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§1. Introduction

In the previous paper [7] we defined a weakly (resp. strictly) unbounded
EW?*-algebra and obtained the following fact: If 9 is an EW#*-algebra, then there
exists a projection E in ™, n A}, such that A is a weakly unbounded EW*-algebra,
A, _g is a strictly unbounded EW*-algebra and U equals the product Ay x A,_,
of the EW*-algebras W, and A,_;. The primary purpose of this paper is to in-
vestigate linear functionals on a weakly unbounded EW*-algebra.

In § 3, we shall study the general theory of weakly unbounded EW?¥-algebras.
First, we define the notation of a weakly unbounded EW*-algebra 2 associated
with a family {2,},., of von Neumann algebras 9, and show that the definition
is equivalent to the definition of a weakly unbounded EW?¥-algebra defined in
[7]. Next, we define the locally convex topologies (; weak, o-weak, locally o-
weak, strong, o-strong, locally o-strong and locally uniform topologies) on A
and the commutants, bicommutants of . Furthermore, we shall investigate
the relation between the topologies and the commutants.

In §4, we shall study the dual space 2* (resp. 2,) of 2 with respect to the
locally uniform topology (resp. a—weak topology) Then we have that 2* (resp.

A*n A,) equals the direct sum Z A% (resp. Z (AU;),) of the dual space

AF (resp. (A,),) of the von Neumann algebra U, w1th respect to the uniform to-
pology (resp. o-weak topology), (Theorem 4.1).

In §5, we shall obtain the structure of invariant subspaces of A* n A*:
Every closed left (resp. right) invariant subspace V of U* n A, is of the form;

=(W* n UL HE, (resp. V=E (W* n A))
for some projection E, in U (Theorem 5.1).

In §6, we shall define normal and singular linear functionals on U and
obtain the following fact: Every element ¢ of U* is uniquely decomposed into
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the sun; ¢=¢,+ ¢,, where ¢, (resp. ¢,) is a normal (resp. singular) linear func-
tional on A (Theorem 6.1). Furthermore, we can characterize the singularity
and normality (Theorem 6.2, 6.3).

§2. Preliminaries

We give here only the basic definitions and facts needed. For a more com-
plete discussion of the basic properties of EW*-algebras the reader is referred to
[e, 71.

If S and T are linear operators on a Hilbert space 1) with domains 2(S) and
9(T) we say S is an extension of T, denoted by So T, if 2(S)> 2(T) and Sé=T¢
for all £e 2(T). If S is a closable operator we denote by S the smallest closed
extension of S. Let 2 be a set of closable operators on y. Then we set

A={5; SeU}.

If S is a linear operator with dense domain 2(S) we denote by S* the hermitian
adjoint of S. Let S, T be closed operators on y. If S+ T'is closable, then ST
is called the strong sum of S and T, and is denoted S+ T. The strong product is
likewise defined to be ST if it exists, and is denoted by S-T. The strong scalar
multiplication A e C (the field of complex numbers) and S is defined by A.S=1S
if 1x0,and A.S-=0if 1=0.

Let D be a pre-Hilbert space with an inner product ( | ) and y the com-
pletion of ®. We denote by #(D) the set of all linear operators on D. We
set

Z¥D)={4e £(D); A*Dc=D}.
Every Ae #%D) is a closable operator on 1 with domain D. Putting
A*=A*|D (the restriction of A* onto D),

the map A—A¥ is an involution on #*(®). It is easily showed that Z*#(D)is a
+-algebra of operators on D with the involution #. A #-subalgebra U of .Z#(D)
is called a #-algebra on ®. In particular, Z*(D) is called a maximal #-algebra
on D. Let A be a #-algebra on D. We set

Wy={AeWU; Ae B(y)},

where #(y) denotes the set of all bounded linear operators on n. If AxU,,
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then U is called a pure #-algebra on D. A #-algebra U is called symmetric if it
has an identity operator I and furthermore, (I +S*S)~! exists and lies in 2, for all
SeW. A symmetric #-algebra A on D is called an EC*-algebra (resp. EW?*-
algebra) on D over U, if A, is a C*-algebra (resp. W*-algebra).

A #-algebra U on D is said to be closed (resp. self-adjoint) if D= QmQ(Z)
(resp. D= f\ 2(4%)). Tt is easy to show that if U is a self-adjoint #-algebra on

D then it is closed By ([6] Proposition 2.6) if U is a closed symmetric ¥-algebra,
then it is self-adjoint. Let A be a #-algebra on D. We set

DA = pu.@(ﬁ—), Ax=Ax  (xeDA)),

={4; AcU}.

By ([6] Proposition 2.5) we see that U is a closed #-algebra on D(A). Further-
more, it is proved that if U is a symmetric #-algebra (resp. EC#*-algebra, EW*-
algebra) on D then U is a closed symmetric #-algebra (resp. closed EC*-algebra,
closed EW*-algebra) on D(N). U is called the closure of A.

§3. General theory of weakly unbounded operator algebras

In this section we shall define a weakly unbounded EW*-algebra and show that
the definition is equivalent to the definition of a weakly unbounded EW?#-algebra
in the previous paper [7].

Throughout this paper let A be an infinite set and {y,},., a family of Hilbert
spaces p,;. Let p(A)= (—D Y;, i.e., the direct sum of the Hllbert spaces p, and

E, the projection from I)(A) onto ;. Let D(A) be the set 2 y, of all elements
of y(A4) with only a finite number of non-zero coordmates Clearly D(A) is a
dense subspace of y(A).

Let A; be a x-algebra for every Ae A and XA, the Cartesian product of

Aed
{A;}ies- Under the operations: {a,}+{b,}={a,+b,}, a{a,}={ca,}, {a;}{b,}
={a,;b,} and {a,}*={a%} ({a,}, {b;} eXAl, aeC), XA,I is a =-algebra.

Let X, be a linear operator on 1y, w1th the domaln 2(X,) for every Ae A.
We define a linear operator (X;) on y(A) with the domain 2({X,)) as follows:

2((X,))={{x}end); x, e 2(X},) forall Aed
and 2. 1 Xx401% <0},
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(X)) xad={Xx}, {(xa}ea2((X))).
It is not difficult to prove the following lemma.

LeMMA 3.1. Suppose that X, is a densely-defined closable operator on

y, and X,;=U,|X,| is the polar decomposition of X, for every AcA. We set
=(X,;)and U=(U,). Then:

(1) X=(X;), X*=(X3);

(2) |X|=(X,|) and X=U|X| is the polar decomposition of X.

Let {U;};.4 be a family of bounded =-algebras 2, on y,. We denote by
IT U, the set {(4,); 4, U,} of closed operators on y(4). For each {4,}e
AeA

X U, and {£,} e D(A) putting
Aed

(A;.) {f;.} = {A;.éz} »
(A;) is a linear operator on D(A). We denote by [T U, the set {(4,); A,eA,}
) Aed

of linear operators on D(A).
Lemma 3.2, Let {U;};.4 be a family of bounded =-algebras 2, on y,.

Then:
(1) Foreach {4,} e XU, we have
ied

(A_,1)=(A,.), (4)*=(431);

2 H A, is a #-aigebra on D(A). In particular, if U, is a C*-algebra (resp.
W*-algebra) for every 1€ A then H U, is an EC*-algebra (resp. EW?*-algebra)
on D(A) over the direct sum @ xA, of the C*-algebras (resp. W*-algebras) U ,;

3 1'] Ay isa - algebra of closed operators on 1(A) under the operations of

strong sum strong product, adjoint and strong scalar multiplication. In par-
ticular, if A, is a C*-algebra (resp. W*-algebra) then JT U, is an EC*-algebra
Aed
(resp. EW*-algebra) over @ ¥, defined in [2].
ieA

DermniTioN 3.1, Let {%,;},.4 be a family of bounded =-algebras U, with
identity operators on Hilbert spaces y,. A #-algebra 9 on D(A) is called a weakly
unbounded #-algebra associated with {2,},_, if U is a #-subalgebra of H A,

and QI,,— (—B A,. In particular, if U, is a C*-algebra (resp. von Neumann algebra)
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for every e A, then U is called a weakly unbounded EC%#-algebra (resp. EW*-
algebra) associated with {,},_,.

ProrosiTION 3.1. If A is a weakly unbounded EW#*-algebra associated
with {2} ,.4, then U is a weakly unbounded EW#-algebra (defined in [7]), that is,
there exists a family {8,},.r of von Neumann algebras B, such that U is a *-sub-
algebra of the EW*-algebra I'[ B, and A= (—D B,. Conversely if A is a weakly

unbounded EW#-algebra, then there exists a famﬂy {¥U,};e4 of von Neumann

algebras U, on Hilbert spaces y; such that /D(A) is a weakly unbounded EW*-
algebra associated with {2}, ,.

Proor. Suppose that 2 is a weakly unbounded EW#*-algebra associated
with {WU;},.4. It is obvious that U is a x-subalgebra of the EW*-algebra [] U,.

ied

So, A is a weakly unbounded EW*-algebra.

Conversely suppose that % is a weakly unbounded EW?*-algebra, that is,
there exists a family {2,},., of von Neumann algebras 2, on Hilbert spaces 1),
such that  is a *-subalgebra H 9[,1 and QI,,— @ A,. For each AeN, 4=(4,)
eH A, and so Q(A)DD(A)— Z ;. We therefore see that A/D(A) is an
EW“-algebra on D(A) over @ QI,1

ied

By Proposition 3.1 it is seen that for the study of weakly unbounded EW?*-
algebras we have only to study weakly unbounded EW#-algebras associated with
{QI}.};.EA'

We shall introduce locally convex topologies on a weakly unbounded #-
algebra U associated with {,},,.

(1) Weak topology. The locally convex topology induced by seminorms:
Pe (AD=I(ALM|, & neDA),

is called the weak topology on 2.
(2) Strong topology. The locally convex topology induced by seminorms

PA)=]4%l,  {eD(4),

is called the strong topology on 2.
(3) o-weak topology. We set

'Doo(m)={éoc=(€h 629); fieg(/l)i l=1’ 2:---1
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3 JA4EJ2<w  forall AeU},
=1

n

Pea)=| 3 (&I Ca=CE1, Exver),

Heo =(’71, 7’29"') € boo(g[) .

Then P;,_ ,.( ) is a seminorm on . The locally convex topology induced by the
seminorms {Pg, 4.( ); € Moo € Do (W)} is called the o-weak topology on A.

(4) o-strong ‘topology. The locally convex topology induced by semi-
norms

Pe (=L 5 1451712, Eum=(C, Eavr) €Dul®)

is called the g-strong topology on 9.
(5) Locally o-weak topology. We set

0)e=xP =P, xP,..); xPey,, n=12,..,

¥ x®|2< oo},

n=1

D)= £ 0

Prs )= 3| 3 (AxPLO), A=(4,) e ¥,

xoo={xt(=g')}’ yoo={y<(xf')} emoo(A)

Then P, ;. ( ) is a seminorm on 2. The locally convex topology induced by the
seminorms {P,_y ( ); Xo, Yo € Do(A4)} is called the locally o-weak topology on
A,

(6) Locally o-strong topology. The locally convex topology induced by
seminorms

@© L
Po()= T [ 3 1451712, A=(4) e,

X ={x@} € Dp(4)

is called the locally o-strong topology on 2.
(7) Locally uniform topology. We set
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4lla=14:l, A=(4) e,

where ||4,|| means the operator norm of A,e%,. Then | ||, is a seminorm on
A. The locally convex topology induced by the seminorms {|| |;; A€ 4} is called
the locally uniform topology on 2.

It is easy to show that U is a locally convex #-algebra under the involution
# and weak (or, o-weak, locally o-weak, locally uniform) topology.

A =-algebra A is called a (complete) LMC *-algebra if there exists a family
{P;}:r of seminorms defined on A such that

(1) {Pi}i defines a Hausdorff (complete) locally convex topology on A;

(2) Py(xy)SP{(x)P(y) foreach x, ye A and iel;

(3) P(x*)=Pyx)foreach xeA and iel.

In particular, a complete LMC #-algebra A is called a locally C*-algebra if

(4) Pyx*x)=Py(x)? for each xe A and iel.
A seminorm satisfying (1)~ (4) is called a C*-seminorm on A.

LemmA 3.3. ([16] Prop. 10.6) A s-algebra A is a locally C*-algebra if and
only if A is a closed #-subalgebra of Cartesian product of C*-algebras.

LemMmA 3.4, If Ais a weakly unbounded #-algebra associated with {%,},.4,
then it is a LMC #-algebra under the involution # and locally uniform topology.
In particular, if U is a weakly unbounded EC*-algebra and it is closed under the
locally uniform topology then it is a locally C*-algebra.

For a more complete discussion of the basic properties of LMC x-algebras
the reader is referred to [1, 5, 12, 16].

We shall introduce commutants and bicommutants of a weakly unbounded
#-algebra A associated with {A,},., as follows:

A'={Ce B(y(4)); (CALIn)=(ACL|n)

forall AeW and ¢, nedD(A)},
Ne={Se L#HD(A)); SA=AS forall Ae},
Wee={4 e Z¥D(A); SA=AS forall SeU}.

ProposiTION 3.2. Let U be a weakly unbounded #-algebra associated with
{¥W;},c4- Then:
1) W= W), A'=0AY";
Aed Aed
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(2) We=TT (A, Uee= TT (A" .
ied Aea

DerFiniTION 3.2, W (resp. A”) is called the bounded commutant (resp.
bounded bicommutant) of W. WU (resp. A¢¢) is called the commutant (resp.
bicommutant) of .

ProrosiTioN 3.3. Let U be a weakly unbounded #-algebra associated with
{W,};cs. Then the following algebras (1) ~(8) equal:

(1) Uee

@ 1

(3) the weak closure [U]® of A in L*(D(A));

(4) the locally o-weak closure []*°® of U in L*(D(A));

(5) the o-weak closure [U]°® of W in L#(D(A));

(6) the strong closure []* of A in L*(D(A));

(7) the locally o-strong closure [2]%* of A in LHD(A));

(8) the o-strong closure [A]°s of A in L*H(D(A)).

Proor. The following inclusions are obvious:

[Q[]am c [Q[]lam — [Q[]w
U u U
[Q[]o‘s c [QI] low — [Ql]s

We have only to show Wecc[A]*s and [A]"<Aec. These are proved after
a slight modification of ([9] Theorem 3).

§4. Dual spaces of a weakly unbounded EC*-algebra

In this section we shall study the dual spaces of a weakly unbounded EC*-
algebra.
In the Cartesian product X X, of vector spaces X, the vector space spanned

by U X, (or, more premsely, by \J 1,(X,), where [, is the injection mapplng of
X, 1n the product) is called the d1rect sum of X,, and denoted by Z X, It
is the set of those elements of X X, with only a finite number of non-zero co-
ordinates. Ifeach X, isa locall§1 convex space, then the direct sum X= Z X,

can be given the topology by considering X as the inductive limit of the locally
convex spaces X, by [,. This topology is the finest locally convex space topology
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such that induce the original topology on each X,. This topology is called the
direct sum topology for X, and under it X is called the topological direct sum
of X,. Then the following facts are well known. The dual of the topological
direct sum Z X, is the product X X¥* of the duals (, where X% denotes the
dual space of the locally convex space X,). The dual of the topological product
X X, is the direct sum Z X¥ of the duals.

yel
In this section let ‘l[ be a-weakly unbounded EC*-algebra associated with

{W.}icqr Let AW* (resp. Uy, A.) denote the set of all locally uniformly (resp.
g-weakly, locally o-weakly) continuous linear functionals on U and A% (resp.
AL, AUL) the set of all positive elements of A* (resp. W, A.). For each le A
A% (resp. (A,)y) the set of all uniformly (resp. o-weakly) continuous linear func-
tionals on the C*-algebra 2;.

THEOREM 4.1.
D

() We= 3 AT,
AeA

D
(2) A= 2 QA
Suppose that U is a weakly unbounded EW*-algebra. Then:
D
() WnU=A.= 2 (W)

@
@4 WnUL=U:= AZF(QIA)L

€

&)
Proor. (1) Suppose that Y f,e > U¥ (4; finite subset- of A4). For each
Aed Aed
A=(4,) e,

(XS A)=2 fi(45).
2ed Aed

Hence it is easily showed that 3 f, e W*. Conversely suppose that fe A*. Then

there exist a finite subset 4 of l/iAand a positive number y such that
DIy 2 1415
for all AeA. Foreach e and 4, €U, we set
Li(A1)=(B,); (B,=4,;, and B,=0  for Axi,).

Then, since W,=@ A,, [, (4,,) € U. Thus, for each Ae 4 it is seen that I, is a
Aed
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map of U, into A. Suppose Ay& 4. For each 4, e U;,,
[/ GilAso DI =7 2 1 o(As)2=0.
That is, if Aéc 4 then f vanishes on [,(U;). We set
fi=foly
Then it is easily showed that f, e U} and f% AE fi. Thus, fe % A%,

Aed
D
(2); Suppose feUE. By (1), f= X f,ed AF for some finite number A
Aed Aed
of A. Foreach loe4 and A4, €A, we have
o= f (lzo(Azo)*lzo(Azo)) =f, ).O(A:IkOAlo) .
Hence, f,=0 for all Aie 4. The converse is obvious.
()
(3); We can prove A = > (A,), in the same way as (1). The inclusion
Aed

AWk n A, follows from the definitions of locally uniform, locally o-weak and
o-weak topologies. Suppose fe U*n AL Let A be the closure of the EW*-
algebra U, that is,

D=2,

—~ —_ ~

Ax=Ax, AeU, xeDA)),

N={4; AcU}.
For each 4 € A we set

J@D=f(4).
Then we can easily show fe Wi nA*. By ([6] Theorem 4.8) there exists an
element &, =(&,, &5n.r) of Do(3) such that &,=(EW} e DAY (A) (n=1, 2,...)
and f= § o, (; where w(4)=(AE|¢)). Since fe A*, there are a finite subset 4
n=1

of A and a positive number y such that

FISY Z 141

for all AeU. Then we have

f@= ¥ (ALE)=F T (A:EP1ED).
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We can now show that £(20)=0 for each Ao 4. In fact, suppose that £{9)x0
for some y& 4. Putting

A=(4,), (4,=0for all Aled and A4,=1 for all A& 4),
Ae® U,=U, and |f(A)|<yY ||4,]|=0. Hence, f(4)=0. On the other hand,
Aed Aed
we have
o<l 3 3 IEPI2=1(4).
W=1 Aéd-4

This is a contradiction. Therefore we get that ¢4 =0 for all A& 4. Hence,

f)= 5, T AP = 3 3 0.

By ([2]Ch.1, §4, Th. D), fi;:= i waP e(U)s.  Therefore, f=3 f,e
n=1 Aed

Z (A)%. Generally suppose fe A*nWA,. Let f=]f|U be the polar decom-
posmon of fel, ([6] Proposition 4.6). Then, . [fle¥qt, U=(U)e® Y,

ied
and |f|=fU* Furthermore, we have

FIDI= 17U DSy T U341
ST PA

for all AeA. Hence, |f|eUtnA*. By the above argument, |[fl=3 fie
Aed

@
2. (Ui Therefore, f= Zf;.UAG Z (U
ied

(4); This follows from the proof of (3).

(5}
We give the direct sum topology the dual space AU¥= > A% of a weakly
red
unbounded EC*-algebra U associated with {,},.,. Then the topological direct

(&) ()

sum W¥= > ¥ is complete and A* N W, = > (A,), is a closed subspace of
Aed ied

A*,

CoroLrLARY. If U is a weakly unbounded EW*-algebra associated with
{U,},c4 then the dual (U* n W,)* of the topological direct sum A* n A, equals
the Cartesian product X 2, of the C*-algebras U,.

E Aed
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§5. Invariant subspaces of the dual space
Let A be a weakly unbounded EC*-algebra associated with {2}, ,. For
Ael] ¥, and fe A*, we define actions of 4 on f by:
Aed

<X, Af>=f(XA),

<X, fA>=f(AX), Xe]I¥U,.
Aed

A subspace V of U* is called left (resp. right) invariant if AV<V (resp. VAc<V)
for all Ae . A both side invariant subspace is merely called invariant.

LemmA 5.1. Let A be a weakly unbounded EC*-algebra associated with
{Uj}sea- If Vis a left (resp. right) invariant subspace of *, then ([]A)V
Aed
<V (resp. V([TAH<V).
Aed

Proor. Suppose that A=(4,)e[IU, and ¢eV. Since VcU*=
Aed
&)
2 U%, there exists a finite subset 4 of A such that ¢= ¥ ¢, (¢, e UA¥). Then
Aed

Aed
we set

A=(B;) (B,=A,forall led and B,=0for all \e A—4).
Then we have that 4, e A, and
A¢=1§AA,1¢A=AA¢ .
Hence, Ap AV =V,

LeMMmaA 5.2. If Wis an EW*-algebra, then every o-weakly closed left (resp.
right) ideal 3 of U contains a unique projection E such that I=UE (resp. I=
EAN). If Jis a 2-sided ideal, then E belongs to the center A’ n A”.

ProoF. Suppose that I is a o-weakly closed left ideal of U. It is easily
showed that 3, is a o-weakly closed left ideal of the von Neumann algebra .
By ([2] Ch. 1, § 3, Cor. 3) there is a unique projection E in J, such that J,=
A,E. We shall show that I=UE. The inclusion AEc ST follows from EeJ,.
Conversely take an arbitrary element 4 of 3. Let A= U|A| be the polar decom-
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position and |4|= S AdE(2) the spectral resolution of |A|. Then, |4|=U%4¢e3J,
and so JA4|,: S ME()=|A|E(n)e S, Hence, |4|,=|A4|,E. Since |A|, converges
weakly to |4|, we have |A|=|A|E. Thus, 3=E.

Tueorem 5.1. Let A be a weakly unbounded EW#*-algebra associated
with {,},.,. Then:

(1) There exists a one-to-one correspondence; V<3 between the closed

left (resp. right) invariant subspaces V of 2* n 2, and the o-weakly closed right
(resp. left) ideals I of the EW#*-algebra J] U, determined by;
red

V=3 and J°=V,

where V© and 3° mean the polars of V and 3 in }“{ A, and in W* n A, respec-
ed
tively.
(2) Every closed left (resp. right) invariant subspace V of 2* n A, is of the
form;
V=(A*n ALE, (resp. V=E(U* n A,))

by some projection E, in 2.

(3) V is invariant if and only if E, is central.

Proor. (1); Suppose that J is a g-weakly closed right ideal of H A
By Lemma 5.1 there is a projection Ey in U with I=(1 — E,) (H aq,). We shall

show that 3°=(UA*nNWUL)E,. If ¢pe3I° and Ae]] U, then
ied

O0=<(I—EpAd, ¢p>=<A4, ¢(I—Ey)>.
Hence, ¢(I—E,)=0, i.e., p=¢E,. Thus, I0=(U*n AL)E,. Conversely sup-
pose e A* N WA,. Then,
<3, ¢E0> = <E03, d)> =0.

Hence, ¢pE,e 3%, and so (W*nAL)E,=3° Thus, I0=(U*nAE,. Putting
@

Eo=(EQ), (W* N UDE,= Y (W,))LE?. Therefore V: =(U* n A,)E, is a closed
ied

left invariant subspace of A* n A,.

Suppose that V is a closed left invariant subspace of A* n A,. Then we shall
show that 3: =V0 is a g-weakly closed right ideal of }‘[ A,. For each AT U,
ed

Aed
we have
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<34, V>=<3, AV>
=<3, V> (Lemma 5.1)
=0.
Therefore, 3(111;[1 A,)=T. That is, T is a right ideal oflle'll1 A, Let {4,} be a net

in 3 that converges o-weakly to 4e[] ;. Since V¥ n A, we have
Aed

0=<4, V> — <4, V>.

Hence, <4, V> =0, and so A€3J. Therefore J is g-weakly closed.

From the general theory of locally convex space, it follows that V90 is a closed
absolutely convex enveloping of V in U* N A,. Therefore, V0=V, Similarly,
J%=3. Hence, we can prove that V<3 is a one-to-one correspondence.

(2); Suppose that V is a closed left invariant subspace of * n9A,. By
(1), VO is a g-weakly closed right ideal of l]_!l Ay, and so VO=(I—E,) E]—A[ A)

for some projection E, in U (Lemma 5.2). Hence,

V=V%=(I-E) (L] 2,))°=(2* N A)E, -
(3); This is now almost obvious.

DerINITION 5.1, The projection E, in Theorem 5.1 is called the shpport
projection of V in 2.

Lemma 5.3. ([15] Theorem 7.3) If A is a C*-algebra, then A admits the
universal enveloping von Neumann algebra (A). Furthermore, there is a
unique isometry of the second dual space A** of A onto U(A) which is a homeo-
morphic with respect to o(A**, A*)-topology and the g-weak topology on
U(A).

By Lemma 5.3 we see that the second dual A** of a C*-algebra A is a von
Neumann algebra, and the dual space A* is the Banach space of all g-weakly
continuous linear functionals on A**,

Let 2 be a weakly unbounded EC*-algebra associated with {2,;},.,. Let
U(A;) be a universal enveloping von Neumann algebra of the C*-algebra U,
for each Ae 4. We set

QD =,11;£ A,
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U(A) is called a universal enveloping EW*-algebra of U. From Lemma 5.3,
the following fact is easily proved.

THEOREM 5.2. Let U be a weakly unbounded EC*-algebra associated with
{2,};c4. Then there is an isomorphism of the second dual W** of A onto W(A)
which is a homeomorphic with respect to o(U**, A*)-topology and the locally
g-weak topology on ().

COROLLARY 5.1. Let A be a weakly unbounded EC*-algebra associated with
{M,;};ca- Then:

(1) There exists a one-to-one correspondence; V<3 between the closed
left (resp. right) invariant subspaces V of U* and the g-weakly -closed right
(resp. left) ideals of U() determined by;

Vo=3 and 3=V,

where V° and 3° mean the polars of V and J in U(2) and in A* respectively.
(2) Every closed left (resp. right) invariant subspace V of 2U* is of the form;

V=A*E, (resp. V=E %)

for some projection E, in H(20).
(3) Visinvariant if and only if E, is central.

Proor. This follows from Theorem 5.1 and Theorem 5.2.

§6. Normal and singular functionals

In this section let U be a weakly unbounded EW#*-algebra associated with
{U,},.4 and W(A,) a universal enveloping von Neumann algebra of the C*-
algebra 2,. By Corollary 5.1 for each Ae A there exists a projection E{® in
W(2A,) N U(A,) such that (A, =UFEP. We set

E, =(ES.O)') .

Then it is easily showed that E, is a projection in U(2) such that E, e @ W(A,)
Aed
and QI* n 9«[*=QI*E0.

DeriNITION 6.1.  The functionals in 2* n 2, are called normal and U* n A,
itself is called the predual of 2. On the contrary, the functionals in U*(I —E,)
are called singular and U*(I — E,) is denoted by (U* n A,)*.
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THeoreM 6.1. (1) Every element ¢ of A* is uniquely decomposed into
the sum

O=utds; P W N Wy, P (U A)*.

¢, and ¢ are called the normal part and the singular part of ¢ respectively.
(2) Suppose that V is a closed right (resp. left) invariant subspace of A*.

Then,
VA@*n W) =VE, Vn(A*nA)=V(I—E,).
LEMMA 6.1.
1) WA= 3 (@A,

Aed

@ @)= P @
Aed

Proor. (1); This follows from Theorem 4.1
(2); This follows from

@
(N W)t =AW~ Eo)= 3, UHI—E)

& L
= > (W
Aed

THEOREM 6.2. Suppose that ¢ is a non-zero element of UA%*. Then the
following conditions are equivalent:

(1) ¢ is singular;

(2) There exists a finite subset 4 of A such that

= E.A Gu  dre(W)i (Aed);

(3) For each non-zero projection E in U there exists a non-zero projection
F in A such that E2F and <F, ¢> =0.

Proor. (1)<>(2); This follows from Lemma 6.1.
(2)=(3); Suppose that E: =(E,) is a non-zero projection in A. We set

4,={Aed; E,~0}.

If e 4, then ¢, e (N,), and E; 0. By ([15] Theorem 8.5) there exists a non-
zero projection G, in U, such that
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ElgGl and <G;., q’);.>=0.
We set
G, Aed,
}'=

E, Ji&4,.

Then it is easily showed that F: =(F,) is a non-zero projection in U such that
E=F and

<F,¢>=3 <F,, ¢,>=3 <G, ¢,>=0.
Aed Aedy
(3)=-(2); Since ¢ € A%, there is a finite subset 4 of A such that
¢= /EA ¢ @1 (U)E.
By the assumption (3) and ([15] Theorem 8.5), ¢, € (U ,)4 for all Le 4. Hence,
(2]
$e 2 (Ux=U*nAY"

THEOREM 6.3. Suppose that ¢ is a non-zero element of U*. Then the
following conditions are equivalent:

(1) ¢ is normal;

(2) There exists a finite subset 4 of A such that

¢=;.§1 ¢ P16 (Ua)ss
(3) For every orthogonal family {E("},, of projections in A,
(X ED)= 2 §ED).

Proor. This follows from Theorem 4.1 and ([15] Corollary 8.8).
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