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gl. Introduction

   In the previous paper [7] we defined a weakly (resp. strictly) unbounded
Erv#-algebra and obtained the following fact: If ut is an EPV#-algebra, then there

exists a projection E in et, n ptS such that wrE is a weakly unbounded EPV#-algebra,

Qti-E is a strictly unbounded EW#-algebra and 9.t equals the product utEÅ~ Qti-E

of the EW'-algebras or. and 9J,-E. The primary purpose of this paper is to in-

vestigate linear functionals on a weakly unbounded EPV#-algebra.

   In g3, we shall study the general theory of weakly unbounded Erv"-algebras.

First, we define the notation of a weakly unbounded EW#-algebra Q( associated

with a family {utz}z.A of von Neumann algebras utz and show that the definition

js equivalent to the definition of a weakly unbounded EPV"-algebra defined in

[7]. Next, we define the locally convex topologies (; weak, ff-weak, locally a-

weak, strong, a-strong, locally c-strong and locally uniform topologies) on ut

and the commutants, bicommutants of ut. Furthermore, we shall investigate
the relation between the topologies and the commutants.

   In g4, we shall study the dual space Qt* (resp. ut*) of Qt with respect to the

locally uniform topology (resp. a-weak topology). Then we have that E}I" (resp.

                            eeut*nQ(*) equals the direct sum 2 9tz" (resp. Z(utz)*) of the dual space
                           aEA AEAutz* (resp. (9.tz).) of the von Neumann algebra uta with respect to the uniform to-

pology (resp. a-weak topology), (Theorem 4.1).

   In g5, we shall obtain the structure of invariant subspaces of or*n9J*:
Every closed left (resp. right) invariant subspace V of ut"n wr* is of the form;

             V =(ut* n M.)Eo (resp. V=Eo(ut" n ut,))

for some projection Eo in ut (Theorem 5.1).

   In g6, we shall define normal and singular linear functionals on ut and
obtain the following fact: Every element ip of ut* is uniquely decomposed into
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the sun; ip =di.+ip,, where ip. (resp. ip,) is a normal (resp. singular) linear func-

tional on 9J (Theorem 6.1). Furthermore, we can characterize the singularity

and normality (Theorem 6.2, 6.3).

    g2. Preliminaries

    We give here only the basic definitions and facts needed. For a more com-
plete discussion of the basic properties of EMi#-algebras the reader is referred to

[6, 7].

    If S and Tare linear operators on a Hilbert space D with domains 9(S) and
e(T) we say S is an extension of T, denoted by SD T, if9(S)D9(T) and S4 : T4

for all 4ea(T). If S is a closable operator we denote by S the smallest closed

extension of S. Let ut be a set of closable operators on t). Then we set

                          et-{S-; Se or} .

If S is a linear operator with dense domain 9(S) we denote by S" the hermitian

adjoint ofS. Let S, Tbe closed operators on i). IfS+Tis closable, then S+T
is called the strong sum of S and T, and is denoted S+ T. The strong product is

likewise defined to be STif it exists, and is denoted by S•T. The strong scalar

multiplication ZeC (the field of complex numbers) and S is defined by Z•S=AS

if ZIO, and ),•S•=O if2=O.
   Let S be a pre-Hilbert space with an inner product (I) and D the com-
pletion of S. We denote by Y(S) the set of all linear operators on D. We
set

                    Y"(D) == {A e .S2e(S) ; A*Dc D} .

Every Ae :2e"( D) is a closable operator on i) with domain S. Putting

                A#=A"/D (the restriction of A" onto D),

the map A.A# is an involution on Y#(D). It is easily showed that .9?#(S) is a

*-algebra of operators on S with the involution #. A #-subalgebra ut of .E?#(D)

is called a #-algebra on Åí. In particular, Y"(S) is called a maximal #-algebra

on D. Let ut be a #-algebra on D. We set

                       utb == {A E wr ; A E va(g)} ,

where es(g) denotes the set of all bounded linear operators on D. If or \utb,



Weakly unbounded operator algebras 269

then eq is called a pure #-algebra on D. A #-algebra ut is called symmetric if it

has an identity operator I and furthermore, (I+S#S)-' exists and lies in orb for all

SEut. A symmetric #-algebra ut on D is called an EC#-algebra (resp. EPIi#-
algebra) on D over utb if SUb is a C"-algebra (resp. VV*-algebra).

   A #-algebra ut on S is said to be closed (resp. self-adjoint) if D= A 9(A)
                                                          AEor
(resp. D= A 9(A")). It is easy to show that if ut is a self-adjoint #-algebra on
        Aeat
D then it is closed. By ([6] Proposition 2.6) if Ql is a closed symmetric #-algebra,

then it is self-adjoint. Let ut bea#-algebra on !). We set

               S(ut)= A 9(A-), A"Vx == Ax (x eS(ut)),
                     Aeor
               or .. {AN; Ae ut} •

By ([6] Proposition 2.5) we see that or is a closed #-algebra on S(ut). Further-

more, it is proved that if ut is a symmetric #-algebra (resp. EC"-algebra, EPV#-
algebra) on S then or is a closed symmetric #-algebra (resp. closed EC"-algebra,

closed EW"-algebra) on S(or). or is called the closure of ut.

    g3. General theory of weakly unbounded• operator algebras

   In this section we shall define a weakly unbounded EVV#-algebra and show that

the definition is equivalent to the definition of a weakly unbounded EMZ#-algebra

in the previous paper [7].

   Throughout this paper let A be an 'infinite set and {i)x}a.A a family of Hilbert

spaces Da. Let i)(A)= e ga, i.e., the direct sum of the Hilbert spaces ga and

                   aEA eE2 the projection from g(A) onto i)z. Let S(A) be the set Z Dz of all elements
                                               2eAof g(A) with only a finite number of non-zero coordinates. Clearly D(A) is a
dense subspace of i)(A).

   Let Az be a *-algebra for every AEA and XAz the Cartesian product of
                                       zEn{Aa}z.A. Under the operations: {az}+{ba}={az+bz}, ct{az} ={ctaA}, {az}{ba}

= {azbz} and {az}*={az*} ({az}, {bz} eXAz, ct eC), XAz is a *-algebra.
                               xEit zeA   Let Xa be a linear operator on pz with the domain 9(Xz) for every 2eA.
We define a linear operator (Xz) on p(A) with the domain 9((Xa)) as follows:

           9((Xa))={{xz}eD(A);xze9(Xz) forall ZeA

                       and Z IIX2xaU2Åqco},
                           aeA
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               (Xa) {Xz} = {X2xz}, {x2} E 9((Xi)) .

It is not diMcult to prove the following lemma.

   LEMMA 3.1. Suppose that X2 is a densely-defined closable operator on
pz and Xx=UzlX21 is the polar decomposition of Xa for every 2eA. We set
X == (Xa) and U=(U,). Then :

   (1) X=(Xz), X* == (Xz");
   (2) IXI :(IXzl) and X-=UIX-1 is the polar decomposition of X-.

   Let {ut2}z.A be a family of bounded *-algebras utz on DA. We denote by
zl.-I.utz the set {(Aa);A2eut2} of closed operators on i)(A). For each {Ax}e

X orz and {4a} e S(A) putting
zEn

                       (A2) {4z} ={Az4a},

(A,) is a linear operator on D(A). We d.enote by H utz the set {(Aa); Azeuta}
                                     aEnof iinear operators on D(A).

   LEMMA 3.2. Let {orz}z.A be a family of bounded *-algebras uta on D,.
Then:
   (1) For each {A2}EXutz we have
                  aEA
                    (A2)=(Aa), (Aa)*=(Aa");

   (2) I-I orA is a #-algebra on D(A). In particular, if uta is a 'C"-algebra (resp.
       ZeA
W"-algebra) for every AEA then " ut2 is an EC#-algebra (resp. EW#-algebra)
                         AEAon D(A) over the direct sum e utz of the C*-algebras (resp. J)V'-algebras) uta;
                    ZeA   (3) n orz is a *-algebra of closed operators on t)(A) under the operations of
       ZEA
strong sum, strong product, adjoint and strong scalar multiplication. In par-
ticular, if uta is a C"-algebra (resp. PV*-algebra) then n 9{z is an EC"-algebra

                                         ZEA(resp. EPV"-algebra) over e utz defined in [2].
                  aeA
   DEFiNiTioN 3.1. Let {9Jz}2.A be a family of bounded *-algebras ut2 with
identity operators on Hilbert spaces g2. A #-algebra ut on S(A) is called a weakly

unbounded #-algebra associated with {utA}z.A if ut is a #-subalgebra of I-I uta

and utb == e ora. In particular, if utz is a C"-algebra (resp. von Neumann algebra)
      a6A
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for every ZEzt, then 9J is called a weakly unbounded EC#-algebra (resp. EMZ#-
algebra) associated with {ora}aEA•

   PRoposiTioN 3.1. If Qt is a weakly unbounded EPIZ#-algebra associated
with {utz}aed, then or is a weakly unbounded EPV#-algebra (defined in [7]), that is,

there exists a family {8,}v.. of von Neumann algebras B, such that or is a *-sub-

algebra of the EW*-algebra Il B, and utb=e 8,. Conversely if ut is a weakly
                      7er•                                   7Grunbounded Erv#-algebra, then there exists a family {utz}2.A of von Neumann
algebras utz on Hilbert spaces gz such that orID(A) is a weakly unbounded EW#-

algebra associated with {utz}Aen•

   PRooF. Suppose that ut is a weakly unbounded EW#-algebra associated
with {utz}z.A. It is obvious that or is a *-subalgebra of the Erv*-algebra n ut2.

                                                         XEASo, ut is a weakly unbounded EW#-algebra.

   Conversely suppose that ut is a weakly unbounded EW#-algebra, that is,
there exists a family {utz}z.A of von Neumann algebras utz on Hilbert spaces i)a

such that or isa*-subalgebraAIII. Qotz and ut-b=z{P.Qtz• For each AEor, A-=(Aa)

Eafl..ut2, and SO 9(A-)DD(A)== AIE.i)a• We therefore see that or/D(A) is an

EW"-algebra on D(A) over e uta.
                     ZeA

   By Proposition 3.1 it is seen that for the study of weakly unbounded EW#-
algebras we have only to study weakly unbounded EW#-algebras associated with
{utZ}ZEA•

   We shall introduce Iocally convex topologies on a weakly
algebra ut associated with {utx}aEA•

   (1) Weak topology. The locally convex topology induced

                  Pe,n(A)=l(A41n)l, 4, ne D(A),

unbounded #-

by seminorms:

is called the weak topology on ut.

   (2) Strong topology. The locally convex topology induced by

                    P`(A) = ll A4H, eE D(A) ,

   .semlnorms

is called the strong topology on ut.

   (3) a-weaktopology. Weset

.S.(QD- {4.- (4i, e2,•..); 4, e D(A), i=1, 2...
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              co              2 IAe.li2Åqco forall AEor},
             n=1
                   co         Pe.,n.(A)=l 2 (A4n[nn)l, 4co=(4i, e2,•••),
                  n=1
                                   n. =(n" n2,••.) E S.(ut) .

Then Pe..,n..O is a seminorm on M.. The locally convex topology induced by the

seminorms {Pe.,n..( ); 4., n. eD.(S}D} is called the a-weak topology on ut.

   (4) a-strong topology. The locally convex topology induced by semi-

norms

                     co 1            Pe..(A)=[ 2 11A4nl12] 2-, 4co=(4i, e2,•••)eD.(Q{)
                     n=1
is called the ff-strong topology on 9J.

   (5) Locally ff-weak topology. We set

          (Da).={xg6Z)=(x(,Z), xS2),...)'; xY)egA, n=1, 2,,..,

                      co                      2 IlrkSa)l12Åq.},
                      n=1
                  e           D.(A) = ,Iil. (PA) co,

                        co           Pxeo•yco(A) == ,1{.l 1.]El),(AzXSZ)[yÅíZ))l, A=(Aa) E ut,

          x. = {xS2)}, y. == {y8Z)} e S.(A) .

Then P..,,.O is a seminorm on ut. The locally convex topology induced by the

seminorms {P..,,..( ); x., y. eD.(A)} is called the locally a-weak topology on
ut.

   (6) Locally a-strong topology. The locally convex topology induced by
   .semlnorms

                         co 1              P..(A)= 2 [ 2 11A,xÅía)ll2] 2-, A== (A,) E ut,
                     ZeA n=1
              x. = {xSZ)} E D.(A)

is called the locally a-strong topology on or.

   (7) Locally uniform topology. We set
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                      llAllz= [1 Aall, A=(Az) E Q(,

where llAAII means the operator norm of 24zeuta. Then II llz is a seminorm on
ut. The localiy convex topology induced by the seminorms {ll llz; 2eA} is called

the locally uniform topology on ut.

   It is easy to show that ut is a locally convex *-algebra under the involution

# and weak (or, o-weak, locally a-weak, locally uniform) topology.

   A *-algebra A is called a (complete) LMC *-algebra if there exists a family

{Pi}i.i of seminorms defined on A such that

   (1) {Pi}i.i defines a Hausdorff (complete) locally convex topology on A;

   (2) Pi(xy)$Pi(x)Pi(y) for each x, yeA and ieI;
   (3) Pi(x*)==Pi(x) for each xeA and ieI.
   In particular, a complete LMC *-algebra A is called a locally C*-algebra if

   (4) Pi(x*x)=Pi(x)2 for each xeA and ieI.
A seminorm satisfying (1)tv(4) is called a C"-seminorm on A.

   LEMMA 3.3. ([16] Prop. 10.6) A *-algebra A is a
only if A is a closed *-subalgebra of Cartesian product

locally C'-algebra

of C*-algebras.

if and

   LEMMA 3.4. If or is a weakly unbounded #-algebra associated with {utA}a.A,
then it is a LMC *-algebra under the involution # and locally uniform topology.

In particular, if ut is a weakly unbounded EC#-algebra and it is closed under the

locally uniform topology then it is a locally C*-algebra.

   For a more complete discussion of the basic properties of LMC *-algebras
the reader is referred to [1, 5, 12, 16].

   We shall introduce commutants and bicommutants of a weakly unbounded
#-algebra ut associated with {utz}z.A as follows:

             ut' - {C e va(D(A)) ; (CA41n) - (AC41n)

                  for all Ae ut and 4, nG D(A)},

             utc == {S eY"(D(A)); SA =AS for all AE ut} ,

             utec= {A ey#(S(A)); SA =AS for all SE ute} .

   PRoposiTioN 3.2. Let ut be a weakly
{utz}aEA• Then:
   (1) ut' - e (ora)', ut" == e (ut2)" ;

           ZEA aEA

unbouhded#-algebra associated with



274 Atsushi INouE and Ken KuRiyAMA

   (2) ut"= fl (ora)', orCC= fl (uta)".

            ZEA aEA
   DEFiNiTioN 3.2. ut'(resp. ut") is called the bounded commutant (resp.
bounded bicommutant) of ut. utC (resp. utCe) is called the commutant (resp.
bicommutant) of ut.

   PRoposiTioN 3.3. Let ut be a weakly unbounded #-algebra associated with
{orz}z.A• Then the following algebras (1)tv(8) equal:

   (1) utcc;
   (2) H(utz)";
       ZEA
    (3) the weak closure [or]tu of ut in Y"(D(A));

    (4) the locally ff-weak closure [ut]'aw of M in y#(D(A));

    (5) the o-weak closure [ut]aw of ut in Y"(S(A));

    (6) the strong closure [ut]s of ut in Y'(D(A));

    (7) the locally ff-strong closure [ut]'a' of ut in Y#(D(A));

    (8) the a-strong closure [ut]Cs of ut in Y#(D(A)).

    PRooF. The following inclusions are obvious:

                      [ut]am c [or] tatu c [ut]w

                       UUU
                      [ut]as c [QI]latv c [ut]s

We have only to show utCec[ut]aS and [?t]M(=utCC. These are proved after
a slight modification of ([9] Theorem 3).

    g4. Dual spaces of a weakly unbounded EC#-algebra

   In this section we shall study the dual spaces of a weakly unbounded EC#-
algebra.

   In the Cartesian product X X, ofvector spaces X7, the vector space spanned
                       7er
by V X, (or, more precisely, by V l,(X,), where l7 is the injection mapping of
  7Er                           7Er                                                         eX, in the product) is called the direct sum of X,, and denoted by 2 X,. It
                                                        7Eris the set of those elements of XX7 with only a finite number of non-zero co-

                        7Er eordinates. If each X7 is a locally convex space, then the direct sum X= 2 X7
                                                            7Ercan be given the topology by considering X as the inductive limit of the locally

convex spaces X, by l,. This topology is the finest locally convex space topology
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such that induce the original topology on each X,. This topology is called the

direct sum topology for X, and under it X is called the topological direct sum

of X,. Then the following facts are well known. The dual of the topological
direct sum ]Sl X, is the product I X: of the duals(,where X; denotes the

                          7er        7=rdual space of the locally convex space X,). The dual of the topological product
                  oXX, is the direct sum 2 X; of the duals.
7er                  7er   In this section Iet 9J be a weakly unbounded EC#-algebra associated with
{Q(a}z.A• Let ut" (resp. ut*, utN) denote the set of all locally uniformly (resp.

a-weakly, locally a-weakly) continuous linear functionals on ut and orM (resp.

!{S, utÅ}) the set of all positive elements of Q(" (resp. QI., utN). For eachZeA

QII (resp. (utz)*) the set of all uniformly (resp. u-weakly) continuous linear func-

tionals on the C*-algebra Q(a.

   THEoREM 4.1.
            e    (1) ut"== Z ora*;
            2diA
    (2) orf=:(9Iz)f•
            ZEA
Suppose that ut is a weakly unbounded EW"-algebra. Then:
                    e   (3) 9J*nut*=ut..= 2] (uta)*;
                    ZEA   (4) ut* n uts -= utÅ}- 9 (wra)s•

                     aer
                              e   PRooF. (1) Suppose that 2 fxe2 utx* (A; finite subset of A). For each
                        AEA aEAA= (Aa) e ut,

                      ( 2fz) (A)= 2 fz(Az) •
                       tezi JLEzi
Hence it is easily showed that Zfz E ut". Conversely suppose thatfE ut". Then
                       ZEzi
there exist a finite subset A of A and a positive number 7 such that

                         lf(A)1S2 IIAIIx
                                JLEri
for all AE or. For each ?,oEA and Az,euta, we set

          lz,(Az,)=(Bz);(Ba,=Aa, and Bz=O for 2\2o).

Then, since !Ib=e utA, t2,(Az,)Eut. Thus, for each 2EA it is seen that lx is a
             ZEA
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map of utz into ut. Suppose ZoccA. For each Az,Ewra,,

                  1f(lzo(A2o))1 $7 2 II lz,(Az,) llz=O•
                             Zeri
That is, if ZdiA thenfvanishes on lz(utz). We set

                          fa =fo l2•

Then it is easily showed that fzeut1 and f= 2)f,. Thus,fE e 2 ut,*.

                                 ReA ZEA   (2); Suppose feutf. By (1), f= ZfzE9ut," for some finite number A

                              AEA AEAofA. For each ZoGA and Aa,eutz, we have

                OSf(la,(Az,)*la,(Aao))=fzo(Aa"oAao) •

Hence, fz ).O for all ZeA. The converse is obvious.
                       e   (3); We can prove or..== 2 (utz)* in the same way as (1). The inclusion
                       aeAutNc!(" n ut* follows from the definitions of locally uniform, locally ff-weak and

u-weak topologies. Suppose fEut'norS. Let or be the closure of the EW#-
algebra ut, that is,

                 N                 D(A) (ut) - A 9(A) ,
                        Aeut
                 N- t-'V                 Ax=Ax, AEut, xES(A)(ut),

                 or == {A'"; AE ut} .

For each AG or we set

                         f(A-) -f(A) .

Then we can easily show fNEorSnor*. By ([6] Theorem 4.8) there exists an
element 4.=(ei, e2,...) of D.(or) such that 4.={4S,A)} e SN(zt)(E}I) (n==1, 2,...)

   rw coandf= 2 (oe.(, where a)e(A)=(A4I4)). Sincefeut", there are a finite subset A
      n=1
of A and a positive number 7 such that

                       1f(A)I S-7Z IIAllz
                              ZeA
for all AE ut. Then we have

              f(A)= iiE (A'"4nl4n)=2 Z(AzCÅíZ'14Y')'

                   n=1 n=IZEA
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We can now show that 4Åíao)=O for each ZoEtseA. In fact, suppose that 4ÅíZo) \O

for some Zo cc A. Putting

          A=(Az), (Az=O for all AeA and A,=I for all ZccA),

A E e utz= Qtb and lf(A)1 E7 2 ll AA II =O. Hence, f(A) =O. On the other hand,

  aEn zeAwe have

                          co                OÅq114Yo)ll2S2 2 114Y)ll2=f(A).
                          n=1 ZEA-zi
This is a contradiction. Therefore we get that 4SZ)=O for all ZccA. Hence,

                                    co            f(A)- 2 Z (Az4ÅíZ'14EZ')- 2 E] cDeflZ'(Az).
                                 JLEzi n=1                  n=1 ZEA

                             co   By ([2] Ch.I, g4, Th.I), fa:-- 2 a)e:Z)E(utz)S. Therefore, f= ]ÅífAE
                             n=1                                                       aeri
Z (utz)S. Generally supposefEut"nut*. Letf=lf[U be the polar decom-
ZeAposition of fEor. ([6] Proposition4.6). Then, . I./leorS, U=(Uz)Eeutz
                                                       ZeAand lfl=fNU#. Furthermore, we have

             1 lfl(A'-)1 == Ii(U#A'")1 S.7 2 II USA,ll

                              JtEzi
                            -Åq: l121IAzll
                               Zeri
for all AEut. Hence, IAEorSnor*. By the above argument, lf'"l=2 fxG
                                                      Zezi
2 (utDS. Therefore,f== 2fxUaG 2 (S}IA)*•

aEA ZEzi ZEA   (4); This follows from the proof of (3).

                                             e   We give the direct sum topology the dual space ut"= Z ut"z of a weakly
                                             ZeAunbounded EC#-algebra ut associated with {!tz}a.A. Then the topological direct

sum ut"= 2 utx" is complete and ut"n ut*= 2 (utz)* is a closed subspace of

        AEA ZeAut*.

   CoRoLLARy. If ut is a weakly unbounded EW#-algebra associated with
{utz}z.A, then the dual (ut*n ut*)* of the topological direct sum ut*n ut. equals

the Cartesian producta5Autz of the C*-algebras uta.



278 Atsushi INouE and Ken KuRiyAMA

    g5. Invariant subspaces of the dual space

    Let ut be a weakly unbounded EC"-algebra associated with {utz}z.n. For
A e n utz and fE ut", we define actions of A on f by :
   AeA

                  ÅqX, AfÅr =f(XA) ,

                  ÅqX, fA År =f(AX), X e fl utz.
                                      AeA

A subspace V of ut" is called left (resp. right) inyariant if AVcV (resp. VA cV)

for all A e ut. A both side invariant subspace is merely called inyariant.

   LEMMA 5,1. Let QI be a weakly unbounded EC"-algebra associated with
{utz}a.A. If V is a left (resp. right) invariant subspace of Qt", then (nut,)V
                                                        2EAcV (resp. V( H utz) cV).
          ZEA

    PRooF. Suppose that A=(Az)eRutx and diEV. Since Vcor*=
                               AEAe2 uti there exists a finite subset zt of A such that ip= 2 gbz (ipAEutf). Then

we set

        AA=(Ba) (BA=Ax for all ZeA and Bz =O for all ZeA-A).

Then we have that Ari E utb and

                      Aip == 2 AAipz=AAip '
                          ZEri
Hence, Aip e utV =V.

   LEMMA 5.2. If ut is an EPV"-algebra, then every a-weakly closed left (resp.

right) ideal 5 of ut contains a unique projection E such that Je' =utE (resp. Je'"=

Eut). If 5 is a 2-sided ideal, then E belongs to the center ut' n ut".

   PRooF. Suppose that Je' is a a-weakly closed left ideal of eq. It is easily

showed that JeVb is a o-weakly closed left ideal of the von Neumann algebra utH
b.

By ([2] Ch. I, g3, Cor. 3) there is a unique projection E in Je'b such that 5b==

utbE. We shall show that JC"==orE. The inclusion utEcJC" follows from EE Sb.

Conversely take an arbitrary element A of JC", Let A = UIAI be the polar decom-
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::,Si`ggn,,a:,?skA,h},gokl:i',iY2.22,e.C`rff,2S,?':,V',?2.P,f,i"E-!',',R,e:',lall,=,:.",,e,:Sg

weakly to IAI, we have IAI=IAIE. Thus, JC-'=wrE.

   THEoREM5.1. Let ut be a weakly unbounded Erv#-algebra associated
With {utA}z.n. Then:
   (1) There exists a one-to-one correspondence; VoJ" between the closed
left (resp. right) invariant subspaces V of !t* n ut. and the a-weakly closed right

(resp. Ieft) ideals 5 of the Erv#-algebra H Qtz determined by;
                             AEA
                     VO=JC' and :tO=V,

where VO and J'O mean the polars of V and J`' in I I utz and in Qt" n ut* respec-
                                     XEA
tively.

   (2) Every closed left (resp. right) invariant subspace V of E}("n ut. is of the

form;

             V=(ut" n ut,)E, (resp. V=Eo(ut" n ut*))

by some projection Eo in ut.

   (3) V is invariant if and only if Eo is central.

   PRooF. (1); Suppose that JC" is a a-weakly closed right ideal of III 9JA.
                                                      AEABy Lemma 5.1 there is a projection Eo in QI with 5=(I-Eo) (I [ Q(a). We shall
                                              ZEAshow that JC-'O=(ut"n9J,)E,. If diE50 and AeHutz, then
                                     AEA
               O== Åq(I-Eo)A, diÅr=ÅqA, ip(I-Eo)År•

Hence, di(I-Eo)=O, i.e., ip==ipEo. Thus, J"'Oc(ut"nut*)Eo. Conversely sup-
pose ip E ut* n Qt*. Then,

                   Åq :/, diEo År == Åq E, J`', ip År =o.

Hence, diEo E 50, and so (M" n ut.)E, c JCYO. Thus, Je'O = (ut* n ut,)Eo. Putting
                    eEo=(ESO)), (ut* n or*)Eo== 2 (orz),ESO). Therefore V: =(M" n ut.)Eo is a closed
                    ZEA
left invariant subspace of ut" n ut*.

   Suppose that V is a closed Ieft invariant subspace of or" n ut*. Then we shall

show that JC': =VO is a a-weakly closed right ideal of n utz. For each AG I-I utz

                                       ZEA ZEAwe have
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                  ÅqJe"A, vÅr :ÅqJc"r, AvÅr

                           =ÅqJc",vÅr (Lemma5.1)

                           =o.

Therefore, JC' S".nutz)cJ". That is, JCb' is a right ideal ofall.I QIz. Let {A.} be a net

in Je" that converges a-weakly to Ae I-I utx. Since Vcut* n ut*, we have
                            ZEA
                    O= ÅqA., VÅr - ÅqA, VÅr .

Hence, ÅqA, VÅr ==O, and so AGJC". Therefore JC' is a-weakly closed.

    From the general theory oflocally convex space, it follows that VOO is a closed

absolutely convex enveloping of V in ut" n or*. Therefore, VOO=V. Similarly,
Je'OO=JC". Hence, we can prove that VoJ' is a one-to-one correspondence.

    (2); Suppose that V is a closed left invariant subspace of ut"nut,. By
(1), VO is a o-weakly closed right ideal of H utz, and so VO=(I-Eo) (n uta)

                                 26A zEnfor some projection Eo in ut (Lemma 5.2). Hence,

               V=VOO == ((I -Eo) (H ora))O == (ut" n E}I*)Eo •
                             ZGA
   (3); This is now almost obvious.

   DEFiNiTioN 5.l. The projection Eo in Theorem 5.1 is called the support
projection of V in ur.

   LEMMA 5.3. ([15] Theorem 7.3) IfA is a C"-algebra, then A admits the
universal enveloping vonNeumann algebra U(A). Furthermore, there is a
unique isometry of the second dual space A"" of A onto U(A) which is a homeo-

morphic with respect to u(A**,A*)-topology and the a-weak topology on
U(A).

   By Lemma 5.3 we see that the second dual A** of a C*-algebra A is a von
Neumann algebra, and the dual space A* is the Banach space of all a-weakly
continuous linear functionals on A**.

   Let QI be a weakly unbounded EC#-algebra associated with {uta}z.A. Let
U(orz) be a universal enveloping von Neumann algebra of the C"-algebra uta

for each AGA. We set

                        u(ut)- n u(ut,) •
                             aeA
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U(ut) is called a universal enveloping EW#-algebra of E}I. From Lemma 5.3,
the following fact is easily proved.

   THEoREM 5.2. Let ut be a weakly unbounded EC"-algebra associated with
{utz}z.A• Then there is an isomorphism of the second dual ut"" of ut onto U(ut)

which is a homeomorphic with respect to o(ut*", ut*)-topology and the locally

a-weak topology on U(ut).

   CoRoLLARy 5.1. Let ut be a weakly unbounded EC#-algebra associated with

{9Jx}z,A. Then:
   (1) There exists a one-to-one correspondence; VoJC' between the closed
left (resp. right) invariant subspaces V of ut" and the a-weakly closed right

(resp. Ieft) ideals of U(9J) determined by;

                      VO=Je' and JC"O..V,

where VO and JCb'O mean the polars of V and JC" in U(E}I) and in ut" respectively.

   (2) Every closed left (resp. right) invariant subspace V of ut" is of the form;

                   V=ut*Eo (resp.V=Eout")

for some projection Eo in U(!I).

    (3) V is invariant if and only if Eo is central.

    PRooF. This follows from Theorem 5.1 and Theorem 5.2.

   g6. Normal and singular functionals

   In this section let ut be a weakly unbounded Erv#-algebra associated with

{utz}A.A and U(utz) a universal enveloping yon Neumann algebra of the C*-
algebra utz. By Corollary 5.1 for each ZEA there exists a projection ESO) in

U(utz) n U(uta)' such that (ut,).=utx"ESO). We set

                          Eo = (ESo)) .

Then it is easily showed that Eo is a projection in U(Q{) such that Eo e e II(ut,)'
                                                      ZeA
and ut" n ut*=ut*Eo•

   DEFiNiTioN 6.1. The functionals in ut* n ut* are called normal and ut* n E!l.

itself is called the predual of ut. On the contrary, the functionals in ut"(I-Eo)

are called singular and ut*(I-Eo) is denoted by (ut" n ut.)Å}.
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   THEoREM 6.1. (1) Every element ip of ut" is uniquely decomposed into
the sum

               q5 == ipn+ ip,; ip. E or* n ut*, ip, e (ut* n ut*)L .

di. and ip, are called the normal part and the singular part of di respectively.

    (2) Suppose that V is a closed right (resp. Ieft) invariant subspace of ut".

Then,

           V n (!t* n ut.) == VEo, V fi (ut* n `U.)Å}=V(I-E,) .

   LEMMA 6.1.
                e    (1) QI* n Qt*= 2 (utz)*•
                zEn e
    (2) (!t* n !(.)Å} == 2 (utA)Å}
                  ZEA
   PRooF. (1); This follows from Theorem 4.1
   (2); This follows from

                                   e              (ut" n ut*)Å}=ut"(I-Eo)= 2 uta"(I-EÅíO))
                                   AEft
                          e                       - 2 (!t,)il!.
                         aEit
   THEoREM 6.2. Suppose that q5 is a non-zero element of QI.". Then the
following conditions are equivalent:

   (1) ip is singular;

   (2) There exists a finite subset A of A such that

                   ip= 2 ipa, ipze(uta)Å} (ZGzl);
                      Zezi
   (3) For each non-zero projection E in ut there exists a non-zero projection

F in ut such that EIF and ÅqF, ipÅr=O.

   PRooF. (1)ÅqÅr(2); This follows from Lemma 6.1.
   (2)=År(3); Suppose that E: ==(Ez) is a non-zero projection in ut. We set

                       A,= {2GA; Ei \O}.

If ZeAi, then ipxE(!Iz)* and EztEO. By ([15] Theorem 8.5) there exists a non-
zero projection Gz in uti such that
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                     EzlGa and ÅqGA,(15zÅr==O.

We set

                         Fz=l Gz, 2EAi

                             tE2, AGiiAi.

Then it is easily showed that F: =(17A) is a non-zero projection in or such that

E2F and

              ÅqF, ipÅr= 2 ÅqFz, ipzÅr= 2 ÅqGa, di2År=O•
                        aezi ZEAI
    (3)=År(2); Since di E utf, there is a finite subset A of A such that

                        (P = 2 ip,, ip,E (ut,): •
                            aeri

By the assumption (3) and ([15] Theorem 8.5), ipze(orA)S for all 2eA. Hence,
    o
ip e Z (uta)Å}=(ut' n ut*)Å}•
   ZeA

    THEoREM 6.3. Suppose that ip is a non-zero element of ut". Then the
following conditions are equivalent:

    (1) ip is normal;

    (2) There exists a finite subset A of A such that

                        di=2 ipA, ipze(utz)*;
                           JtEri

    (3) For every orthogonal family {E(i)}i.i of projections in ut,

                         ip(Z E(i))= E) ip(E(i)).
                            iEl iGI
    PRooF. This follows from Theorem 4.1 and ([15] Corollary 8.8).
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