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                           Abstract

   ln this paper we study several topologies on unbounded operator algebras. The
first purpose is to discuss the relations between the topologies on general unbounded

operator algebras. Secondly we study the topologies on special unbounded operator
algebras in details. Finally we study the relations between locally convex *-algebras

and unbounded operator algebras.

    gl. Introduction

    In recent years several authors have investigated unbounded operator alge-
bras in various situations [2, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18]. In particular,

it may be important to study the topologies of them. Lassner has introduced in

[13] a uniform topology t, and a quasi-uniform topology t,, on an Unbounded
operator algebra. Amal and Jurzak [2, 12] have defined the topologies called
p-topology t, and Z-topology tz, which are in general different from the uniform

and quasi-uniform topologies, however each topology mentioned above equals
the operator-norm topology in case of the algebra of bounded operators. They

have given necessary and suMcient conditions under which the p-topology is
equal to the Z-topology.

   In this paper we shall define the other topologies called weak, quasi-weak,

a-weak, quasi-a-weak, strong and a-strong (which are denoted by t., tg., t..,
tgaw, t, and t.,, respectively). We shall obtain in Section 2 the following rela-

tions between their topologies :
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                      tqultu ltw Staw Sts Stqu
                      A[1 Al] Ali All AII AI[
                      ta l tp l taw$ tgawS tcsS tz

                               T2
where the symbols TiIT2, T25Ti and All mean'"Ti is finer than T2".
                               Tl
   It is well known that on infinite-dimensional algebras of bounded operators

the following connections hold :

           tw :i: ts År
           t2esif2;l iftu=tgu=te=tx = operator-norm topology.

In general, various cases may be happened for unbounded operator algebras.
We shall give in Section 3 four particu.lar unbounded operator algebras and
discuss their topologies in details.

   Finally we shall discuss the relations between locaily convex *-algebras and

unbounded operator algebras. An unbounded operator algebra .of equipped
with the topology t. (resp. t.., t,, t,) is• a locally convex *-algebra. We shall

show in Section 4 that the locally convex *-algebra (.sal; t.) (resp. ("dif; t..), (,sa2';

t.), (.Rl; t,)) is a GB"-algebra defined by Allan [1] and Dixon [4] if and only if

the unbounded operator algebra of is an EC#-algebra defined in [7].

    g2. Topologies on #-algebras

   ln this section we shall introduce various topologies on an unbounded
operator algebra called a #-algebra and study the relations between their topolQgies.

   We begin with the definitions and notations of #-algebras. Let S be a
pre-Hilbert space with inner product ( 1 ) and b the completion of D. By Y(D)
we denote the set of all linear eperators on D and by Y#(D) we-denote the set of

all linear operators A G .E2f'(D) for which there exists an element A# e .Se( D) such

that (A4ln)=(4lA"n) for every 4, nGD. Each element A of .9"(S) is a closable

operator in b and A# equals the restriction of the- hermitian adjoint A" of A onto

D. Equipped with the involution A.A#, Y"(S) is a *-algebra with the identity

operator I. A *-subalgebra .sat of Y#(S) is called a #-algebra on D. The
#-algebra Y#(D) is maximal among #-algebras on D, which is called the maximal

#-algebra on D. Let va(b.) be the set of all bounded linear operators on the
Hilbert space b. Let .sie' be a #-algebra on D. We set

                      ofb == {A e .st' ; A G va(b)} ,
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where A- i's the closure of a closable operator A. Then, ,sa2"b is a #-subalgebra of

,s2er,, which is called the bounded part of .of.

   Throughout this section let ,sil be a #-algebra on a pre-Hilbert space D and b

the completion of D.

    [I] Weak, quasi-weak and strong topologies

   For each 4eS and xEb we set

                       Pe,.(A) = l(Ae 1 x)l ,

                       Pc(A)==llA41I, Ae.RÅë'.

The topology generated by the family {Pe,,(•); 4, nGS} (resp• {Pe,.(•); 4ES,

xGb}, {Pe(•); CGD}) of the seminorms is called the weak topology (resp. quasi-

weak topology, strong topology) and is simply denoted by t. (resp. t,., t,). It

is easily seen that (Jal; t.) is a locally convex *-algebra, that is, *-algebra which

is also a locally convex space such that the multiplication is separately continuous

in both vatiables and the involuti'on is continuotis.

    [II] a-weak, quasi-a-weak and a-strong topologies

    Let b. be the Hilbert direct sum of the Hilbert spaces b. with b.=b (n=1,
2,., ) W.e set

 D.(si)- {{4.}eb.; e.eD (n=1, 2,...) and

              co             2' llA4.112Åqoo for all
             n=1

                  co      P{en},{xn}(A)= I Z (A4n l Xn)l
                  n=1

AeJat},

and

                               'co 1                     P{e.}(A)==[2 llAenll2]7
                              n=1
where Aenf, {e.}ED.(.sa?') and {x.}Eb.. The locally convex topology gener-
ated by the family {P{e.},{,.}('); {4.}, {n.} eDco(•sat')} (reSP• {P{e.},{x.}('); {4n}e

D.(•of), {x.} eb.}, {P{e.}(•); {4,} eD.(tsut)}) is called the (.sV)-a-weak topology

(resp. (.sdie')-guasi-a-weak topology, (,s?4)-a-strong topology) on si and is simply

denoted by tag.. (resp. tg.., t.st,). In particular, the (g#(D))-a-weak topology

(resp.(Y#(D))-quasi-a-weak topology,-(:2f'"(S))-oLstrong topQlogy) p.n si is
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simply called the (D)-if-weak topology (resp. (D)-quasi-a-weak topology, (D)-a-

strong topology) and denoted by t.D. (resp. t?.., t.O,). It is easily seen that (.sy';

tg.) and (.sat; t.D.) are locally convex *-algebras. The relations between the above

topologies are as follows :

tw S tgw
AII AII
taDw S t?aw

All AII
t.set. $ terew

S ts

 All
$ t6Ds

 AII
S tasis '

    [III] Uniform and quasi-uniform topologies

   G. Lassner has defined in [13] the topologies on .sa?' called uniform topology

and quasi-uniform topology. Let .sZi be a #-algebra on S formed by adjunction

of the identity operator I. A natural induced topology on S is defined as fol-

lows :

    Suppose that .9 is a finite subset of elements of .seti. We define the semi-

norm ll ll. on D by

                          ll411.- Z llA4 II .
                               Aesp
We define the induced topology t. on S as the topology generated by the famiIY
{lj • ll.; ,f;" is a finite subset of .se2'i} of the seminorms.

    If D is complete with respect to the induced topology t., then si is said to be

closed. A #-algebra ,sat' is closed if and only if S= A S(A). A #-algebra si
                                           Aeat
on D is called self-adjoint if S== A D(A"). If si is self••adjoint, then it is closed.

                          AEdIf EM is a bounded subset of the locally convex space (D; t.,), then it is said to be

.of-bounded. For each .sg'-bounded sUbset !M of S we set

l1 A 1l s[Ji == sup
4,neEM

1(A4 1 n)l

and

PB,Em(A) == sup llBAell

        gegn
where A E .of and B e .ofi•

   DEFINITIoN2.1. The locally convex
{II•llan; EM is an ,of-bounded subset of D}

seMinorms is called the uniform topology

topology generated by the family
(resp• {PB,ffn(•); BEsib EM}) of the

(resp. the quasi.uniform topology)
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on .of and is simply denoted by t. (resp• t,.)•

   LBMMA 2.1. ([13] G. Lassner) (1) The #-algebra .s2e' is a locally convex

*-algebra equipped with the topology t,.
   (2) The #-algebra ,sl is a locally convex algebra equipped with the to-

pology tg.•

   (3) The topology t,. isfiner than the topology t..
   (4) if Re'=sib, then both the topology t. and the topology t,, equal the

operator-norm topology.
    (5) if there exists a norm in the #-algebra si defining a finer topology

than t., then .of equals .ofb.

    (6) The equality t.=t,. if and only if the multiplication is jointly con-

tinuous with respect to the topology t,.

    [IV] p-topologyandZ-topology

    We shall recall the p-topology and a-topology defined by D. Arnal and

J. P. Jurzak [2, 12].

    An operator A E si is called positive if

                     (A414) IO for all 4e D,

which is denoted by AIO. We denote by .sza'" the set of all positive operators in

of•

For each A G sit we put

                    pA(T)-2e.pi[.'iiig))i, Tesi

where -3-=co for AÅro. This defines the normed space

                      "A == {TE .of ; pA(T) Åq oo}

with thenorm ll•llAiiEpA/vV'A. Wenote that V uV'A= 2 "A= ,ftl; moreover,
                                     Aeatr Aesfr
the relation 05ASB implies that the injection iA,B: (uSi'A: li • HA).(vt"B; Il • IIB) is

a norm-decreasing map.
    For each A e .ofi we set

                      ZA(T)-?p.plllA'Zl, Te.st

      z        == oo for ZÅrO. This defines the normed spacewhere
      o
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                       .ie'. = {Te "t ; 2A(T) Åq co}

and the'•spaces XA constitute a: direct set.

    DEFiNiTioN 2.2. The inductive limit topology for the normed spaces {(vSnA;
 Il • II A) ; A E .s2e'1} (resp. {(.eeB; 2B( • )) ; B E .sg'i}) is called the p-topo logy (resp.

Z-topology) on "t' and is simply denoted by t, (resp. ta).

    LEMMA 2.2, ([12] J. P. Jurzak) The' #-algebra ti is a bornological locally
convex *-algebra equipped with the p-topology.

    Now we •give 'the folloWing

    LBMMA2•3• (1) ta)t,.;

    (2) t,lt."'. and tz).tg,;

    (3) t,lt. and tA).t,,.

    PRooF. (1) It suMces to show that the injection i:(si,';tz).(.of';t,) is
continuous. For each Aesii we show that i/.dZA is continuous. Take an ele-

ment Tof .llA. Then we have

                                     l(T414)l                    Pi+A'A(T) =?".DP (a+A"•A)414)

                                   ll T4 ll IleH
                             S' ?YDP lle112+ llA4 112

                                  II T4 11
                             =`leYDP 'IlA4ll

                             =a.(T).

Hence, il.di'A is continuous, which implies that i is continuous.

    (2- ) Letj be'the injection of (si;, t,) onto (si; tat). , It suMces to show that

J' is continuous., SupPose thit {T.} is a sequence in uV:A (AesiS) such that

lim ll T,llA= O. Namely, there is a sequence {e(n)} such that
n-co

                    l(T,41 n)lge(n) (A41 4), 46 S•

Then, for each e, neS we have

           1(T.e l n)1 -Åq.- "il'{l(T.(e +n) 1 e +- n)l+ 1(T.(g-n) l e- n)1
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                   + I(T.(4+ in) l 4+ in)1 + l(T.(4 - in) l 4- in)1}

                 .Åq. 8(4n) {(A(4+n) 1 e+n)+ (A(4-n) 14-n)

                   + (A(4 + in) I 4 + in) + (A(4 - in) l e - in)}

                 - e(n) {(A41 4) + (Anln)}•

This inequality implies that for each {ei}, {ni} e S.(,sal)

     co co    l ÅrÅí (T.ei I ni)I 5 e(n) :[] {(ACi 1 4i) + (Ani [ ni)}

    i=t i--1
                 co 1co 1 co 1co 1              5{( E] l14iU2)i(Z llA4ill2)i+ (Z IInill2)-2(2 IIAnil12)i}6(n) •

                 i=1 i=1 i=1 i=1
It,hence follows that J' is continuous. Similarly we can prove that tzltat.

    (3) Let EM be each al-bounded subset of S. The inequality:

                    i(T4l4)IS7(A4lC), eeD

implies that

                 sup I(T4 1n)1S27(sup ll411)(sup llA4H)•
                g,neEm eExrt eeEnz
Hence it is proved, in the same way as in (2), that t,)t.. Similarly, we have
tX)-tgu•

   Thus we have the following

   THEoREM 2.1. Let .sg' be a #-algebra on a pre-Hilbert space S. Then the
followingr diagramt amon the tapologies holds:

                         tgu :Åq: tZ
                         VII VII
                         tu $ tp
                         Vll VII•
                         tw St?w St."it.

                         All All
                         tewSt9ew5t#rew
                         All All
                         t. St.D,' Stg,

                         All All
                         tgu S tx '
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   REMARK. In the case of the usual bounded operator algebras we have the
following connections:

           tXi5 Xli ) s t. = t,. = t, = tz == opera tor-norm topoiogy.

           taw :E tas J

For #-algebras of unbounded operators we don't know whether the relations 5
in Theorem 2.1 are strict or not.

    g3. Special #-algebras

   In this section we examine particular #-algebras. In the remainder of this
paper we shall need some concepts of #-algebras.

   DEFINiTloN 3.1. A #-algebra rd is called countably dominated if there
                                                         coexists an increasing sequence of subspaces vP"A. (A.E si1) such that .st' == V vt"'A..
                                                        n=1
   If .of is a countably dominated closed #-algebra on D, then D is a Frechet

space equipped with the induced topology t..

                      co   LEMMA 3.1. Let .se'= V vVi'A. be a countably dominated, closed #-algebra
                     n= 1on D. If SeY#(S), then there exists an integer n (resp. m) such that

              ?y.pilii,S4ili`co (resp•iu.g,i`.S.{ii2,iÅqoo)

   PRooF. This follows from Lemma 1.1 in [2].

   PRoposlTIoN 3.1. if si is a closed, countably dominated #-algebra on S,
then the following relations hold:

                 t:1.==t.D.,,tf..=t2.. and t.a'.=tbD,.

   PRooF. It follows from Lemma3.1 that D.(.of)=D.(Y#(S)). This im-
plies Proposition 3.1.

   PRoposiTIoN3.2. (Theorem1.2 in [2]) if of is a closed, countably
dominated #-algebra on S, then thefollowing statements are equivalent:

   (1) The p-topology t, equals the 2-topology t).;

   (2) The bounded subsets of the A-topology eoincide with the bounded
subsets of the p-topology;
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   (3) The p-topology t, is.finer than the quasi-weak topology t,.;

   (4) The p-topology t, is.17ner than the (.sv')-quasi-a-weak topology tg..;

   (5) The p-topology t, isfiner than the strong topology t,;

   (6) Tlie p-topology t, isfiner than the (.s?4)-o-strong topology tg,;

   (7) The p-topology t, isfiner than the quasi-uniform topology t,.;

   (8) For every Ae,s21i there exists an element Be.st'i such that .iPnAc.e2fB

and the injection: vtnA..e2'B is continuous;

   (9) The bilinear map (S, T)esiÅ~.of-STesi is continuous with respect
to the p-topology.

   DEFiNiTioN 3.2. A #-algebra .of' is called p-closed if there exists a decom-

POSitiOn si= JV..JvSX'A, SUch that for everyjeJ, ur'Aj 1's a Banach space.

   PRoposlTIoN3.3. (Theorem1.1 in [2]) If ,st' is a p-closed, countably
dominated #-algebra on D, then the p-topology equals the A-topology.

    Examples of p-closed, countably dominated #-algebras have been given in
[2].

    ExAMpLE 3.1. Let b be a separable Hilbert space with an orthonormal
basis {e.}. By D we denote the set of all finite linear combinations of the basic

vectors. Every element A of Y#(S) is uniquely determined by a matrix A=(a..)

defined by

                           Ae"= 2ap,e,•
                                v
The adjoint A" of A= (a,,) is defined by

                            A# == (avp)•

Further, a..==O for pt Z. pto(v) and vlvo(pt). Hence, 9#(S) is the set of all matrioes

with the property that every row and column are only a finite numbers of non-zero

elements.

    Now we have the following

    PRoposlTioN3.4. The maximal #-algebra .f2e"(S) is a self-adjoint,
countably dominated #-algebra and thefollowing relations are satisLfied:

                 tw :teDM,== tu;:5tgw==t?ew5ts=taDs=tqu-

                      AII 11
                      t, IIE tz
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    PRooF. The first statement is obviQus and so we shall only prove the
relations between the topologies. Let {7.} be an arbitrary sequence of positive

numbers and let A(v.) E Y#( D) be the operator (6.,7.), where 6,. is- the 2Åqronecker

                   cosymbol. Then, for 4== 2 ct,e.ES we set
                   n=1

                                     co 1                    llellA(v.) = llell(7.)=( Z lctnl27;)2
                                    n=1
we can immediately prove that the topology jn D generated by {ll • Il(,.); {7n}} of

the seminorms equals the induced topology tg#(D). This implies that every Y#(S):

bounded subset of D is contained in a finite-dimensional subspace of D. And
so, t.=t.e.=t., tq.=t.D q,y and t, =taDs=:tgtt•

   We next show that t,Stx. We put

                             fO vSn
                       Anev == t
                             t e.-n vÅrn.

Then, {A,} converges to zero with respect to tA. In fact, for each 4=ctiei+•••+

ct.e. E S we have

                       fO , mgn                 llAn41I={ -
                       t 1ctn+il2+"'+lctm21, mÅrn.

Now we set

Then, Ai (a,,) e Y"(D) and

llAn41]2-

     apv=6"vpt'

if mÅrn we have

1ctn+il2+"'+lctm12
IlA4112

   $     (n+1)2{1ctn+ll2+'''+lctml2}

        1
     (n+1)2,

 llAn4L' ltA41i -O• Hence, for eachces

      lllAA"illll-Åq-.il i, that is, ZA(An)s

lctil2+22Ict212+'''+(n+1)21ct,+i12+•••+m21ct.l2

  lctn+i12+"'+1ctml2

and if mSn

 1
n+1'
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Namely {A.} converges to zero with respect to tz.

    Since (:2e#(S); t,) is a locally conyex *-algebra, {A#} converges to zero with

respect to tp because of the relation tpSt2.

    Suppose that t,=tz. Then, t,lt,,, and so {AS} converges to zero with re-
spect to tq,. However, we can easily prove that {A,#} does not converge to zero

with respect to t,.. This is a contradiction.

    We now show that t.:Etq.;:5t,. If t.=tg., then tpltq.. It follows from
Proposition 3.2 that t, =tz, which contradicts t, \ta. The above sequence {A,#,}

converges to zero with respect to tq., but it does not converge to zero with respect

to t,. Hence, tg.ÅqtFt,.

    Finally we show that t,=tz. Since (.of; t,) is metrizable, it is a bornological

locally convex space. The locally convex space (.sat; t).) is bornological'. Further;

it follows from Proposition 1.6 in [2] that ,f;" is a bounded subset of (.sat'; t,) if

and only if ,9`' is a bounded subset of (,st'; tA).

   This implies t,=:t2, which completes t,he proposition.

   REMARK. We don't know whether or not the topology tp equals the to-
pology t.•

   ExAMpLE 3.2, Let {.g(i} be a sequence of infinite-dimensional *-algebras
.sii' i of bounded operators on Hilbert spaces bi with the identity operators Ii. We

denote the Hilbert direct sum of the Hilbert spaces bi by b and we also denote by

D the set of all elements e=(Ci), where eiGbi and 4i =O, except for finitely many

                                   coindices i. Let .s21 be the Cartesian product H .sai'i ofthe *-algebras ofi. Then we
                                   i=1
define

                            A4= (A,e,) ,

where A==(Ai) e.R4 and e=(4i) e S). Every element A of .sai' is regarded as a linear

operator on b. The algebra of turns out to be a #-algebra on D with the op•-

eratlons :

                     A+B=(A,+B,), AA=(7,Ai),

                     AB == (A,B,), A# == (Af)

where A == (Ai), B == (Bi) E .sa?' and a e C (: the field of complex numbers).

   Now we discuss the relations between the topologies on the #-algebra .sV=
co

nsii. For each A=(Ai)Esi we set
i=1
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                            11All,=ilA,11

where llAill denotes the operator-norm ofAi. The locally convex topology on si
generated by the family {II • lli; i--1, 2,...} of the seminorms is called the locally

uniform topology and is simply denoted by ti..

   PRoposlTIoN 3.5. Keeping the above notations, the relations between the
topologies are as follows:

                 IA."Årt:lg:"[..Itill/yi ];:stu==teu=tp==tz=tiu•

It is, moreover, necessary and suXficient for t.:Et."'. (resp. t,;;i;t.'`,) on .ss' that

t.ÅqÅ}. t:r. (resp. t,:l: t.",) on some .suti.

   PRooF. It suMces to show that t,=ta=ti,. We first' show that t,=ti..
Let !Pl be each .fte'-bounded subset of D. Then, for some positive integer N we

have

                  !Mc{e = (ei)eD; 4i=O for iÅrN}.

In fact, if not, for each positive integer j there exists an element 40')E(eSj)) of EM

with IleS•")ll \O. We set

                          i                     cti=Ile[.j)ll and A=(ct,I,).

It follows that A E .sg and

                        llA4(i)ll lct,114{•i)ll == i,

and so

                           sup 11A41i = co•
                           4eÅíM
This contradicts that swl is si-bounded.

   Further, it is easily seen that for each j (1 S. j-S N)

                           sup 1[4jllÅqco•
                         e=(ct)egn
This implies t. =tiu•

    We next show that ta==ti.. Since ti.=t.5ta, we have only to show taSti..
Let i be the injection of (.gi?', ti.) onto (.sii', tz). Take each bounded subset ta
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of (st, ti.). Then it follows that

                  7j-= sup IIBillÅqoo forevery j.
                     B=(Bi)ee
Put

                             A = (7,I,) •

Then, we have AE.Ra' and for each B=(Bi) e su and 4=(ei) eD

                              co 1                       llB411 =[2 llB,4,I12]i
                             i=t

                              co i                           S[Z llB,II2H4,112P
                              i=t

                              co 1                           S [Z 71• 11 4, il 2P
                              i=1

                           - llA4 11 .

Hence, sup ZA(B)$1. This implies that es is a bounded subset of (.sV, t2), and
      Besi
so i maps every bounded subset of (.sat, ti.) into a bounded subset of (.szt, ta).

Since (.s2s2f, ti.) is metrizable, the injection i .is continuous. This completes the

proof.

   REMARK. Especially if ,s2e'i is a standard von Neumann algebra for each i,
then it is well known that the topology t. (resp. t.) on .sali coincides with the

topology t.. (resp. t..) on .of'i. It follows from Proposition 3.5 that the to-

pology t. (resp. t,) on ,of coincides with the topology t."'. (resp. t."',) on si. There

is another #-algebra va on which the topology t. (resp. t.) coincides with the
topology t.". (resp. t.e,) ([11]).

   ExAMpLB3.3. The test function algebra .f;Px is the algebraic direct sum
     co.f;"x=e.Se. where .f;"o==C and .9'.=.9(R4") is the Schwartz space of Cco-
    n=O
function with rapid decrease. We denote the direct sum topology on ,9'x by T.
The multiplication and the involution are defined by

            (fg)n(Xi,"',Xn)== 2 f"(Xi,'",Xp)gv(Xp+i,'",Xn),
                          p+v=n
            (f*)n(X1,"', Xn) =fn(Xn,"', X1) ,

where f==(f.),g=(g.)GS"x. Then, (.9x,T) is a barrelled and bornological
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locally convex *-algebra [14]. Let n. be the G.N.S.-representation associated

with a positive continuous linear functional to on S"x with the domain D. and
the cyclic vector 4.. The universal representation f.n(f) is the direct sum of all

G. N. S.-representations

                      z(f) = (z.(f)) e I7Iz.(Sex)
                                   to
defined on the algebraic direct sum S of the spaces S.. Then, .satl=-{z(f);fe
,9"x} is a #-algebra on D with the operations:

                 n(f) + z(g) == z(f+ g), Zn(f) = z(7,f) ,

                 z(f)z(g)=z(fg), n(f)"=n(f").

We give the relations between the topologies on si.

   PRoposiTioN 3.6. Thefollowing relations hold:

                        tu, :S tu ;E tp Åq# ts == tqu" tA•

   PRooF. It follows from [14] that

                           tw ;E tu ;:il ts == tgu'

(.siZ; t.) is not a bornological space and (.s?t; t,) is a barrelled space. Since (.of;

tp) is bornological, we have t.S t,.

   We shall show that t,= tz. Let U be a neighborhood of O with respect to
tz. The set U is represented by the absolutely convex envelope of the form

                               v UA,
                              AEs"'l

where

                   U.E{Te uinA; ZA(T)5eA, eAÅrO} .

Then, UA is absolutely convex and closed with respect to t,. Sinoe (of; t,) is a

barrelled space, UA is a neighborhood of O with respect to t,. Hence, U is a
neighborhood of O with respect to t,, and so txS t,.

   Thus, we have ta=t,•

   ExAMpLE3.4. Let S be a pre-Hilbert space and let as(T)=={P(T)==
2 ct.T"; ct.GC} be the algebra of all polynomials generated by an element T

nlO
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of .f?#(S). Let r. be the system of all positive sequences {7.} with 1S-7o$7i

 S•••. We introduce the topology T. defined by all seminorms•

                         llP(T)li {7.} = Z 7.nlctnl ,
                                  nlO
where {7.}Gr. and P(T)=Åíct.T". Then, T. is the finest locally convex to-

                         n'pology on the #-algebra ep(T). The following result is obtained by K. Schmtidgen

[18].

    PRoposmoN 3.7. ij T is an unbounded operator in Y#(D) with T#= T,
then the relations between the topologies on EP(7') are as follows:

                         tu = teu= tp = tx =Tco.

    The next proposition has been established by [18], but its proof includes
gaps and we shall proye it in order to give the complete reference, and our proof

is based on his idea.

    PRoposiTioN 3.8. ([18] Schmab'dgen) Let T be an unbounded operator T
in Y#(D) with TS=T. Suppose that SP(T) is a closed #-algebra. Then, it
follows that

                   ts=:taDs "= tcass(T) == tu =tqu=tp :t2 =Tco.

    To prove this we prepare the next lemma.

    LBMMA. Take {7.}er.. Then there existasequenoe {e,} in S anda
sequence {6.} of positive numbers such that

    (1) l(Tie,1e,)=6,+7,+1+,E. ).,l(Ti4,le,)1;

                          J' Åql    (2) l(Tie,l4,)IS2a,;

    (3) 1(Ti4,14,)IS2-1,, lÅqk;

    (4) (T'4kl4.)=:O, ISm, kÅqm;

               6o -46i -462'"-46n

             ny 451 62 -- 463"'-46n+1
    (5) Dni                                         Åro.
             --462 -4S3 S4'"-45n+2
               ----it------it--t----i--------------
             -'46n -45n+1 """""" 62n
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   PRooF. Its proofdepends on induction. Let 6o be a positive number with
6ol7o+-1 and eoeD with lleo]12=6o.+7o+1. Then, the assertion holds for
n =O. Suppose that eo, {4i, e2}, {43, e4},•••, {62.-3, 42,-2} and 6o, {6i, 62},

{53, i4},•••, {62n-3, 62.-2} chosen so that (1)rv(5) are satisfied. Then, we shall

find elements {42.-i, e2.} of D and positive numbers {62,-i, 62.} which satisfy

the conditions (1)tv(5). First, we can take 62..i as

                                2 1(T2n-i4il4j)l•               S2n-!l72n--i+1+
                              j•E3::l

In the same way as in [18, Statement 1] we can take an element 42.-i of D

satisfying

      1(T2"-i42n-i I 42n-t)1= 62n-i+72n-i+1+ i.lil.l-i 1(T2"-'i4i 1 4j)1 ,

                                       jÅq2n-1
      I(T'42n-il42n- i)I S '2ifil=i-, 7Åq 2n -1

and

              (T'4kl42,.i)=O, 7S.2n-1, kÅq2n-1.

Next we shall construct 62. and 42.. The determinant D. can be written as

                  Dn=Dn-162n+P(6o, 61,"', 62ndl)

where P(to, ti,..., t2.-i) is a polynomial of the (2n-1)-variables to, ti,..., t2.-i.

It follows from D.--iÅrO that we can take 62. so large that D.ÅrO and

                               2 1(T2n4i14j)1•                   62nl72n+1+
                              j•s:

We can analogously take an element e, of D satisfying

             l(T2"e2n 1 42n)I = 62n+72n+ 1 + ,.2,. I(T2"4i l ej)1 ,

                                    jÅq2n
             1(T'e2.le2,)ISSL,ii., 7Åq2n

and

                  (T'ekle2.)==O, 752n, kÅq2n.

Thus we can take by induction 4o, ei,..., e2. and 5o, 6i,..., 62. satisfying the con-

ditions (1) tv (5), which completes the proof of Lemma.
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   THBpRooFoFPRoposlTioN3.8: Take {7.}er.. Then, there exist a
sequence {e.} in D and a sequence {6.} of positive numbers satisfying the con-

ditions (1)ty(5) in Lemma. We set

                           co                         e =2 e,•
                           i= 1
Then, it follows from the closedness of SP(T) that CED. We show that for each

polynomial P(T)= 2ct.Tn
              n
                1[P(T)4ll2 :112ctnT"4ll2l27nlctnl2•

                         nn
From the assumption (1) .v (4) in Lemma it follows that

         l(Tn41e)ll1(Tn4.I4.)1- ]IE I(Tneil4j)I-E l(T"4klek)l
                          iÅqn                                     kÅqn                         jÅqn
               l l(T"4n 1 en)l- ,;. I(T"4i l 4J')l-1

                         jÅqn
               )' 6n + 7n' ' ' ' ' ' ' ' ' ' (i)

and

         l(Tn4 l e)1 s 1(Tne. I e.)1 + ,]{l. I(T"ei l ej)l + ,IEi]. I(T"4k l 4k)1

                         jÅqn
               s21(Tn e. 1 e.)1

               $4Sn' ' ' ' ' ' ' ' ' ' ' (li)'

From the assumption (5) we have

                  :l 62ntntn -4.;.6n+mtnTm -) O,

and hence

                 Z62nlctn12-4 2 6n+mlctnl locntlIO'
                 n n=iem
From (i) and (ii) it follows that

          Os Årl((T2ne.1 4) -h.) 1ct,I2- 2 l(Tn'me i e)llct.1 lct.l

                             n=Ie=m             n
           s l Åí(T2ne l 4)ct.ct.- 2 (T"'me l e)ct.ct-.l - 2 7.1ct.l2

              n nafm n
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            = I 2 (T"+M4 l e)ctnctml - 2 7nlctnl2

               n,m n
            =H2ctnT"4112-27n[ctnl2•

               nn
Thus we have

                        27nlctnl25jlP(T)ell2•
                         n
                                       !It is easily proved that the system {(27.lct,l2)2; {7,}Er.} of the seminorms
                                ngives the same topology as T.. This implies Proposi-tion 3.8.

    REMARK. It has been seen in [15] that• we can't drop in Proposition 3.8
the assumption that SP(T) is a closed #-algebra on D, however, without the closed-

ness of SP(T) there are #-algebras on whieh the topologies in Proposition 3.8 are

all the same.

    g4. Unbounded operator algebras as GB*-algebras

   Let .sat' be a #-algebra on a pre-Hilbert space D. It follows from Section 2
that (.gZ; t.), (.sa?'; t."t.), (.s24; t.D.), (of; t,) and (.s?t; t,) are locally convex *-alge;

bras. In this section we shall consider under what conditions the locally convex

*-algebras .sarl become GB*-algebras defined by G. R. Allan [1] and P. G. Dixon

[4].

    We first recall the notations of GB*-algebras and EC#-algebras. Let A
be a locally convex *-algebra with identity e. We denote by 8" the collection of

subsets B of A satisfying:

    (1) B is closed, absolutely convex and bounded;

    (2) eeB, B2cB and B*=B.

For every BeB", the linear span of B forms a *-algebra which is normed by
the Minkowski function of B. This normed *-algebra is denoted by AB].
An element x of A is said to be bounded if, for some non-zero complex number

Z, the set {(2x)";n=1, 2,...} is bounded. The set of all bounded elements of •A

is denoted by Ao. If, for every xeA, (e+x"x)-i exists and lies in Ao, then A
is said to be symmetric. A iocally convex *-algebra A is called a GB*-algebra if

    (1) B" has the greatest member Bo;



                 Topologies on Unbounded Operator Algebras 373

   (2) A is symmetric ;

   (3) A[Bo] is cornplete.

If A is a GB"-algebra with identity e, then A[Bo] is a B"-algebra with identity

e and (e+x"x)-ieA[Bo] for every xEA. For details, the reader is referred to
[1, 4].

   Let .of bg a #-algebra on S. If Iesi and (I+A"A)-iG.ofb fOr all AeJat,
then of is called symmetric. If ,of is a symmetric #-algebra on S and .ss-'b is a

C"-algebra (resp. W"-algebra), then .of is called an EC#-algebra (resp. EW#-
algebra) on D over .sVb ([5, 7]).

    Let .of be a #-algebra with the identity operator I and let T be a topology on

.sV satisfying the condition (C) :

   (1) (.sa2', T) is a locally convex *-algebra;

   (2) tw$T;

    (3) .sag'i ii {A Esib; llAll 51} is bounded with respect to T.

    We note that the topologies t., t.A'., t, and t, are satisfied the condition (C).

We denote by 8"(si, T) the collection of subsets 8 of .sut satisfying:

    (1) 8 is closed and bounded with respect to the topology i'and' absolutely

convex '      ,

    (2) Ie8, S2c8 and 8"=B.

    LEMMA 4.1. The set ,sat?'i is the greatest member of 8"(si, T).

    PRooF. The set .satt is closed with respect to the weak topology t.. It
follows from t.ST that `•s2e'i is•closed with respect to T. This implies that .ofrte

8*(.s2t, T). Let 8 be an arbitrary element of 8*(.sat', T). Suppose that there

exists an element B of 8 with llB- llÅr1. Then, there exists an element e of D
such that llell=:1 and llBellÅr1. Since B is bounded with respect to T and t.S.T,

B is bounded with respect te t.. Now we have that

                l((B#B)2"41 e)ll llB4 112""t (n == 1, 2,...) ,

and liM IIB4112"'i= oo. On the other hand, we have
    n-co
                        lim ((B#B)2"4 1 e) Åq oo,
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since (B#B)2" e8 and 8 is bounded with respect to t.. This is a contradiction.

Hence, 8c.ofi.

    LEMMA 4.2. A #-algebra .of is an EC"-algebra ifand only if (si; T) is a
GB"-algebra.

    PRooF. It follows from Lemma4.1 that the normed *-algebra Jza-'b with
operator-norm equals the normed *-algebra .of[.of'i]. This implies Lemma 4.2.

    Thus we haye obtained the following

    THEoREM 4.1. Let si be a #-algebra on D with the identity operator L
Then, thefollowing conditions are equivalent:

    (1) .s2e' is an EC"-algebra;

    (2) (.sat'; t.) is a GB'-algebra;

    (3) (.sart; tg.) is a GB"-algebra;

    (4) (.sae'; t.D.) is a GB'-algebra;

    (5) (.sil; tD is a GB"-algebra;

    (6) (si; t,) is a GB"-algebra.
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