut be as in Proposition 4.2. Then there exists a re-
flexive bounded operator S on .;iee such that SY(ut)S=Y(E}D'.

    PRooF. Let S be the continuous extension of the map:

                          utge-4#.

From Proposition 2.4., S is reflexive i.e.,

                             S2 =1.

Takea4in ut. We have, for each ny in ut,

                   Sz(4)Sop == Sn(4)n" -- S(4n")

                         =n4"=z'(S4)n,

so that

                         Sn(4)S= z'(S4) .

Hence we get Sn(S}I)S=n'(E}D. Therefore we have, from Proposition 4.2.,

                   Sn(ut)"S = (Sn(E!l)S)" == z'(E}D"

                         ==z(E}D',

so that

                         s:2e(2Ds == y(ut)'.

    CoRoLLARy. Let ut be as in Theorem4.3. If ut satisfies the following
condition:

                    [4", n'] == [n, 4], 4, ne ut,

then Y(E}l) is anti-*-isomorphic to .S?(E!D'.
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PROOF. We easily obtain

[s4, Sn] == [n, 4], 4, n e .if.

That is, S is a

*-isomorphism.

U-unitary operator. Hence the map: Y(QD g x-, SxS is an anti-

References

[1 ] J. DixMiER, LeS algebre d'optirateurs dans l'espace hilbertien, Gauthier-villars, Paris, 2

    e edition 1969.
[2] M. G. KREiN, Introduction to thegeometry ofindeL17nite J-spaces andto the theory ofopera-

    tors in those spaees, Amer. Math. Soc. Transl. 93 (1970), 103-176.

[3] M. TAKEsAKi, Tomita's Theory ofModular Hilbert Algebras and its Applications, Lec-
    ture Notes, Springer 128 (1970).

[4] M. ToMiTA, euasi-standard von Neumann algebras, mimeographed note, (1967).
[5] M.ToMiTA, Standardforms ofvon Neumann algebras. The Vth Functional Analysis
    Symposium of the Math. Soc. of Japan, Sendai. (1967).


