Memoirs of the Faculty of Science, Kyushu University Ser. A, Vol. 31, No. 2, 1977

WEAKLY UNBOUNDED OPERATOR ALGEBRAS

By

Atsushi INOUE and Ken KURIYAMA (Received March 16, 1977)

§1. Introduction

In the previous paper [7] we defined a weakly (resp. strictly) unbounded EW^* -algebra and obtained the following fact: If \mathfrak{A} is an EW^* -algebra, then there exists a projection E in $\overline{\mathfrak{A}}_b \cap \overline{\mathfrak{A}}'_b$ such that \mathfrak{A}_E is a weakly unbounded EW^* -algebra, \mathfrak{A}_{I-E} is a strictly unbounded EW^* -algebra and \mathfrak{A} equals the product $\mathfrak{A}_E \times \mathfrak{A}_{I-E}$ of the EW^* -algebras \mathfrak{A}_E and \mathfrak{A}_{I-E} . The primary purpose of this paper is to investigate linear functionals on a weakly unbounded EW^* -algebra.

In §3, we shall study the general theory of weakly unbounded EW^* -algebras. First, we define the notation of a weakly unbounded EW^* -algebra \mathfrak{A} associated with a family $\{\mathfrak{A}_{\lambda}\}_{\lambda\in\Lambda}$ of von Neumann algebras \mathfrak{A}_{λ} and show that the definition is equivalent to the definition of a weakly unbounded EW^* -algebra defined in [7]. Next, we define the locally convex topologies (; weak, σ -weak, locally σ weak, strong, σ -strong, locally σ -strong and locally uniform topologies) on \mathfrak{A} and the commutants, bicommutants of \mathfrak{A} . Furthermore, we shall investigate the relation between the topologies and the commutants.

In §4, we shall study the dual space \mathfrak{A}^* (resp. \mathfrak{A}_*) of \mathfrak{A} with respect to the locally uniform topology (resp. σ -weak topology). Then we have that \mathfrak{A}^* (resp. \mathfrak{A}^*) equals the direct sum $\sum_{\lambda \in A}^{\oplus} \mathfrak{A}^*_{\lambda}$ (resp. $\sum_{\lambda \in A}^{\oplus} (\mathfrak{A}_{\lambda})_*$) of the dual space \mathfrak{A}^*_{λ} (resp. $(\mathfrak{A}_{\lambda})_*$) of the von Neumann algebra \mathfrak{A}_{λ} with respect to the uniform topology (resp. σ -weak topology), (Theorem 4.1).

In §5, we shall obtain the structure of invariant subspaces of $\mathfrak{A}^* \cap \mathfrak{A}^*$: Every closed left (resp. right) invariant subspace V of $\mathfrak{A}^* \cap \mathfrak{A}_*$ is of the form;

 $\mathbf{V} = (\mathfrak{A}^* \cap \mathfrak{A}_*) E_0 \qquad (\text{resp. } \mathbf{V} = E_0(\mathfrak{A}^* \cap \mathfrak{A}_*))$

for some projection E_0 in \mathfrak{A} (Theorem 5.1).

In §6, we shall define normal and singular linear functionals on \mathfrak{A} and obtain the following fact: Every element ϕ of \mathfrak{A}^* is uniquely decomposed into

the sun; $\phi = \phi_n + \phi_s$, where ϕ_n (resp. ϕ_s) is a normal (resp. singular) linear functional on \mathfrak{A} (Theorem 6.1). Furthermore, we can characterize the singularity and normality (Theorem 6.2, 6.3).

§2. Preliminaries

We give here only the basic definitions and facts needed. For a more complete discussion of the basic properties of EW^* -algebras the reader is referred to [6, 7].

If S and T are linear operators on a Hilbert space \mathfrak{y} with domains $\mathscr{D}(S)$ and $\mathscr{D}(T)$ we say S is an extension of T, denoted by $S \supset T$, if $\mathscr{D}(S) \supset \mathscr{D}(T)$ and $S\xi = T\xi$ for all $\xi \in \mathscr{D}(T)$. If S is a closable operator we denote by \overline{S} the smallest closed extension of S. Let \mathfrak{A} be a set of closable operators on \mathfrak{y} . Then we set

$$\overline{\mathfrak{A}} = \{ \overline{S}; S \in \mathfrak{A} \}$$

If S is a linear operator with dense domain $\mathscr{D}(S)$ we denote by S* the hermitian adjoint of S. Let S, T be closed operators on y. If S+T is closable, then $\overline{S+T}$ is called the strong sum of S and T, and is denoted S+T. The strong product is likewise defined to be \overline{ST} if it exists, and is denoted by $S \cdot T$. The strong scalar multiplication $\lambda \in \mathbb{C}$ (the field of complex numbers) and S is defined by $\lambda \cdot S = \lambda S$ if $\lambda \neq 0$, and $\lambda \cdot S \cdot = 0$ if $\lambda = 0$.

Let \mathfrak{D} be a pre-Hilbert space with an inner product (|) and \mathfrak{y} the completion of \mathfrak{D} . We denote by $\mathscr{L}(\mathfrak{D})$ the set of all linear operators on \mathfrak{D} . We set

$$\mathscr{L}^{\sharp}(\mathfrak{D}) = \{ A \in \mathscr{L}(\mathfrak{D}); A^{*}\mathfrak{D} \subset \mathfrak{D} \}.$$

Every $A \in \mathscr{L}^{*}(\mathfrak{D})$ is a closable operator on y with domain \mathfrak{D} . Putting

$$A^* = A^*/\mathfrak{D}$$
 (the restriction of A^* onto \mathfrak{D}),

the map $A \to A^{\sharp}$ is an involution on $\mathscr{L}^{\sharp}(\mathfrak{D})$. It is easily showed that $\mathscr{L}^{\sharp}(\mathfrak{D})$ is a *-algebra of operators on \mathfrak{D} with the involution \sharp . A \sharp -subalgebra \mathfrak{A} of $\mathscr{L}^{\sharp}(\mathfrak{D})$ is called a \sharp -algebra on \mathfrak{D} . In particular, $\mathscr{L}^{\sharp}(\mathfrak{D})$ is called a maximal \sharp -algebra on \mathfrak{D} . Let \mathfrak{A} be a \sharp -algebra on \mathfrak{D} . We set

$$\mathfrak{A}_{b} = \{ A \in \mathfrak{A} ; \overline{A} \in \mathscr{B}(\mathfrak{y}) \},\$$

where $\mathscr{B}(\mathfrak{y})$ denotes the set of all bounded linear operators on \mathfrak{y} . If $\mathfrak{A} \neq \mathfrak{A}_b$,

then \mathfrak{A} is called a pure #-algebra on \mathfrak{D} . A #-algebra \mathfrak{A} is called symmetric if it has an identity operator I and furthermore, $(I + S^*S)^{-1}$ exists and lies in \mathfrak{A}_b for all $S \in \mathfrak{A}$. A symmetric #-algebra \mathfrak{A} on \mathfrak{D} is called an EC^* -algebra (resp. EW^* algebra) on \mathfrak{D} over $\overline{\mathfrak{A}_h}$ if $\overline{\mathfrak{A}_h}$ is a C*-algebra (resp. W*-algebra).

A #-algebra \mathfrak{A} on \mathfrak{D} is said to be closed (resp. self-adjoint) if $\mathfrak{D} = \bigcap \mathscr{D}(\overline{A})$ (resp. $\mathfrak{D} = \bigcap_{A \in \mathfrak{A}} \mathscr{D}(A^*)$). It is easy to show that if \mathfrak{A} is a self-adjoint \sharp -algebra on \mathfrak{D} then it is closed. By ([6] Proposition 2.6) if \mathfrak{A} is a closed symmetric #-algebra, then it is self-adjoint. Let \mathfrak{A} be a #-algebra on \mathfrak{D} . We set

$$\begin{split} & \tilde{\mathfrak{D}}(\mathfrak{A}) = \bigcap_{A \in \mathfrak{A}} \mathscr{D}(\bar{A}), \ \tilde{A}x = \bar{A}x \qquad (x \in \tilde{\mathfrak{D}}(\mathfrak{A})), \\ & \tilde{\mathfrak{A}} = \{ \tilde{A}; \ A \in \mathfrak{A} \} \,. \end{split}$$

By ([6] Proposition 2.5) we see that \mathfrak{A} is a closed #-algebra on $\mathfrak{D}(\mathfrak{A})$. Furthermore, it is proved that if \mathfrak{A} is a symmetric #-algebra (resp. EC*-algebra, EW*algebra) on \mathfrak{D} then \mathfrak{A} is a closed symmetric #-algebra (resp. closed EC*-algebra, closed EW^* -algebra) on $\tilde{\mathfrak{D}}(\mathfrak{A})$. \mathfrak{A} is called the closure of \mathfrak{A} .

General theory of weakly unbounded operator algebras §3.

In this section we shall define a weakly unbounded EW^* -algebra and show that the definition is equivalent to the definition of a weakly unbounded EW^* -algebra in the previous paper [7].

Throughout this paper let A be an infinite set and $\{y_{\lambda}\}_{\lambda \in A}$ a family of Hilbert spaces η_{λ} . Let $\eta(\Lambda) = \bigoplus_{\substack{\lambda \in \Lambda \\ \lambda \in \Lambda}} \eta_{\lambda}$, i.e., the direct sum of the Hilbert spaces η_{λ} and E_{λ} the projection from $\eta(\Lambda)$ onto η_{λ} . Let $\mathfrak{D}(\Lambda)$ be the set $\sum_{\substack{\lambda \in \Lambda \\ \lambda \in \Lambda}} \eta_{\lambda}$ of all elements of $\mathfrak{y}(\Lambda)$ with only a finite number of non-zero coordinates. Clearly $\mathfrak{D}(\Lambda)$ is a dense subspace of $\eta(\Lambda)$.

Let A_{λ} be a *-algebra for every $\lambda \in \Lambda$ and XA_{λ} the Cartesian product of $\{A_{\lambda}\}_{\lambda \in \Lambda}$. Under the operations: $\{a_{\lambda}\} + \{b_{\lambda}\} = \{a_{\lambda} + b_{\lambda}\}, \ \alpha\{a_{\lambda}\} = \{\alpha a_{\lambda}\}, \ \{a_{\lambda}\} \{b_{\lambda}\} = \{a_{\lambda}b_{\lambda}\}$ and $\{a_{\lambda}\}^{*} = \{a_{\lambda}^{*}\} (\{a_{\lambda}\}, \{b_{\lambda}\} \in XA_{\lambda}, \alpha \in \mathbb{C}), \ XA_{\lambda}$ is a *-algebra. Let X_{λ} be a linear operator on y_{λ} with the domain $\mathscr{D}(X_{\lambda})$ for every $\lambda \in \Lambda$.

We define a linear operator (X_{λ}) on $\mathfrak{y}(A)$ with the domain $\mathscr{D}((X_{\lambda}))$ as follows:

$$\mathcal{D}((X_{\lambda})) = \{ \{x_{\lambda}\} \in \mathfrak{y}(\Lambda); x_{\lambda} \in \mathcal{D}(X_{\lambda}) \text{ for all } \lambda \in \Lambda$$

and $\sum_{\lambda \in \Lambda} \|X_{\lambda}x_{\lambda}\|^{2} < \infty \},$

$$(X_{\lambda}) \{ x_{\lambda} \} = \{ X_{\lambda} x_{\lambda} \}, \quad \{ x_{\lambda} \} \in \mathscr{D}((X_{\lambda})).$$

It is not difficult to prove the following lemma.

LEMMA 3.1. Suppose that X_{λ} is a densely-defined closable operator on \mathfrak{N}_{λ} and $\overline{X}_{\lambda} = U_{\lambda} |\overline{X}_{\lambda}|$ is the polar decomposition of \overline{X}_{λ} for every $\lambda \in \Lambda$. We set $X = (X_{\lambda})$ and $U = (U_{\lambda})$. Then:

- (1) $\overline{X} = (\overline{X_{\lambda}}), X^* = (X_{\lambda}^*);$
- (2) $|\overline{X}| = (|\overline{X}_{\lambda}|)$ and $\overline{X} = U|\overline{X}|$ is the polar decomposition of \overline{X} .

Let $\{\mathfrak{A}_{\lambda}\}_{\lambda \in \Lambda}$ be a family of bounded *-algebras \mathfrak{A}_{λ} on \mathfrak{y}_{λ} . We denote by $\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$ the set $\{(A_{\lambda}); A_{\lambda} \in \mathfrak{A}_{\lambda}\}$ of closed operators on $\mathfrak{y}(\Lambda)$. For each $\{A_{\lambda}\} \in X \mathfrak{A}_{\lambda}$ and $\{\xi_{\lambda}\} \in \mathfrak{D}(\Lambda)$ putting

$$(A_{\lambda})\{\xi_{\lambda}\}=\{A_{\lambda}\xi_{\lambda}\},\$$

 (A_{λ}) is a linear operator on $\mathfrak{D}(\Lambda)$. We denote by $\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$ the set $\{(A_{\lambda}); A_{\lambda} \in \mathfrak{A}_{\lambda}\}$ of linear operators on $\mathfrak{D}(\Lambda)$.

LEMMA 3.2. Let $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$ be a family of bounded *-algebras \mathfrak{A}_{λ} on \mathfrak{y}_{λ} . Then:

(1) For each $\{A_{\lambda}\} \in X \mathfrak{A}_{\lambda}$ we have

$$(\overline{A_{\lambda}}) = (A_{\lambda}), \quad (A_{\lambda})^* = (A_{\lambda}^*);$$

(2) Π_{λ∈Λ} 𝔄_λ is a #-algebra on 𝔅(Λ). In particular, if 𝔄_λ is a C*-algebra (resp. W*-algebra) for every λ∈Λ then Π_{λ∈Λ} 𝔄_λ is an EC*-algebra (resp. EW*-algebra) on 𝔅(Λ) over the direct sum ⊕ 𝔅_{λ∈Λ} 𝔅_{λ∈Λ} difference (resp. W*-algebra) 𝔅_{λ∈Λ}
(3) Π_{λ∈Λ} 𝔅_λ is a *-algebra of closed operators on 𝔅(Λ) under the operations of

(3) $\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$ is a *-algebra of closed operators on $\mathfrak{y}(\Lambda)$ under the operations of strong sum, strong product, adjoint and strong scalar multiplication. In particular, if \mathfrak{A}_{λ} is a C*-algebra (resp. W*-algebra) then $\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$ is an EC*-algebra (resp. EW*-algebra) over $\bigoplus_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$ defined in [2].

DEFINITION 3.1. Let $\{\mathfrak{A}_{\lambda}\}_{\lambda \in \Lambda}$ be a family of bounded *-algebras \mathfrak{A}_{λ} with identity operators on Hilbert spaces \mathfrak{y}_{λ} . A *-algebra \mathfrak{A} on $\mathfrak{D}(\Lambda)$ is called a weakly unbounded *-algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in \Lambda}$ if \mathfrak{A} is a *-subalgebra of $\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$ and $\overline{\mathfrak{A}_{b}} = \bigoplus_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$. In particular, if \mathfrak{A}_{λ} is a C*-algebra (resp. von Neumann algebra)

for every $\lambda \in \Lambda$, then \mathfrak{A} is called a weakly unbounded *EC*^{*}-algebra (resp. *EW*^{*}-algebra) associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in \Lambda}$.

PROPOSITION 3.1. If \mathfrak{A} is a weakly unbounded EW^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda\in\Lambda}$, then \mathfrak{A} is a weakly unbounded EW^* -algebra (defined in [7]), that is, there exists a family $\{\mathfrak{B}_{\gamma}\}_{\gamma\in\Gamma}$ of von Neumann algebras \mathfrak{B}_{γ} such that $\overline{\mathfrak{A}}$ is a *-subalgebra of the EW^* -algebra $\prod_{\gamma\in\Gamma} \mathfrak{B}_{\gamma}$ and $\overline{\mathfrak{A}}_b = \bigoplus_{\gamma\in\Gamma} \mathfrak{B}_{\gamma}$. Conversely if \mathfrak{A} is a weakly unbounded EW^* -algebra, then there exists a family $\{\mathfrak{A}_{\lambda}\}_{\lambda\in\Lambda}$ of von Neumann algebras \mathfrak{A}_{λ} on Hilbert spaces \mathfrak{y}_{λ} such that $\overline{\mathfrak{A}}/\mathfrak{D}(\Lambda)$ is a weakly unbounded EW^* algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda\in\Lambda}$.

PROOF. Suppose that \mathfrak{A} is a weakly unbounded EW^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in \Lambda}$. It is obvious that $\overline{\mathfrak{A}}$ is a *-subalgebra of the EW^* -algebra $\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$. So, \mathfrak{A} is a weakly unbounded EW^* -algebra.

Conversely suppose that \mathfrak{A} is a weakly unbounded EW^* -algebra, that is, there exists a family $\{\mathfrak{A}_{\lambda}\}_{\lambda\in\Lambda}$ of von Neumann algebras \mathfrak{A}_{λ} on Hilbert spaces \mathfrak{y}_{λ} such that $\overline{\mathfrak{A}}$ is a *-subalgebra $\prod_{\lambda\in\Lambda}\mathfrak{A}_{\lambda}$ and $\overline{\mathfrak{A}}_{b}=\bigoplus\mathfrak{A}_{\lambda}$. For each $A \in \mathfrak{A}, \overline{A}=(A_{\lambda})$ $\in \prod_{\lambda\in\Lambda}\mathfrak{A}_{\lambda}$, and so $\mathscr{D}(\overline{A})\supset \mathfrak{D}(A)=\sum_{\lambda\in\Lambda}\mathfrak{Y}_{\lambda}$. We therefore see that $\overline{\mathfrak{A}}/\mathfrak{D}(A)$ is an EW^* -algebra on $\mathfrak{D}(A)$ over $\bigoplus_{\lambda\in\Lambda}\mathfrak{A}_{\lambda}$.

By Proposition 3.1 it is seen that for the study of weakly unbounded EW^* -algebras we have only to study weakly unbounded EW^* -algebras associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$.

We shall introduce locally convex topologies on a weakly unbounded \sharp -algebra \mathfrak{A} associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$.

(1) Weak topology. The locally convex topology induced by seminorms:

$$P_{\xi,\eta}(A) = |(A\xi|\eta)|, \quad \xi, \eta \in \mathfrak{D}(A),$$

is called the weak topology on \mathfrak{A} .

(2) Strong topology. The locally convex topology induced by seminorms

$$P_{\xi}(A) = \|A\xi\|, \qquad \xi \in \mathfrak{D}(A),$$

is called the strong topology on \mathfrak{A} .

(3) σ -weak topology. We set

$$\mathfrak{D}_{\infty}(\mathfrak{A}) = \{\xi_{\infty} = (\xi_1, \, \xi_2, \ldots); \, \xi_i \in \mathfrak{D}(\Lambda), \qquad i = 1, \, 2, \ldots,$$

$$\sum_{n=1}^{\infty} \|A\xi_n\|^2 < \infty \quad \text{for all} \quad A \in \mathfrak{A} \},$$

$$P_{\xi_{\infty},\eta_{\infty}}(A) = |\sum_{n=1}^{\infty} (A\xi_n |\eta_n)|, \ \xi_{\infty} = (\xi_1, \ \xi_2, \dots),$$

$$\eta_{\infty} = (\eta_1, \ \eta_2, \dots) \in \mathfrak{D}_{\infty}(\mathfrak{A}).$$

Then $P_{\xi_{\infty},\eta_{\infty}}(\cdot)$ is a seminorm on \mathfrak{A} . The locally convex topology induced by the seminorms $\{P_{\xi_{\infty},\eta_{\infty}}(\cdot); \xi_{\infty}, \eta_{\infty} \in \mathfrak{D}_{\infty}(\mathfrak{A})\}$ is called the σ -weak topology on \mathfrak{A} .

(4) σ -strong topology. The locally convex topology induced by seminorms

$$P_{\xi_{\infty}}(A) = \left[\sum_{n=1}^{\infty} \|A\xi_{n}\|^{2}\right]^{\frac{1}{2}}, \, \xi_{\infty} = (\xi_{1}, \, \xi_{2}, \dots) \in \mathfrak{D}_{\infty}(\mathfrak{A})$$

is called the σ -strong topology on \mathfrak{A} .

(5) Locally σ -weak topology. We set

$$(\mathfrak{y}_{\lambda})_{\infty} = \{x_{\infty}^{(\lambda)} = (x_{1}^{(\lambda)}, x_{2}^{(\lambda)}, \ldots); x_{n}^{(\lambda)} \in \mathfrak{y}_{\lambda}, \qquad n = 1, 2, \ldots,$$
$$\sum_{n=1}^{\infty} \|x_{n}^{(\lambda)}\|^{2} < \infty\},$$
$$\mathfrak{D}_{\infty}(A) = \sum_{\lambda \in A} (\mathfrak{y}_{\lambda})_{\infty},$$
$$P_{x_{\infty}, y_{\infty}}(A) = \sum_{\lambda \in A} |\sum_{n=1}^{\infty} (A_{\lambda} x_{n}^{(\lambda)}|_{y_{n}})|, A = (A_{\lambda}) \in \mathfrak{A},$$
$$x_{\infty} = \{x_{\infty}^{(\lambda)}\}, y_{\infty} = \{y_{\infty}^{(\lambda)}\} \in \mathfrak{D}_{\infty}(A).$$

Then $P_{x_{\infty},y_{\infty}}()$ is a seminorm on \mathfrak{A} . The locally convex topology induced by the seminorms $\{P_{x_{\infty},y_{\infty}}(); x_{\infty}, y_{\infty} \in \mathfrak{D}_{\infty}(\Lambda)\}$ is called the locally σ -weak topology on \mathfrak{A} .

(6) Locally σ -strong topology. The locally convex topology induced by seminorms

$$P_{\mathbf{x}_{\infty}}(A) = \sum_{\lambda \in A} \left[\sum_{n=1}^{\infty} \|A_{\lambda} \mathbf{x}_{n}^{(\lambda)}\|^{2} \right]^{\frac{1}{2}}, A = (A_{\lambda}) \in \mathfrak{A},$$
$$\mathbf{x}_{\infty} = \{\mathbf{x}_{\infty}^{(\lambda)}\} \in \mathfrak{D}_{\infty}(A)$$

is called the locally σ -strong topology on \mathfrak{A} .

(7) Locally uniform topology. We set

$$||A||_{\lambda} = ||A_{\lambda}||, A = (A_{\lambda}) \in \mathfrak{A},$$

where $||A_{\lambda}||$ means the operator norm of $A_{\lambda} \in \mathfrak{A}_{\lambda}$. Then $|| ||_{\lambda}$ is a seminorm on \mathfrak{A} . The locally convex topology induced by the seminorms $\{|| ||_{\lambda}; \lambda \in \Lambda\}$ is called the locally uniform topology on \mathfrak{A} .

It is easy to show that \mathfrak{A} is a locally convex *-algebra under the involution \sharp and weak (or, σ -weak, locally σ -weak, locally uniform) topology.

A *-algebra A is called a (complete) LMC *-algebra if there exists a family $\{P_i\}_{i\in I}$ of seminorms defined on A such that

(1) $\{P_i\}_{i \in I}$ defines a Hausdorff (complete) locally convex topology on A;

(2) $P_i(xy) \leq P_i(x)P_i(y)$ for each x, $y \in \mathbf{A}$ and $i \in I$;

(3) $P_i(x^*) = P_i(x)$ for each $x \in \mathbf{A}$ and $i \in I$.

In particular, a complete LMC *-algebra A is called a locally C*-algebra if (4) $P_i(x^*x) = P_i(x)^2$ for each $x \in A$ and $i \in I$.

A seminorm satisfying $(1) \sim (4)$ is called a C*-seminorm on A.

LEMMA 3.3. ([16] Prop. 10.6) A *-algebra A is a locally C*-algebra if and only if A is a closed *-subalgebra of Cartesian product of C*-algebras.

LEMMA 3.4. If \mathfrak{A} is a weakly unbounded #-algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda\in\Lambda}$, then it is a LMC *-algebra under the involution # and locally uniform topology. In particular, if \mathfrak{A} is a weakly unbounded EC^* -algebra and it is closed under the locally uniform topology then it is a locally C^* -algebra.

For a more complete discussion of the basic properties of LMC *-algebras the reader is referred to [1, 5, 12, 16].

We shall introduce commutants and bicommutants of a weakly unbounded #-algebra \mathfrak{A} associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$ as follows:

$$\mathfrak{A}' = \{ C \in \mathscr{B}(\mathfrak{y}(\Lambda)); (CA\xi|\eta) = (AC\xi|\eta) \}$$

for all $A \in \mathfrak{A}$ and $\xi, \eta \in \mathfrak{D}(A)$,

 $\mathfrak{A}^{c} = \{ S \in \mathscr{L}^{*}(\mathfrak{D}(A)); SA = AS \quad \text{for all} \quad A \in \mathfrak{A} \},$ $\mathfrak{A}^{cc} = \{ A \in \mathscr{L}^{*}(\mathfrak{D}(A)); SA = AS \quad \text{for all} \quad S \in \mathfrak{A}^{c} \}.$

PROPOSITION 3.2. Let \mathfrak{A} be a weakly unbounded #-algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda\in\Lambda}$. Then:

(1) $\mathfrak{A}' = \bigoplus_{\lambda \in \Lambda} (\mathfrak{A}_{\lambda})', \ \mathfrak{A}'' = \bigoplus_{\lambda \in \Lambda} (\mathfrak{A}_{\lambda})'';$

(2)
$$\mathfrak{A}^{c} = \prod_{\lambda \in \Lambda} (\mathfrak{A}_{\lambda})', \ \mathfrak{A}^{cc} = \prod_{\lambda \in \Lambda} (\mathfrak{A}_{\lambda})''$$

DEFINITION 3.2. \mathfrak{A}' (resp. \mathfrak{A}'') is called the bounded commutant (resp. bounded bicommutant) of \mathfrak{A} . \mathfrak{A}^c (resp. \mathfrak{A}^{cc}) is called the commutant (resp. bicommutant) of \mathfrak{A} .

PROPOSITION 3.3. Let \mathfrak{A} be a weakly unbounded #-algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$. Then the following algebras (1)~(8) equal:

- (1) $\mathfrak{A}^{cc};$
- (2) $\prod (\mathfrak{A}_{\lambda})'';$
- (3) the weak closure $[\mathfrak{A}]^{\varpi}$ of \mathfrak{A} in $\mathscr{L}^{*}(\mathfrak{D}(\Lambda))$;
- (4) the locally σ -weak closure $[\mathfrak{A}]^{l\sigma w}$ of \mathfrak{A} in $\mathscr{L}^{*}(\mathfrak{D}(\Lambda))$;
- (5) the σ -weak closure $[\mathfrak{A}]^{\sigma \varpi}$ of \mathfrak{A} in $\mathscr{L}^{\sharp}(\mathfrak{D}(\Lambda))$;
- (6) the strong closure $[\mathfrak{A}]^s$ of \mathfrak{A} in $\mathscr{L}^*(\mathfrak{D}(\Lambda))$;
- (7) the locally σ -strong closure $[\mathfrak{A}]^{l\sigma s}$ of \mathfrak{A} in $\mathscr{L}^{\sharp}(\mathfrak{D}(\Lambda))$;
- (8) the σ -strong closure $[\mathfrak{A}]^{\sigma s}$ of \mathfrak{A} in $\mathscr{L}^{*}(\mathfrak{D}(\Lambda))$.

PROOF. The following inclusions are obvious:

$$\begin{bmatrix} \mathfrak{A} \end{bmatrix}_{\mathfrak{o}\mathfrak{B}} \subset \begin{bmatrix} \mathfrak{A} \end{bmatrix}_{\mathfrak{l}\mathfrak{a}\mathfrak{B}} \subset \begin{bmatrix} \mathfrak{A} \end{bmatrix}_{\mathfrak{a}}$$
$$\bigcap \qquad \bigcap \qquad \bigcap \qquad \bigcap$$
$$\begin{bmatrix} \mathfrak{A} \end{bmatrix}_{\mathfrak{o}\mathfrak{B}} \subset \begin{bmatrix} \mathfrak{A} \end{bmatrix}_{\mathfrak{A}}$$

We have only to show $\mathfrak{A}^{cc} \subset [\mathfrak{A}]^{\sigma s}$ and $[\mathfrak{A}]^{\varpi} \subset \mathfrak{A}^{cc}$. These are proved after a slight modification of ([9] Theorem 3).

§4. Dual spaces of a weakly unbounded EC*-algebra

In this section we shall study the dual spaces of a weakly unbounded EC^* -algebra.

In the Cartesian product $\underset{\gamma \in \Gamma}{X} \mathbf{X}_{r}$ of vector spaces \mathbf{X}_{γ} , the vector space spanned by $\bigcup \mathbf{X}_{\gamma}$ (or, more precisely, by $\bigcup l_{\gamma}(\mathbf{X}_{\gamma})$, where l_{γ} is the injection mapping of \mathbf{X}_{γ} in the product) is called the direct sum of \mathbf{X}_{γ} , and denoted by $\sum_{\gamma \in \Gamma} \mathbf{X}_{\gamma}$. It is the set of those elements of $X\mathbf{X}_{\gamma}$ with only a finite number of non-zero coordinates. If each \mathbf{X}_{γ} is a locally convex space, then the direct sum $\mathbf{X} = \sum_{\gamma \in \Gamma} \mathbf{X}_{\gamma}$ can be given the topology by considering \mathbf{X} as the inductive limit of the locally convex spaces \mathbf{X}_{γ} by l_{γ} . This topology is the finest locally convex space topology

such that induce the original topology on each \mathbf{X}_{γ} . This topology is called the direct sum topology for \mathbf{X} , and under it \mathbf{X} is called the topological direct sum of \mathbf{X}_{γ} . Then the following facts are well known. The dual of the topological direct sum $\sum_{\gamma=\Gamma}^{\oplus} \mathbf{X}_{\gamma}$ is the product $\underset{\gamma\in\Gamma}{X} \mathbf{X}_{\gamma}^{*}$ of the duals (, where \mathbf{X}_{γ}^{*} denotes the dual space of the locally convex space \mathbf{X}_{γ}). The dual of the topological product $\underset{\gamma\in\Gamma}{X} \mathbf{X}_{\gamma}^{*}$ is the direct sum $\sum_{\gamma\in\Gamma}^{\oplus} \mathbf{X}_{\gamma}^{*}$ of the duals.

In this section let $\mathfrak{A}^{\gamma \in I}$ be a weakly unbounded EC^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$. Let \mathfrak{A}^* (resp. $\mathfrak{A}_*, \mathfrak{A}_{\sim}$) denote the set of all locally uniformly (resp. σ -weakly, locally σ -weakly) continuous linear functionals on \mathfrak{A} and \mathfrak{A}^*_+ (resp. $\mathfrak{A}^*_*, \mathfrak{A}^+_{\sim}$) the set of all positive elements of \mathfrak{A}^* (resp. $\mathfrak{A}_*, \mathfrak{A}_{\sim}$). For each $\lambda \in \Lambda$ \mathfrak{A}^*_{λ} (resp. $(\mathfrak{A}_{\lambda})_*$) the set of all uniformly (resp. σ -weakly) continuous linear functionals on the C^* -algebra \mathfrak{A}_{λ} .

THEOREM 4.1.

(1)
$$\mathfrak{A}^* = \sum_{\lambda \in A}^{\bigoplus} \mathfrak{A}^*_{\lambda};$$

(2) $\mathfrak{A}^*_{+} = \sum_{\lambda \in A}^{\bigoplus} (\mathfrak{A}_{\lambda})^*_{+}.$

Suppose that \mathfrak{A} is a weakly unbounded EW^* -algebra. Then:

(3) $\mathfrak{A}^* \cap \mathfrak{A}_* = \mathfrak{A}_* = \sum_{\lambda \in A}^{\oplus} (\mathfrak{A}_{\lambda})_*;$ (4) $\mathfrak{A}^* \cap \mathfrak{A}^+_* = \mathfrak{A}^+_* = \sum_{\lambda \in F}^{\oplus} (\mathfrak{A}_{\lambda})_*.$

PROOF. (1) Suppose that $\sum_{\lambda \in \Delta} f_{\lambda} \in \sum_{\lambda \in \Lambda}^{\oplus} \mathfrak{A}_{\lambda}^{*}(\Delta; \text{ finite subset of } \Lambda)$. For each $A = (A_{\lambda}) \in \mathfrak{A}$,

$$\left(\sum_{\lambda \in \Delta} f_{\lambda}\right)(A) = \sum_{\lambda \in \Delta} f_{\lambda}(A_{\lambda}).$$

Hence it is easily showed that $\sum_{\lambda \in \mathcal{A}} f_{\lambda} \in \mathfrak{A}^*$. Conversely suppose that $f \in \mathfrak{A}^*$. Then there exist a finite subset Δ of Λ and a positive number γ such that

$$|f(A)| \leq \gamma \sum_{\lambda \in \Delta} \|A\|_{\lambda}$$

for all $A \in \mathfrak{A}$. For each $\lambda_0 \in A$ and $A_{\lambda_0} \in \mathfrak{A}_{\lambda_0}$ we set

$$l_{\lambda_0}(A_{\lambda_0}) = (B_{\lambda}); (B_{\lambda_0} = A_{\lambda_0} \text{ and } B_{\lambda} = 0 \text{ for } \lambda \neq \lambda_0).$$

Then, since $\overline{\mathfrak{U}_b} = \bigoplus_{\lambda \in \Lambda} \mathfrak{U}_{\lambda}$, $l_{\lambda_0}(A_{\lambda_0}) \in \mathfrak{U}$. Thus, for each $\lambda \in \Lambda$ it is seen that l_{λ} is a

map of \mathfrak{A}_{λ} into \mathfrak{A} . Suppose $\lambda_0 \in \Delta$. For each $A_{\lambda_0} \in \mathfrak{A}_{\lambda_0}$,

$$|f(l_{\lambda_0}(A_{\lambda_0}))| \leq \gamma \sum_{\lambda \in \Delta} \|l_{\lambda_0}(A_{\lambda_0})\|_{\lambda} = 0.$$

That is, if $\lambda \in \Delta$ then f vanishes on $l_{\lambda}(\mathfrak{A}_{\lambda})$. We set

$$f_{\lambda} = f \circ l_{\lambda}.$$

Then it is easily showed that $f_{\lambda} \in \mathfrak{A}^+_{\lambda}$ and $f = \sum_{\lambda \in \Delta} f_{\lambda}$. Thus, $f \in \sum_{\lambda \in A}^{\bigoplus} \mathfrak{A}^*_{\lambda}$.

(2); Suppose $f \in \mathfrak{A}_{+}^{*}$. By (1), $f = \sum_{\lambda \in \Delta} f_{\lambda} \in \sum_{\lambda \in \Lambda}^{\oplus} \mathfrak{A}_{\lambda}^{*}$ for some finite number Δ of Λ . For each $\lambda_{0} \in \Delta$ and $A_{\lambda_{0}} \in \mathfrak{A}_{\lambda_{0}}$ we have

$$0 \leq f(l_{\lambda_0}(A_{\lambda_0})^* l_{\lambda_0}(A_{\lambda_0})) = f_{\lambda_0}(A_{\lambda_0}^* A_{\lambda_0}).$$

Hence, $f_{\lambda} \ge 0$ for all $\lambda \in \Delta$. The converse is obvious.

(3); We can prove $\mathfrak{A}_{\sim} = \sum_{\lambda \in \Lambda}^{\oplus} (\mathfrak{A}_{\lambda})_{*}$ in the same way as (1). The inclusion $\mathfrak{A}_{\sim} \subset \mathfrak{A}^{*} \cap \mathfrak{A}_{*}$ follows from the definitions of locally uniform, locally σ -weak and σ -weak topologies. Suppose $f \in \mathfrak{A}^{*} \cap \mathfrak{A}_{*}^{+}$. Let $\widetilde{\mathfrak{A}}$ be the closure of the EW^{*} -algebra \mathfrak{A} , that is,

$$\begin{aligned} \widetilde{\mathfrak{D}}(\widetilde{\Lambda})(\mathfrak{A}) &= \bigcap_{A \in \mathfrak{A}} \mathscr{D}(\overline{A}), \\ \widetilde{A}x &= \overline{A}x, \quad A \in \mathfrak{A}, \quad x \in \widetilde{\mathfrak{D}}(\widetilde{\Lambda})(\mathfrak{A}), \\ \widetilde{\mathfrak{A}} &= \{\widetilde{A}; A \in \mathfrak{A}\}. \end{aligned}$$

For each $A \in \mathfrak{A}$ we set

 $\tilde{f}(\tilde{A}) = f(A)$.

Then we can easily show $\tilde{f} \in \widetilde{\mathfrak{A}}_*^+ \cap \widetilde{\mathfrak{A}}^*$. By ([6] Theorem 4.8) there exists an element $\xi_{\infty} = (\xi_1, \xi_2, ...)$ of $\mathfrak{D}_{\infty}(\widetilde{\mathfrak{A}})$ such that $\xi_n = \{\xi_n^{(\lambda)}\} \in \widetilde{\mathfrak{D}(A)}(\mathfrak{A})$ (n=1, 2, ...) and $\tilde{f} = \sum_{n=1}^{\infty} \omega_{\xi_n}$ (, where $\omega_{\xi}(A) = (A\xi|\xi)$). Since $f \in \mathfrak{A}^*$, there are a finite subset Δ of Λ and a positive number γ such that

$$|f(A)| \leq \gamma \sum_{\lambda \in \Delta} ||A||_{\lambda}$$

for all $A \in \mathfrak{A}$. Then we have

$$f(A) = \sum_{n=1}^{\infty} (\widetilde{A}\xi_n | \xi_n) = \sum_{n=1}^{\infty} \sum_{\lambda \in \Lambda} (A_\lambda \xi_n^{(\lambda)} | \xi_n^{(\lambda)}).$$

We can now show that $\xi_n^{(\lambda_0)} = 0$ for each $\lambda_0 \in \Delta$. In fact, suppose that $\xi_n^{(\lambda_0)} \neq 0$ for some $\lambda_0 \in \Delta$. Putting

$$A = (A_{\lambda}), (A_{\lambda} = 0 \text{ for all } \lambda \in \Delta \text{ and } A_{\lambda} = I \text{ for all } \lambda \in \Delta),$$

 $A \in \bigoplus_{\lambda \in A} \mathfrak{A}_{\lambda} = \mathfrak{A}_{b}$ and $|f(A)| \leq \gamma \sum_{\lambda \in A} ||A_{\lambda}|| = 0$. Hence, f(A) = 0. On the other hand, we have

$$0 < \|\xi_n^{(\lambda_0)}\|^2 \leq \sum_{n=1}^{\infty} \sum_{\lambda \in A - \Delta} \|\xi_n^{(\lambda)}\|^2 = f(A).$$

This is a contradiction. Therefore we get that $\xi_n^{(\lambda)} = 0$ for all $\lambda \in \Delta$. Hence,

$$f(A) = \sum_{n=1}^{\infty} \sum_{\lambda \in \mathcal{A}} (A_{\lambda} \xi_{n}^{(\lambda)} | \xi_{n}^{(\lambda)}) = \sum_{\lambda \in \mathcal{A}}^{\infty} \sum_{n=1}^{\infty} \omega_{\xi_{n}}^{(\lambda)} (A_{\lambda})$$

By ([2] Ch. I, §4, Th. I), $f_{\lambda} := \sum_{n=1}^{\infty} \omega_{\xi_n}^{(\lambda)} \in (\mathfrak{A}_{\lambda})_*^+$. Therefore, $f = \sum_{\lambda \in \Delta} f_{\lambda} \in \sum_{\lambda \in \Delta}^{\oplus} (\mathfrak{A}_{\lambda})_*^+$. Generally suppose $f \in \mathfrak{A}^* \cap \mathfrak{A}_*$. Let $\tilde{f} = |\tilde{f}|U$ be the polar decomposition of $\tilde{f} \in \tilde{\mathfrak{A}}_*$ ([6] Proposition 4.6). Then, $|\tilde{f}| \in \tilde{\mathfrak{A}}_*^+$, $U = (U_{\lambda}) \in \bigoplus_{\lambda \in \Delta} \mathfrak{A}_{\lambda}$ and $|\tilde{f}| = \tilde{f}U^*$. Furthermore, we have

$$||\tilde{f}|(\tilde{A})| = |\tilde{f}(U^*\tilde{A})| \le \gamma \sum_{\lambda \in \mathcal{A}} ||U^*_{\lambda}A_{\lambda}||$$
$$\le \gamma ||\sum_{\lambda \in \mathcal{A}} ||A_{\lambda}||$$

for all $A \in \mathfrak{A}$. Hence, $|\tilde{f}| \in \tilde{\mathfrak{A}}_*^+ \cap \tilde{\mathfrak{A}}^*$. By the above argument, $|\tilde{f}| = \sum_{\lambda \in A} f_{\lambda} \in \sum_{\lambda \in A}^{\oplus} (\mathfrak{A}_{\lambda})_*$. (4); This follows from the proof of (3).

We give the direct sum topology the dual space $\mathfrak{A}^* = \sum_{\lambda \in A}^{\oplus} \mathfrak{A}^*_{\lambda}$ of a weakly unbounded EC^* -algebra \mathfrak{A} associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$. Then the topological direct sum $\mathfrak{A}^* = \sum_{\lambda \in A}^{\oplus} \mathfrak{A}^*_{\lambda}$ is complete and $\mathfrak{A}^* \cap \mathfrak{A}_* = \sum_{\lambda \in A}^{\oplus} (\mathfrak{A}_{\lambda})_*$ is a closed subspace of \mathfrak{A}^* .

COROLLARY. If \mathfrak{A} is a weakly unbounded EW^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda\in A}$, then the dual $(\mathfrak{A}^*\cap\mathfrak{A}_*)^*$ of the topological direct sum $\mathfrak{A}^*\cap\mathfrak{A}_*$ equals the Cartesian product $X\mathfrak{A}_{\lambda}$ of the C*-algebras \mathfrak{A}_{λ} .

§5. Invariant subspaces of the dual space

Let \mathfrak{A} be a weakly unbounded EC^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$. For $A \in \prod_{\lambda \in A} \mathfrak{A}_{\lambda}$ and $f \in \mathfrak{A}^*$, we define actions of A on f by:

$$\langle X, Af \rangle = f(XA),$$

 $\langle X, fA \rangle = f(AX), \quad X \in \prod_{\lambda \in A} \mathfrak{A}_{\lambda}.$

A subspace V of \mathfrak{A}^* is called left (resp. right) invariant if $AV \subset V$ (resp. $VA \subset V$) for all $A \in \mathfrak{A}$. A both side invariant subspace is merely called invariant.

LEMMA 5.1. Let \mathfrak{A} be a weakly unbounded EC^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$. If V is a left (resp. right) invariant subspace of \mathfrak{A}^* , then $(\prod_{\lambda \in A} \mathfrak{A}_{\lambda})V \subset V$ (resp. $V(\prod_{\lambda \in A} \mathfrak{A}_{\lambda}) \subset V$).

PROOF. Suppose that $A = (A_{\lambda}) \in \prod_{\lambda \in A} \mathfrak{A}_{\lambda}$ and $\phi \in \mathbf{V}$. Since $\mathbf{V} \subset \mathfrak{A}^* = \bigoplus_{\lambda \in A} \mathfrak{A}_{\lambda}^*$, there exists a finite subset Δ of Λ such that $\phi = \sum_{\lambda \in \Delta} \phi_{\lambda}$ ($\phi_{\lambda} \in \mathfrak{A}^*$). Then we set

$$A_{\lambda} = (B_{\lambda})$$
 $(B_{\lambda} = A_{\lambda} \text{ for all } \lambda \in \Delta \text{ and } B_{\lambda} = 0 \text{ for all } \lambda \in \Lambda - \Delta$

Then we have that $A_A \in \mathfrak{A}_b$ and

$$A\phi = \sum_{\lambda \in \Delta} A_{\lambda}\phi_{\lambda} = A_{\Delta}\phi \; .$$

Hence, $A\phi \in \mathfrak{A}\mathbf{V} = \mathbf{V}$.

LEMMA 5.2. If \mathfrak{A} is an EW^* -algebra, then every σ -weakly closed left (resp. right) ideal \mathfrak{I} of \mathfrak{A} contains a unique projection E such that $\mathfrak{I}=\mathfrak{A}E$ (resp. $\mathfrak{I}=E\mathfrak{A}$). If \mathfrak{I} is a 2-sided ideal, then E belongs to the center $\mathfrak{A}' \cap \mathfrak{A}''$.

PROOF. Suppose that \Im is a σ -weakly closed left ideal of \mathfrak{A} . It is easily showed that $\overline{\mathfrak{I}_b}$ is a σ -weakly closed left ideal of the von Neumann algebra $\overline{\mathfrak{A}_b}$. By ([2] Ch. I, § 3, Cor. 3) there is a unique projection E in \Im_b such that $\overline{\mathfrak{I}_b} = \overline{\mathfrak{A}_b}\overline{E}$. We shall show that $\Im = \mathfrak{A}E$. The inclusion $\mathfrak{A}E \subset \Im$ follows from $E \in \Im_b$. Conversely take an arbitrary element A of \Im . Let A = U|A| be the polar decom-

position and $|\bar{A}| = \int_{0}^{\infty} \lambda dE(\lambda)$ the spectral resolution of $|\bar{A}|$. Then, $|A| = U^*A \in \Im$, and so $|\bar{A}|_n : \int_{0}^{n} \lambda dE(\lambda) = |\bar{A}|E(n) \in \overline{\Im_b}$. Hence, $|\bar{A}|_n = |\bar{A}|_n \bar{E}$. Since $|A|_n$ converges weakly to |A|, we have |A| = |A|E. Thus, $\Im = \mathfrak{A}E$.

THEOREM 5.1. Let \mathfrak{A} be a weakly unbounded EW^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in A}$. Then:

(1) There exists a one-to-one correspondence; $\mathbf{V} \Leftrightarrow \mathfrak{I}$ between the closed left (resp. right) invariant subspaces \mathbf{V} of $\mathfrak{A}^* \cap \mathfrak{A}_*$ and the σ -weakly closed right (resp. left) ideals \mathfrak{I} of the EW^* -algebra $\prod_{i \in A} \mathfrak{A}_i$ determined by;

$$\mathbf{V}^0 = \mathfrak{I}$$
 and $\mathfrak{I}^0 = \mathbf{V}$,

where V^0 and \mathfrak{I}^0 mean the polars of V and \mathfrak{I} in $\prod_{\lambda \in A} \mathfrak{A}_{\lambda}$ and in $\mathfrak{A}^* \cap \mathfrak{A}_*$ respectively.

(2) Every closed left (resp. right) invariant subspace V of $\mathfrak{A}^* \cap \mathfrak{A}_*$ is of the form;

 $\mathbf{V} = (\mathfrak{A}^* \cap \mathfrak{A}_*) E_0 \qquad (\text{resp. } \mathbf{V} = E_0(\mathfrak{A}^* \cap \mathfrak{A}_*))$

by some projection E_0 in \mathfrak{A} .

(3) V is invariant if and only if E_0 is central.

PROOF. (1); Suppose that \mathfrak{I} is a σ -weakly closed right ideal of $\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$. By Lemma 5.1 there is a projection E_0 in \mathfrak{A} with $\mathfrak{I} = (I - E_0) (\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda})$. We shall show that $\mathfrak{I}^0 = (\mathfrak{A}^* \cap \mathfrak{A}_*)E_0$. If $\phi \in \mathfrak{I}^0$ and $A \in \prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$, then

$$0 = \langle (I - E_0)A, \phi \rangle = \langle A, \phi(I - E_0) \rangle.$$

Hence, $\phi(I-E_0)=0$, i.e., $\phi=\phi E_0$. Thus, $\mathfrak{I}^0 \subset (\mathfrak{A}^* \cap \mathfrak{A}_*)E_0$. Conversely suppose $\phi \in \mathfrak{A}^* \cap \mathfrak{A}_*$. Then,

$$<\mathfrak{I}, \phi E_0 > = < E_0\mathfrak{I}, \phi > = 0.$$

Hence, $\phi E_0 \in \mathfrak{I}^0$, and so $(\mathfrak{A}^* \cap \mathfrak{A}_*)E_0 \subset \mathfrak{I}^0$. Thus, $\mathfrak{I}^0 = (\mathfrak{A}^* \cap \mathfrak{A}_*)E_0$. Putting $E_0 = (E_\lambda^{(0)})$, $(\mathfrak{A}^* \cap \mathfrak{A}_*)E_0 = \sum_{\lambda \in A}^{\oplus} (\mathfrak{A}_\lambda)_*E_\lambda^{(0)}$. Therefore $\mathbf{V} := (\mathfrak{A}^* \cap \mathfrak{A}_*)E_0$ is a closed left invariant subspace of $\mathfrak{A}^* \cap \mathfrak{A}_*$.

Suppose that V is a closed left invariant subspace of $\mathfrak{A}^* \cap \mathfrak{A}_*$. Then we shall show that $\mathfrak{I}: = \mathbf{V}^0$ is a σ -weakly closed right ideal of $\prod_{\lambda \in A} \mathfrak{A}_{\lambda}$. For each $A \in \prod_{\lambda \in A} \mathfrak{A}_{\lambda}$ we have

$$\langle \Im A, \mathbf{V} \rangle = \langle \Im, A\mathbf{V} \rangle$$

= $\langle \Im, \mathbf{V} \rangle$ (Lemma 5.1)
= 0.

Therefore, $\mathfrak{I}(\prod_{\lambda \in A} \mathfrak{A}_{\lambda}) \subset \mathfrak{I}$. That is, \mathfrak{I} is a right ideal of $\prod_{\lambda \in A} \mathfrak{A}_{\lambda}$. Let $\{A_{\alpha}\}$ be a net in \mathfrak{I} that converges σ -weakly to $A \in \prod_{\lambda \in A} \mathfrak{A}_{\lambda}$. Since $\mathbf{V} \subset \mathfrak{A}^* \cap \mathfrak{A}_*$, we have

$$0 = \langle A_{\alpha}, \mathbf{V} \rangle \longrightarrow \langle A, \mathbf{V} \rangle$$
.

Hence, $\langle A, V \rangle = 0$, and so $A \in \mathfrak{I}$. Therefore \mathfrak{I} is σ -weakly closed.

From the general theory of locally convex space, it follows that V^{00} is a closed absolutely convex enveloping of V in $\mathfrak{A}^* \cap \mathfrak{A}_*$. Therefore, $V^{00} = V$. Similarly, $\mathfrak{I}^{00} = \mathfrak{I}$. Hence, we can prove that $V \Leftrightarrow \mathfrak{I}$ is a one-to-one correspondence.

(2); Suppose that V is a closed left invariant subspace of $\mathfrak{A}^* \cap \mathfrak{A}_*$. By (1), V⁰ is a σ -weakly closed right ideal of $\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda}$, and so $V^0 = (I - E_0) (\prod_{\lambda \in \Lambda} \mathfrak{A}_{\lambda})$ for some projection E_0 in \mathfrak{A} (Lemma 5.2). Hence,

$$\mathbf{V} = \mathbf{V}^{00} = ((I - E_0) (\prod_{\lambda \in A} \mathfrak{A}_{\lambda}))^0 = (\mathfrak{A}^* \cap \mathfrak{A}_*) E_0.$$

(3); This is now almost obvious.

DEFINITION 5.1. The projection E_0 in Theorem 5.1 is called the support projection of V in \mathfrak{A} .

LEMMA 5.3. ([15] Theorem 7.3) If A is a C*-algebra, then A admits the universal enveloping von Neumann algebra $\mathfrak{U}(\mathbf{A})$. Furthermore, there is a unique isometry of the second dual space A** of A onto $\mathfrak{U}(\mathbf{A})$ which is a homeomorphic with respect to $\sigma(\mathbf{A}^{**}, \mathbf{A}^{*})$ -topology and the σ -weak topology on $\mathfrak{U}(\mathbf{A})$.

By Lemma 5.3 we see that the second dual A^{**} of a C^* -algebra A is a von Neumann algebra, and the dual space A^* is the Banach space of all σ -weakly continuous linear functionals on A^{**} .

Let \mathfrak{A} be a weakly unbounded EC^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in \Lambda}$. Let $\mathfrak{U}(\mathfrak{A}_{\lambda})$ be a universal enveloping von Neumann algebra of the C^* -algebra \mathfrak{A}_{λ} for each $\lambda \in \Lambda$. We set

$$\mathfrak{U}(\mathfrak{A}) = \prod_{\lambda \in \Lambda} \mathfrak{U}(\mathfrak{A}_{\lambda}).$$

 $\mathfrak{U}(\mathfrak{A})$ is called a universal enveloping EW^* -algebra of \mathfrak{A} . From Lemma 5.3, the following fact is easily proved.

THEOREM 5.2. Let \mathfrak{A} be a weakly unbounded EC^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda\in A}$. Then there is an isomorphism of the second dual \mathfrak{A}^{**} of \mathfrak{A} onto $\mathfrak{U}(\mathfrak{A})$ which is a homeomorphic with respect to $\sigma(\mathfrak{A}^{**}, \mathfrak{A}^*)$ -topology and the locally σ -weak topology on $\mathfrak{U}(\mathfrak{A})$.

COROLLARY 5.1. Let \mathfrak{A} be a weakly unbounded EC^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in \mathcal{A}}$. Then:

(1) There exists a one-to-one correspondence; $V \Leftrightarrow \Im$ between the closed left (resp. right) invariant subspaces V of \mathfrak{A}^* and the σ -weakly closed right (resp. left) ideals of $\mathfrak{U}(\mathfrak{A})$ determined by;

$$\mathbf{V}^0 = \mathfrak{I}$$
 and $\mathfrak{I}^0 = \mathbf{V}$,

where V^0 and \mathfrak{I}^0 mean the polars of V and \mathfrak{I} in $\mathfrak{U}(\mathfrak{A})$ and in \mathfrak{A}^* respectively.

(2) Every closed left (resp. right) invariant subspace V of \mathfrak{A}^* is of the form;

$$\mathbf{V} = \mathfrak{A}^* E_0 \qquad (\text{resp. } \mathbf{V} = E_0 \mathfrak{A}^*)$$

for some projection E_0 in $\mathfrak{U}(\mathfrak{A})$.

(3) V is invariant if and only if E_0 is central.

PROOF. This follows from Theorem 5.1 and Theorem 5.2.

§6. Normal and singular functionals

In this section let \mathfrak{A} be a weakly unbounded EW^* -algebra associated with $\{\mathfrak{A}_{\lambda}\}_{\lambda \in \Lambda}$ and $\mathfrak{U}(\mathfrak{A}_{\lambda})$ a universal enveloping von Neumann algebra of the C^* -algebra \mathfrak{A}_{λ} . By Corollary 5.1 for each $\lambda \in \Lambda$ there exists a projection $E_{\lambda}^{(0)}$ in $\mathfrak{U}(\mathfrak{A}_{\lambda}) \cap \mathfrak{U}(\mathfrak{A}_{\lambda})'$ such that $(\mathfrak{A}_{\lambda})_* = \mathfrak{A}_{\lambda}^* E_{\lambda}^{(0)}$. We set

$$E_0 = (E_{\lambda}^{(0)}).$$

Then it is easily showed that E_0 is a projection in $\mathfrak{U}(\mathfrak{A})$ such that $\overline{E_0} \in \bigoplus_{\lambda \in A} \mathfrak{U}(\mathfrak{A}_{\lambda})'$ and $\mathfrak{A}^* \cap \mathfrak{A}_* = \mathfrak{A}^* E_0$.

DEFINITION 6.1. The functionals in $\mathfrak{A}^* \cap \mathfrak{A}_*$ are called normal and $\mathfrak{A}^* \cap \mathfrak{A}_*$ itself is called the predual of \mathfrak{A} . On the contrary, the functionals in $\mathfrak{A}^*(I-E_0)$ are called singular and $\mathfrak{A}^*(I-E_0)$ is denoted by $(\mathfrak{A}^* \cap \mathfrak{A}_*)^{\perp}$. THEOREM 6.1. (1) Every element ϕ of \mathfrak{A}^* is uniquely decomposed into the sum

$$\phi = \phi_n + \phi_s; \ \phi_n \in \mathfrak{A}^* \cap \mathfrak{A}_*, \ \phi_s \in (\mathfrak{A}^* \cap \mathfrak{A}_*)^{\perp}$$

 ϕ_n and ϕ_s are called the normal part and the singular part of ϕ respectively.

(2) Suppose that V is a closed right (resp. left) invariant subspace of \mathfrak{A}^* . Then,

$$\mathbf{V} \cap (\mathfrak{A}^* \cap \mathfrak{A}_*) = \mathbf{V} E_0, \quad \mathbf{V} \cap (\mathfrak{A}^* \cap \mathfrak{A}_*)^{\perp} = \mathbf{V} (I - E_0).$$

Lемма 6.1.

(1) $\mathfrak{A}^* \cap \mathfrak{A}_* = \sum_{\lambda \in \Lambda}^{\oplus} (\mathfrak{A}_{\lambda})_*.$ (2) $(\mathfrak{A}^* \cap \mathfrak{A}_*)^{\perp} = \sum_{\lambda \in \Lambda}^{\oplus} (\mathfrak{A}_{\lambda})_*^{\perp}.$

PROOF. (1); This follows from Theorem 4.1 (2); This follows from

$$(\mathfrak{A}^* \cap \mathfrak{A}_*)^{\perp} = \mathfrak{A}^*(I - E_0) = \sum_{\lambda \in A}^{\bigoplus} \mathfrak{A}^*_{\lambda}(I - E_{\lambda}^{(0)})$$
$$= \sum_{\lambda \in A}^{\bigoplus} (\mathfrak{A}_{\lambda})^{\perp}_{*}.$$

THEOREM 6.2. Suppose that ϕ is a non-zero element of \mathfrak{A}_{+}^{*} . Then the following conditions are equivalent:

(1) ϕ is singular;

(2) There exists a finite subset Δ of Λ such that

$$\phi = \sum_{\lambda \in \varDelta} \phi_{\lambda}, \quad \phi_{\lambda} \in (\mathfrak{A}_{\lambda})^{\perp}_{*} \ (\lambda \in \varDelta);$$

(3) For each non-zero projection E in \mathfrak{A} there exists a non-zero projection F in \mathfrak{A} such that $E \ge F$ and $\langle F, \phi \rangle = 0$.

PROOF. (1) \Leftrightarrow (2); This follows from Lemma 6.1. (2) \Rightarrow (3); Suppose that $E:=(E_{\lambda})$ is a non-zero projection in \mathfrak{A} . We set

$$\Delta_1 = \{ \lambda \in \Delta ; E_\lambda \neq 0 \}$$

If $\lambda \in \Delta_1$, then $\phi_{\lambda} \in (\mathfrak{A}_{\lambda})_*$ and $E_{\lambda} \neq 0$. By ([15] Theorem 8.5) there exists a non-zero projection G_{λ} in \mathfrak{A}_{λ} such that

Weakly unbounded operator algebras

$$E_{\lambda} \ge G_{\lambda}$$
 and $\langle G_{\lambda}, \phi_{\lambda} \rangle = 0$.

We set

$$F_{\lambda} = \begin{cases} G_{\lambda}, & \lambda \in \Delta_1 \\ \\ E_{\lambda}, & \lambda \in \Delta_1 \end{cases}.$$

Then it is easily showed that $F:=(F_{\lambda})$ is a non-zero projection in \mathfrak{A} such that $E \ge F$ and

$$\langle F, \phi \rangle = \sum_{\lambda \in \Delta} \langle F_{\lambda}, \phi_{\lambda} \rangle = \sum_{\lambda \in \Delta_1} \langle G_{\lambda}, \phi_{\lambda} \rangle = 0.$$

(3) \Rightarrow (2); Since $\phi \in \mathfrak{A}_{+}^{*}$, there is a finite subset Δ of Λ such that

$$\phi = \sum_{\lambda \in \Delta} \phi_{\lambda}, \quad \phi_{\lambda} \in (\mathfrak{A}_{\lambda})^{*}_{+}.$$

By the assumption (3) and ([15] Theorem 8.5), $\phi_{\lambda} \in (\mathfrak{A}_{\lambda})^{\perp}_{*}$ for all $\lambda \in \Delta$. Hence, $\phi \in \sum_{\lambda \in \Lambda}^{\oplus} (\mathfrak{A}_{\lambda})^{\perp}_{*} = (\mathfrak{A}^{*} \cap \mathfrak{A}_{*})^{\perp}$.

THEOREM 6.3. Suppose that ϕ is a non-zero element of \mathfrak{A}^* . Then the following conditions are equivalent:

- (1) ϕ is normal;
- (2) There exists a finite subset Δ of Λ such that

$$\phi = \sum_{\lambda \in \Delta} \phi_{\lambda}, \quad \phi_{\lambda} \in (\mathfrak{A}_{\lambda})_{*};$$

(3) For every orthogonal family $\{E^{(i)}\}_{i\in I}$ of projections in \mathfrak{A} ,

$$\phi(\sum_{i\in I} E^{(i)}) = \sum_{i\in I} \phi(E^{(i)}).$$

PROOF. This follows from Theorem 4.1 and ([15] Corollary 8.8).

References

- [1] R. M. BROOKS, On locally m-convex *-algebras, Pacific J. Math., 23 (1967), 5-23.
- [2] J. DIXMIER, Les algebres d'operateurs dans l'espace hilbertian, Gausthier-Villars, Paris, 2é edition (1969).
- [3] P. G. DIXON, Unbounded operator algebras, Proc. London Math. Soc., (3) 23 (1971), 53-69.
- [4] N. DUNFORD and J. SCHWARTZ, Linear operators, Vol. II, New York; Interscience Pub. (1963).

- [5] A. INOUE, Locally C*-algebras, Mem. Fac. Sci. Kyushu Univ., 25 (2) (1971), 197-235.
- [6] A. INOUE, On a class of unbounded operator algebras, Pacific J. Math., 65 (1976), 77-95.
- [7] A. INOUE, On a class of unbounded operator algebras IV, J. Math. Anal. Appl., (to appear).
- [8] A. INOUE, Unbounded representations of symmetric *-algebras, J. Math. Soc. Japan, 29 (1977), (to appear).
- [9] A. INOUE, A commutant of an unbounded operator algebra, (to appear).
- [10] J. P. JURZAK, Simple facts about algebras of unbounded operators, J. Functional Anal., 21 (1976), 469–482.
- [11] G. LASSNER, Topological algebras of operators, Reports on Math. Phys., 3 (1972), 279-293.
- [12] E. A. MICHAEL, Locally multiplicatively convex topological algebras, Mem. Amer. Soc., 11 (1952).
- [13] R. T. POWERS, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21 (1971), 85-124.
- [14] A. P. ROBERTSON and W. ROBERTSON, Topological vector spaces, Cambridge, 1966.
- [15] M. TAKESAKI, The theory of operator algebras.
- [16] W. ZELAZKO, Metric generalization of Banach algebras, Dissertations Math. 47 (1965).