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Abstract

In this paper we study several topologies on unbounded operator algebras. The
first purpose is to discuss the relations between the topologies on general unbounded
operator algebras. Secondly we study the topologies on special unbounded operator
algebras in details. Finally we study the relations between locally convex x-algebras
and unbounded operator algebras.

§1. Introduction

In recent years several authors have investigated unbounded operator alge-
bras in various situations [2, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18]. In particular,
it may be important to study the topologies of them. Lassner has introduced in
[13] a uniform topology t, and a quasi-uniform topology t,, on an unbounded
operator algebra. Arnal and Jurzak [2, 12] have defined the topologies called
p-topology t, and A-topology t,, which are in general different from the uniform
and quasi-uniform topologies, however each topology mentioned above equals
the operator-norm topology in case of the algebra of bounded operators. They
have given necessary and sufficient conditions under which the p-topology is
equal to the A-topology.

In this paper we shall define the other topologies called weak, quasi-weak,
o-weak, quasi-o-weak, strong and g-strong (which are denoted by t,, t,,, tou
Lows ts and t,., respectively). We shall obtain in Section 2 the following rela-
tions between their topologies:
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. ‘Ez
where the symbols 7, =7,, 7,<7; and Al mean ‘‘t, is finer than t,”.
T1

It is well known that on infinite-dimensional algebras of bounded operators
the following connections hold:

ty St ,
Al Al St,=t,,=t,=t,=operator-norm topology.
towé to‘s ’

In general, various cases may be happened for unbounded operator algebras.
We shall give in Section 3 four particular unbounded operator algebras and
discuss their topologies in details.

Finally we shall discuss the relations between locally convex *-algebras and
unbounded operator algebras. An unbounded operator algebra & equipped
with the topology 1, (resp. t,,, t, t,) is a locally convex *-algebra. We shall
show in Section 4 that the locally convex. x-algebra (o7 t,,) (resp. («7; t,,,), (&
t), (; t,) is a GB*-algebra defined by Allan [1] and Dixon [4] if and only if
the unbounded operator algebra o is an EC*-algebra defined in [7].

§2. Topologies on #-algebras

In this section we shall introduce various topologies on an unbounded
operator algebra called a #-algebra and study the relations between their topologies.

We begin with the definitions and notations of #-algebras. Let D be a
pre-Hilbert space with inner product ( | ) and § the completion of ®. By #(D)
we denote the set of all linear operators on ® and by ##(D) we denote the set of
all linear operators A € £ (D) for which there exists an element A4* € (D) such
that (A& |n)=(&| A%n) for every £, neD. Each element A of Z¥#(D) is a closable
operator in b and A* equals the restriction of the hermitian adjoint A* of 4 onto
D. Equipped with the involution A—A4*, Z#(D) is a =-algebra with the identity
operator I. A =-subalgebra & of Z#(D) is called a #-algebra on D. The
#-algebra £ (D) is maximal among #-algebras on D, which is called the maximal
$-algebra on . Let #(h) be the set of all bounded linear operators on the
Hilbert space ). Let & be a #-algebra on D. We set

y={Ae; Ac D)},
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where A is the closure of a closable operator A. Then, &, is a #-subalgebra of
&7, which is called the bounded part of <.

Throughout this section let o be a #-algebra on a pre-Hilbert space D and b
the completion of D.

[I] Weak, quasi-weak and strong topologies

For each £ D and x e} we set

P (AD=](A¢|x),
PA)=]4L, Ae.

The topology generated by the family {P,,(-); &, €D} (resp. {P;.(-); (€D,
xeb}, {P«-); £ € D}) of the seminorms is called the weak topology (resp. quasi-
weak topology, strong topology) and is simply denoted by t,, (resp. t,,, t). It
is easily seen that (o t,) is a locally convex #-algebra, that is, =-algebra which
is also a locally convex space such that the multiplication is separately continuous
in both variables and the involution is continuous.

[II] o-weak, quasi-o-weak and o-strong topologies

Let b, be the Hilbert direct sum of the Hilbert spaces b, with §,=h (n=1,
2,...). We.set

Do () ={{{s} €b; &€ D (n=1,2,...) and

S l4gl2<co forall Acr},

Py xa(A)=| ,gl (A& x|

and

PeyD=LE 145715

where Ae o, {£,} €D (&) and {x,} €h,. The locally convex topology gener-
ated by the family {Pig),(-); b {1} € D)} (resp. (P (s (Gak €
Do (), {Xn} €D}y {Piey(+);s {Ln) € Do(#)}) is called the (of)-o-weak topology
(resp. ()-quasi-g-weak topology, («£)-o-strong topology) on & and is simply
denoted by %, (resp. 1%, t%). In particular, the (Z*(D))-o-weak topology
(resp. (Z#(D))-quasi-o-weak topology, - (Z*(D))-o-strong topology) on & is
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simply called the (D)-g-weak topology (resp. (D)-quasi-o-weak topology, (D)-0-
strong topology) and denoted by 2, (resp. t2,,, t5). It is easily seen that (o/;

<) and («7; t2,) are locally convex *-algebras The relations between the above
topologxes are as follows:

t, Stp <1
ANAL A
t?w = tqDaw = tD
Al AL Al
18, 18, S 12, .

[III] Uniform and quasi-uniform topologies

G. Lassner has defined in [13] the topologies on o called uniform topology
and quasi-uniform topology. Let o7, be a #-algebra on D formed by adjunction
of the identity operator I. A natural induced topology on D is defined as fol-
lows:

Suppose that & is a finite subset of elements of «/;. We define the semi-
norm || ||, on ® by

1€y = 2 1421

We define the induced topology t, on D as the topology generated by the family
{ll- s & is a finite subset of &;} of the seminorms.

If © is complete with respect to the induced topology ¢, then .o is said to be
closed. A #-algebra o is closed if and only if D= f\ S(A) A #-algebra o

on D is called self-adjoint if D= /\ D(A*) If o is self-adjomt then it is closed.

If M is a bounded subset of the locally convex space (D; t,), then it is said to be
-bounded. For each «7-bounded subset I of D we set

I Allg= sup |(AZ1n)|
&, neM
and _
Py (4)=sup [[BAS|
EeIn
where A€« and Be &/;.

DEerINITION 2.1. The locally convex topology generated by the family
{I* llg; M is an o7-bounded subset of D} (resp. {Ppm(-); Be oy, M}) of the
seminorms is called the uniform topology (resp. the quasi-uniform topology)
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on & and is simply denoted by ¢, (resp. t,,).

LemMma 2.1. ([13] G. Lassner) (1) The #-algebra < is a locally convex
x-algebra equipped with the topology t,.

(2) The $-algebra o is a locally convex algebra equipped with the to-
pology t,,.

(3) The topology t,, is finer than the topology t,.

(4) If o =f,, then both the topology t, and the topology t,, equal the
operator-norm topology.

(5) If there exists a norm in the $-algebra o defining a finer topology
than t,, then o/ equals 7).

(6) The equality t,=t,, if and only if the multiplication is jointly con-
tinuous with respect to the topology t,.

[IV] p-topology and 2-topology

We shall recall the p-topology and A-topology defined by D. Arnal and
J. P. Jurzak [2, 12].
An operator A € o is called positive if

(41620 forall ée®,

which is denoted by 4=0. We denote by & the set of all positive operators in
.
For each A e o/F we put

(T8
PAD) =sup gy Ted

where %= oo for A>0. This defines the normed space

N 4={Te; p(T)< oo}
with the norm |- | ,=p,/#"4. Wenotethat \U # = 3 A ,4=uaf; MOICOVer,
Adex¥ Aex}
the relation 0< A< B implies that the injection i, p: (W 4: |- | D—=(A5; | ) is
a norm-decreasing map.
For each 4 € o7, we set

o ITe
Ia(M)y=sup s> Ted

where %= oo for 2>0. This defines the normed space
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and the spaces .# , constitute a: direct set.

DerFINITION 2.2.  The inductive limit topology for the normed spaces {(#"4;
I-10; Aest} (resp. {(Ap; A5(-)); Beo#,}) is called the p-topology (resp.
A-topology) on & and is simply denoted by ¢, (resp. t,).

Lemma 2.2. ([12] J. P. Jurzak) The #-algebra o is a bornological locally
convex *-algebra equipped with the p-topology.
Now we give the following

Lemma 2.3. (1) t,2t,;
@ t2t5, and 2%
(3) t,zt, and t,zt,.
Proor. (1) It suffices to show that the injection i:(&; ;) (of;¢,) is

continuous. For each 4 e.s7; we show that i/.#, is continuous. Take an ele-
ment Tof .#,. Then we have

_ [(TEIO]
Prea*a(T) =38 T+ AAE

ExslE]
< RN AR | B
=P TE+ 1422

<sup MTEI
=S4

=1,(T).

Hence, i/.# 4 is continuous, which implies that i is continuous.

(2) Let j be'the injection of (&3 t,) onto (o; t&,). . It suffices to show that
Jj is continuous. Suppose that {T,} is a sequence in N 4 (AeLT) such that
lin; Tl 4=0. Namely, there is a sequence {e(n)} such that
o

(T.EImsen)(48[8), LeD.

Then, for each &, ne D we have

(T é%{l(l’.}.(é +M | E+MI+(TE-m | E—-ml



Topologies on Unbounded Operator Algebras 361
FITE+in) | €+ in)|+ (T —im) | &= im))
<20 (A +m ) e+m+(AC—m1E—n)
+(AE+in) | E+in)+(AE—in) | E—in}

=g(n) {(AL1&)+(An|m)}.
This inequality implies that for each {&;}, {#;} € D ()
|i§1(nfi (= 3(");1 {(4&: 1 &)+ (An; (1)}
0 1 ® 1 0 1 ® 1.
ST IEIPACE NG+ (E IndPRC S, [ Anl2)2ye(m).
It hence follows that j is continuous. Similarly we can prove that ¢, >£%.
(3) Let M be each «7-bounded subset of . The inequality:
(TEIOI<p(AE]E), EeD

implies that

sup (TE|n)]<2y(sup [€]) (sup AL .
&neM EeMm e

Hence it is proved, in the same way as in (2), that ¢t,=¢,. Similarly, we have
2t
Thus we have the following

THEOREM 2.1. Let of be a %-algebra on a pre-Hilbert space D. Then the
following: diagram: amon the topologies holds:

tqu é t}.
Vi Vil
tu é tp
Vil Vi
t, St2, St3,
All Al
tqw é tqoa'w é t:;:rw
Al Al
t, SO St
A Ai
t =<

qu t).
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ReMARK. In the case of the usual bounded operator algebras we have the
following connections:

w '—‘Fts
AN St =t,,=t,=1t;,=0perator-norm topology.
<t

aw=\= as

For #-algebras of unbounded operators we don’t know whether the relations <
in Theorem 2.1 are strict or not.

§3. Special #-algebras

In this section we examine particular #-algebras. In the remainder of this
paper we shall need some concepts of #-algebras.

DerInITION 3.1. A #-algebra o is called countably dominated if there
exists an increasing sequence of subspaces 4", (4, € 2/F) such that o = U N g

If o7 is a countably dominated closed #-algebra on D, then D is a F rechet
space equipped with the induced topology 1,

LemMA 3.1. Let o = \J./VA be a countably dominated, closed #-algebra
on®. If Se #¥D), then there exists an integer n (resp. m) such that

Ise| I(SEID)]
poe 3 D7 4 I <’“’" e SIS °°)

Proof. This follows from Lemma 1.1 in [2].

ProposiTION 3.1. If o is a closed, countably dominated ¥-algebra on D,
then the following relations hold:

t.nl =D 1= _tD

o — 0
aws ‘gow qow and ta's_tas'

Proor. It follows from Lemma 3.1 that D (&)=D (L¥D)). This im-
plies Proposition 3.1.

ProrosiTION 3.2. (Theorem 1.2 in [2]) If & is a closed, countably
dominated #-algebra on D, then the following statements are equivalent:

(1) The p-topology t, equals the J-topology t;;

(2) The bounded subsets of the A-topology coincide with the bounded
subsets of the p-topology;
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(3) The p-topology t, is finer than the quasi-weak topology t,,;

(4) The p-topology t, is finer than the («)-quasi-c-weak topology tg,.;

(5) The p-topology t, is finer than the strong topology t;

(6) The p-topology t, is finer than the (of)-g-strong topology t3;

(7) The p-topology t, is finer than the quasi-uniform topology t,,;

(8) For every Ac o/} there exists an element Be o such that &'y A
and the injection: & ,—.# g is continuous;

(9) The bilinear map (S, T)e o x F—STe o is continuous with respect
to the p-topology.

DEFINITION 3.2. A $-algebra o is called p-closed if there exists a decom-
position & = \U ./, such that for every jeJ, 4", is a Banach space.
jelJ

ProposITION 3.3. (Theorem 1.1 in [2]) If & is a p-closed, countably
dominated $-algebra on ®, then the p-topology equals the A-topology.

Examples of p-closed, countably dominated #-algebras have been given in

21

ExaMmPLE 3.1. Let § be a separable Hilbert space with an orthonormal
basis {e,}. By D we denote the set of all finite linear combinations of the basic
vectors. Every element 4 of Z#(D) is uniquely determined by a matrix 4 =(a,,)
defined by

Ae,=3 a,.e,.
The adjoint A* of A=(a,,) is defined by
A¥=(a,,).

Further, a,, =0 for p= po(v) and v=ve(u). Hence, £*#(D) is the set of all matrices
with the property that every row and column are only a finite numbers of non-zero
elements.

Now we have the following

PROPOSITION 3.4. The maximal #-algebra ZL*D) is a self-adjoint,
countably dominated $-algebra and the following relations are satisfied:

tw = tc?w = tu é tqw = t?ﬂw -'-'<F ts = taDs = tqu'
Al 1

tp é tl
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Proor. The first statement is obvious and so we shall only prove the
relations between the topologies. Let {y,} be an arbitrary sequence of positive
numbers and let 4, € £#*(D) be the operator (5,,y,), where J,, is the Xronecker

symbol. Then, for =3 a.e, €D we set
n=1

161401, = 1Eln=C 5 lnalr2

We can immediately prove that the topology in ® generated by {| - ||,,y; {¥a}} of
the seminorms equals the induced topology to4(g). This implies that every # "(D)l
bounded subset of D is contained in a finite-dimensional subspace of ®. And
50, t, =10, =t,, 1,,,=15,, and t, =18, =1,
We next show that t,<t,. We put

0 v=n
Anev=
ey, V>N

Then, {4,} converges to zero with respect to #,. In fact, for each é=u e, +--- +
e € D we have

0 s msn
4l = ,
fetns 112+ - +let2] m>n.
Now we set
anv=5uv,'l'
Then, A=(a,,) e Z*D) and if m>n we have
"Anéuz_ Ian+1I2+"'+!am|2

TAEN? ~ Jog P+ 2202+ -+ (1) 2]ty P+ -+ + m2far, 2

< l“n+1|2+"'+|am‘2
= (D 1P+ Flol?)

_ 1
T (m+1)*
and if m<hn, ”"’i"g“" =0. Hence, for each £ D

148l « 1 . < 1
TAZ] S+ T’ that is, AA(A,,)=n———+1.
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Namely {4,} converges to zero with respect to ¢,.

Since (Z£*(D); t,) is a locally convex s-algebra, {4} converges to zero with
respect to t, because of the relation ¢,<¢,.

Suppose that t,=t,. Then, t,21,, and so {4}} converges to zero with re-
spect to t,,. However, we can easily prove that {4%} does not converge to zero
with respect to z,,. This is a contradietion.

We now show that <t St If t,=1,, then t,>1,,. It follows from
Proposition 3.2 that t,=t,, which contradicts t,%1¢,. The above sequence {4;
converges to zero with respect to t,,, but it does not converge to zero with respect
to t,. Hence, t,, St

Finally we show that t,=t,. Since (&7 t,) is metrizable, it is a bornological
locally convex'space. The locally convex space (& ; t,) is bornological. Further,
it follows from Proposition 1.6 in [2] that & is a bounded subset of («7; ¢t,) if
and only if & is a bounded subset of («7; t,).

This implies t,=t,, which completes the proposition.

RemARk. We don’t know whether or not the topology t, equals the to-
pology ¢,,.

ExampiE 3.2, Let {«7;} be a sequence of infinite-dimensional =-algebras
«; of bounded operators on Hilbert spaces §); with the identity operators I,, We

denote the Hilbert direct sum of the Hilbert spaces b, by ) and we also denote by
D the set of all elements ¢=(¢;), where ¢;€b; and £;=0, except for finitely many

indices i. Let & be the Cartesian product le &; of the x-algebras ;. Then we
i=1
define

AL=(A5),

where A=(A))e o and £=(£)eD. Every element 4 of .« is regarded as a linear
operator on . The algebra o turns out to be a #-algebra on D with the op-
erations:

A+B=(Ai+Bi), ).A=(;LAi),
AB=(4;B), Af=(47)

where A=(4;), B=(B) e« and A eC (: the field of complex numbers).
Now we discuss the relations between the topologies on the #-algebra o7 =

ﬁdi., For each A=(4;) e & we set
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I All= 114

where || 4;|| denotes the operator-norm of 4;. The locally convex topology on &
generated by the family {||-|;; i=1, 2,...} of the seminorms is called the locally
uniform topology and is simply denoted by 1,,.

ProrosiTION 3.5. Keeping the above notations, the relations between the
topologies are as follows:

Ly =lg £t

/:{" A" étu=tqu=tp=tl=tlu'

= t’;:yw "<—~7— t:s
It is, moreover, necessary and sufficient for t,<t?, (resp. t,5t%) on o that
t,StZ, (resp. t,<tZ) on some ;.

Proor. It suffices to show that t,=t,=t,. We first show that t,=1,,.
Let 9 be each «7-bounded subset of ®. Then, for some positive integer N we
have

M {E=(£)eD; =0 for i>N}.

In fact, if not, for each positive integer j there exists an element £U)=(£)) of M
with [|£7]|%0. We set

i
at,-= "65”)“ and A=(ot,-I,).

It follows that 4 e o and
AED| 2 0| EP] =1,
and so
sup || A& = co.
EeM
This contradicts that IR is .«7-bounded.
Further, it is easily seen that for each j (1< j< N)

sup €]l < 0.
§=(51)em

This implies t,=1,,.
We next show that ¢;=t,. Since t,=1,<¢,, we have only to show 1,<1,,.
Let i be the injection of (&, t,) onto (<, t;). Take each bounded subset &
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of (&, t;,). Then it follows that

;= sup |Bj <00 for every j.
B=(B;)e2

Put
A=(nly).
Then, we have A e &7 and for each B=(B)e # and {=(£)eD

I1BEl=C3 I1B:&i112
<[E IBRIEITE

¥ Iaee

=[14&l.

Hence, gup AL(B)=1. This implies that & is a bounded subset of («, t,), and
(-4

so i maps every bounded subset of (&, t;,) into a bounded subset of («, t,).
Since (&, t;,) is metrizable, the injection i is continuous. This completes the
proof.

RemaArk. Especially if «7; is a standard von Neumann algebra for each i,
then it is well known that the topology t,, (resp. t)) on &; coincides with the
topology t,, (resp.t,) on «; It follows from Proposition 3.5 that the to-
pology t, (resp. t,) on & coincides with the topology t&, (resp. %) on /. There
is another #-algebra # on which the topology t, (resp. t,) coincides with the

topology 1, (resp. t7) ([11]).
ExampLE 3.3. The test function algebra &g is the algebraic direct sum
o)
Lo=® &, where L,=C and &,=L(R*") is the Schwartz space of C*-
n=0
function with rapid decrease. We denote the direct sum topology on &g by 7.
The multiplication and the involution are defined by

(fg)n(xl"“’ X,,)= p+;=nf“(xv'“, xy)gv(xu+ 1seces xn):

(f*)n(xb"" xn) =fn(xm'--, X1),
where f=(f), g=(9, )€ Fg. Then, (¥g, 1) is a barrelled and bornological
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locally convex x-algebra [14]. Let =z, be the G.N.S.-representation associated
with a positive continuous linear functional w on g with the domain D, and
the cyclic vector £,,. The universal representation f—n(f) is the direct sum of all
G.N. S.-representations

W= el1n(Le)

defined on the algebraic direct sum D of the spaces D,. Then, & ={n(f); fe
P&} is a #-algebra on D with the operations:

uf)+nlg)=n(f+9g), An(f)=n(Af),
(@ =n(fg), n(f)=n(f*).
We give the relations between the topologies on 7.
ProrosiTION 3.6. The following relations hold:
LSSt St=t,=1,
Proor. It follows from [14] that
LSt t=t,.

(«; t,) is not a bornological space and («; t,) is a barrelled space. Since (& ;
1,) is bornological, we have 1,51¢,.
We shall show that ¢,;=t,. Let U be a neighborhood of 0 with respect to
t;,. The set U is represented by the absolutely convex envelope of the form
U U,

Aevdr

where
U,={Tenx ;A (T)Ze,, e4>0}.

Then, U, is absolutely convex and closed with respect to ¢,. Since (&7; 1) is a
barrelled space, U, is a neighborhood of 0 with respect to t,, Hence, U is a
neighborhood of 0 with respect to ¢, and so ¢, <1,

Thus, we have t;=t,.

ExaMPLE 3.4. Let D be a pre-Hilbert space and let P(T)={P(T)=
> a,T"; a,€C} be the algebra of all polynomials generated by an element T
nz0
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of £*®). Let I',, be the system of all positive sequences {7} with 1Zy,<y,
<---. We introduce the topology 1, defined by all seminorms.

IP(D)la= T bl

where {y,}el', and P(T)=3a,T". Then, t,, is the finest locally convex to-

pology on the #-algebra PB(T). " The following result is obtained by K. Schmiidgen
[18].

ProposiTION 3.7. If T is an unbounded operator in LHD) with T*=T,
then the relations between the topologies on P(T) are ds follows:
ta=1,=t,

The next proposition has been established by [18], but its proof includes
gaps and we shall prove it in order to give the complete reference, and our proof
is based on his idea.

ProrosiTioN 3.8. ([18] Schmiidgen) Let T be an unbounded operator T
in £¥D) with T*=T. Suppose that P(T) is a closed #-algebra. Then, it
Jollows that

ts= t&Ds= t?s(T) = tu= tqu= tp = t).:Tao'
To prove this we prepare the next lemma.

LemmA. Take {y,}el,. Then there exist a sequence {£,} in D and a
sequence {J,} of positive numbers such that

W KTGlE=b+n+1+ S ITHIE);
@ (T&aleI<w;
O (T&l&Sy  I<k;
@ (T'1&)=0, Ism, k<m;
b —48,  —48,--—45,

(5) D —451 62 "'453"'_45”.}.1

1
v
=

....................................
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Proor. Its proof depends on induction. Let d, be a positive number with
So=yo+1 and EyeD with |&]?=60+7+1. Then, the assertion holds for

n=0. Suppose that &o, {&1, &5}, {€3s Eadseers {€an-35 $2n—2} and bo, {04, 92},
{83, 64}s--er {O2n—3» B2y} Chosen so that (1)~(5) are satisfied. Then, we shall
find elements {&,,—1, 2.} Of D and positive numbers {J,,-, 62,3 Which satisfy
the conditions (1)~(5). First, we can take 8,,_; as

San—12Va—g 1+ X T 1181
i<2n—-1

J<2n—-1

In the same way as in [18, Statement 1] we can take an element £,,—; of D
satisfying

(T2 4Ezno1 1 San- ) =0on- 1 2 +1+ F (TG

i<2n—
j<2n—-1

(T7E0m11Ean-Dl Szmrs  7<28—1
and
(T E2p-1)=0,  9S2n—1, k<2n-—-1.
Next we shall construct 8,, and &,,. The determinant D, can be written as
D,=D,_182,+P(8¢, 015+ 62n—1)

where P(tg, t1..-s t2a—1) is @ polynomial of the (2n—1)-variables t,, t;,..., t25-1.
It follows from D,_ >0 that we can take ,, so large that D,>0 and

b2ttt T (TEGIE).

Jj<2n
We can analogously take an element &, of D satisfying

KT2E00] Eal =St ant 14+ T (THEIE,

J<2n

(Tl &2l S35 7<2n
and
(T7& 1 E2)=0,  y=2n, k<2n.

Thus we can take by induction &g, &;,..., &2, and 8o, 0y,..- d,, satisfying the con-
ditions (1)~(5), which completes the proof of Lemma.
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THE PROOF OF ProPOsITION 3.8: Take {y,}el,. Then, there exist a
sequence {{,} in D and a sequence {J,} of positive numbers satisfying the con-
ditions (1)~ (5) in Lemma. We set

Then, it follows from the closedness of B(T’) that £ D. We show that for each
polynomial P(T)=Ya,T"

1PN = X e, T EN2 2 %ﬁ%.lanlz'
From the assumption (1)~ (4) in Lemma it follows that

KTE1 D12 (T"E, 1 <l - 2 [(T&] )l = 2 (TG | &l

J<n
Z[(T"E, 1 €1~ Eh (& 111
j<n
gan-i-y". e e e e e e e e (i)

and

TSI N=UT a1 G+ Z W& 18D+ 2 (TE1 8

j<n

=2|(T"E, 1 €

S48,- - - - - o oL (i),
From the assumption (5) we have

; Ozntaln— 4"§m5n +mtaln 20,
and hence
2 02nlo2 =4 T 61yl ] 20.

From (i) and (ii) it follows that

0= ;((Tz"ﬁ-l &) —V2n) los? —"Em (T mE | O lotal lot]
= l;(TZné l é)a,,oc_,,—ngm(T"*""é l é)ana—).nl - ; 'Ynlanlz
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=15 (T | Ol — Sl
= IZoTnEl~ Z o
Thus we have
Slel S IPTRIE

1
It is easily proved that the system {(Zy.l¢.|?)?; {v.} €I} of the seminorms

gives the same topology as 7. This implies Proposition 3.8.

RemMARK. It has been seen in [15] that we can’t drop in Proposition 3.8
the assumption that P(T) is a closed #-algebra on D, however, without the closed-
ness of P(T) there are ¥-algebras on which the topologies in Proposition 3.8 are
all the same.

§4. Unbounded operator algebras as GB*-algebras

Let o7 be a #-algebra on a pre-Hilbert space D. It follows from Section 2
that (&; t,), (& %), (& 3,), («; t,) and (; t,) are locally convex =-alge-
bras. In this section we shall consider under what conditions the locally convex
x-algebras o become GB*-algebras defined by G. R. Allan [1] and P. G. Dixon
[4].

We first recall the notations of GB*-algebras and EC#*-algebras. Let A
be a locally convex *-algebra with identity e. We denote by B* the collection of
subsets B of A satisfying:

(1) B is closed, absolutely convex and bounded;
(2) eeB, B2cB and B*=B.

For every B e B*, the linear span of B forms a x-algebra which is normed by
the Minkowski function of B. This normed %-algebra is denoted by A[B].
An element x of A is said to be bounded if, for some non-zero complex number
A, the set {(Ax)"; n=1, 2,...} is bounded. The set of all bounded elements of ‘A
is denoted by A,. If, for every x €A, (e+x*x)™! exists and lies in Ay, then A
is said to be symmetric. A locally convex #-algebra A is called a GB*-algebra if

(1) B* has the greatest member B,;
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(2) A is symmetric;
(3) A[B,] is complete.

If A is a GB*-algebra with identity e, then A[By] is a B*-algebra with identity
eand (e+x*x)"* € A[B,] for every xeA. For details, the reader is referred to
[1, 4].

Let o be a #-algebra on D. If e and (I+A%A)" e, for all Aes,
then 7 is called symmetric. If of is a symmetric §-algebra on D and <7, is a
C*-algebra (resp. W*-algebra), then o is called an EC*-algebra (resp. EW*-
algebra) on D over o7, ([5, T]).

Let o be a #-algebra with the identity operator I and let T be a topology on
& satisfying the condition (C):

(1) («, 7)is a locally convex =-algebra;
@ =7
(3) #,={deo,; |A] <1} is bounded with respect to 7.

We note that the topologies t,, t5,, t, and t, are satisfied the condition (C).
We denote by B*(«, 1) the collection of subsets B of o satisfying:

(1) B is closed and bounded with respect to the topology © and absolutely
convex;

2) Ie®B, B2<=B and B*=2.

LemMA 4.1. The set o is the greatest member of B*(«Z, 7).

Proor. The set o is closed with respect to the weak topology t,. It
follows from t,<t that .« is closed with respect to =. This implies that &7, €
B*(, 7). Let B be an arbitrary element of B*(s7, 7). Suppose that there
exists an elemerit B of B with [[B]|>1. Then, there exists an element ¢ of D
such that ||&[=1 and ||B¢||>1. Since B is bounded with respect to 7 and ¢,<7,
B is bounded with respect to t,. Now we have that

(B*By*"¢ | DIz BEIF™ (n=1,2,.),

and lim {|B|2"**=00. On the other hand, we have

lim ((B*B)*"¢ | §) < o0,
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since (B¥B)?" €B and B is bounded with respect to t,. This is a contradiction.
Hence, Bc.wr,.

LemMa 4.2. A #-algebra o is an EC*-algebra if and only if (o7 7) is a
GB*-algebra.

Proor. It follows from Lemma 4.1 that the normed x-algebra 7, with
operator-norm equals the normed #-algebra .o/[.e7,]. This implies Lemma 4.2.

Thus we have obtained the following

THEOREM 4.1. Let & be a %#-algebra on D with the identity operator I.
Then, the following conditions are equivalent:

(1) « is an EC*-algebra;

) («;t,)is a GB*-algebra;
(3) («;t7,) is a GB*-algebra;
4 (;12,) is a GB*-algebra;
(5) («;t)is a GB*-algebra;

(6) («;t,) is a GB*-algebra.
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