Memoirs of the Faculty of Science, Kyushu University Ser. A, Vol. 31, No. 2, 1977

REMARKS ON LEFT HILBERT ALGEBRAS WITH RESPECT TO MINKOWSKY FORMS

By

Ken KURIYAMA (Received October 18, 1976)

In this paper we shall give an example induced by standard left Hilbert algebras and show the properties of the algebra.

EXAMPLE 1. Let \mathfrak{A} be a left Hilbert algebra and \mathfrak{H} the closure of \mathfrak{A} . Put $\mathfrak{A} = \{(\xi, \eta) \in \mathfrak{H} \oplus \mathfrak{H}; \xi, \eta \in \mathfrak{A}\}$. If we introduce the multiplication-operation, #-operation and the Minkowsky form as follows:

$$\begin{aligned} & (\xi_1, \eta_1)(\xi_2, \eta_2) = (\xi_1\xi_2, \xi_1\eta_2 + \eta_1\xi_2); \\ & (\xi, \eta)^{\tilde{*}} = (\xi^*, \eta^*); \\ & [(\xi_1, \eta_1), (\xi_2, \eta_2)] = (\xi_1|\eta_2) + (\eta_1|\xi_2); \end{aligned}$$

then \mathfrak{A} is a left Hilbert algebra with respect to the Minkowsky form [,].

PROOF. It is evident that \mathfrak{A} is a involutive algebra. Take (ξ_1, η_1) , (ξ_2, η_2) and (ξ_3, η_3) in \mathfrak{A} . We have

$$[(\xi_1, \eta_1)(\xi_2, \eta_2), (\xi_3, \eta_3)] = (\xi_1 \xi_2 | \eta_3) + (\xi_1 \eta_2 + \eta_1 \xi_2 | \xi_3)$$
$$= [(\xi_2, \eta_2), (\xi_1, \eta_1)^{\tilde{*}} (\xi_3, \eta_3)].$$

For $(\xi_1, \eta_1) \in \mathfrak{A}$ and $(\xi_2, \eta_2) \in \mathfrak{D}^b \times \mathfrak{D}^b$, we have

$$[(\xi_1, \eta_1)^*, (\xi_2, \eta_2)] = (\xi^* | \eta_2) + (\eta^* | \xi_2)$$
$$= [(\xi_b^2, \eta_b^2), (\xi_1, \eta_1)].$$

Hence the map: $\mathfrak{A} \ni (\xi, \eta) \rightarrow (\xi, \eta)^{\tilde{*}}$ is closable. Take $(\xi_0, \eta_0) \in \mathfrak{A}$. Since the norm $\|\xi_0 \xi\| + \|\xi_0 \eta + \eta_0 \xi\|$ is equivalent with the norm $\|(\xi_0 \xi, \xi_0 \eta + \eta_0 \xi)\|$, the map: $\mathfrak{A} \ni (\xi, \eta) \rightarrow (\xi_0, \eta_0)(\xi, \eta)$ is continuous. This completes the proof. We can easily prove the following proposition.

PROPOSITION 2. (1) For $(\xi, \eta) \in \mathfrak{A}$ we have

$$\pi(\xi, \eta) = \begin{pmatrix} \pi(\xi) & 0 \\ & \\ \pi(\eta) & \pi(\xi) \end{pmatrix} \text{ with respect to } \mathfrak{H} \oplus \mathfrak{H}.$$

(2) $\mathfrak{D}^{\tilde{b}} = \mathfrak{D}^{b} \times \mathfrak{D}^{b}$.

(3) $\widetilde{\mathfrak{A}}' = \mathfrak{A}' \times \mathfrak{A}'$. For $(\xi, \eta) \in \widetilde{\mathfrak{A}}'$ we have

$$\pi'(\xi, \eta) = \begin{pmatrix} \pi'(\xi) & 0 \\ \\ \pi'(\eta) & \pi'(\xi) \end{pmatrix}.$$

PROPOSITION 3.

(1)
$$\mathfrak{L}(\mathfrak{A}) = \left\{ \begin{pmatrix} x & 0 \\ \\ y & x \end{pmatrix}; x, y \in \mathfrak{L}(\mathfrak{A}) \right\}$$
 where $\mathfrak{L}(\mathfrak{A}) = \pi(\mathfrak{A})''$.

(2)
$$\mathfrak{L}(\mathfrak{A})' = \left\{ \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}; x, y \in \mathfrak{L}(\mathfrak{A})' \right\}.$$

PROOF. Since $\pi(\mathfrak{A}) = \left\{ \begin{pmatrix} \pi(\xi) & 0 \\ \pi(\eta) & \pi(\xi) \end{pmatrix}; \pi(\xi), \pi(\eta) \in \pi(\mathfrak{A}) \right\}$ and $\pi(\mathfrak{A})$ is a nondegenerate *-algebra,

$$\pi(\mathfrak{\widetilde{U}})' = \left\{ \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}; x, y \in \pi(\mathfrak{U})' \right\}.$$

This completes the proof.

Let $S = J\Delta^{1/2}$ be the polar decomposition. By Tomita's theory we have $J\mathfrak{L}(\mathfrak{A})J = \mathfrak{L}(\mathfrak{A})'$ and $\{\sigma_t\}$ is a one parameter group of automorphisms of $\mathfrak{L}(\mathfrak{A})$, where $\sigma_t(x) = \Delta^{it}x\Delta^{-it}$ for $x \in \mathfrak{L}(\mathfrak{A})$. Put $\tilde{J} = \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix}$ and $\widetilde{\Delta^{it}} = \begin{pmatrix} \Delta^{it} & 0 \\ 0 & \Delta^{it} \end{pmatrix}$ with respect to $\mathfrak{H} \oplus \mathfrak{H}$.

THEOREM 4. (1) \tilde{J} is a anti-Bogoluibov operator and $\widetilde{\Delta^{it}}$ is a Bogoluibov operator.

(2) $\tilde{J}\mathfrak{L}(\tilde{\mathfrak{A}})\tilde{J} = \mathfrak{L}(\tilde{\mathfrak{A}})'$. Hence $\mathfrak{L}(\tilde{\mathfrak{A}})$ is anti-U-involutive isomorphic to $\mathfrak{L}(\tilde{\mathfrak{A}})'$. (3) $\{\tilde{\sigma}_t\}$ is a one-parameter group of U-involutive automorphisms of $\mathfrak{L}(\mathfrak{A})$, where $\tilde{\sigma}_t(x) = \Delta^{ii} x \Delta^{-it}$ for $x \in \mathfrak{L}(\mathfrak{A})$.

174

PROOF. From $\tilde{J}U = U\tilde{J}$, \tilde{J} is a anti-Bogoluibov operator. Similarly $\widetilde{\Delta}^{it}$ is a Bogoluibov operator. Take $\begin{pmatrix} x & 0 \\ y & x \end{pmatrix} \in \mathfrak{L}(\mathfrak{A})$. From Proposition 3 and $J\begin{pmatrix} x & 0 \\ y & x \end{pmatrix} \tilde{J} = \begin{pmatrix} JxJ & 0 \\ JyJ & JxJ \end{pmatrix}$, we have $\tilde{J}\begin{pmatrix} x & 0 \\ y & x \end{pmatrix} \tilde{J}$ belongs to $\mathfrak{L}(\mathfrak{A})'$. Since $\tilde{\sigma}_t \begin{pmatrix} x & 0 \\ y & x \end{pmatrix} = \begin{pmatrix} \Delta^{it}x\Delta^{-it} & 0 \\ \Delta^{it}y\Delta^{-it} & \Delta^{it}x\Delta^{-it} \end{pmatrix} \in \mathfrak{L}(\mathfrak{A})$, $\tilde{\sigma}_t$ is a U-involutive automorphism of $\mathfrak{L}(\mathfrak{A})$. This completes the proof.

References

- K. KURIYAMA, On left Hilbert algebras with respect to Minkowsky forms, Mem. Fac. Sci. Kyushu Univ., 30 (1976), 103-111.
- [2] K. KURIYAMA, Crossed products of left Hilbert algebras with respect to Minkowsky forms, to appear.
- [3] M. TAKESAKI, Tomita's Theory of Modular Hilbert Algebras and its Applications, Lecture Notes, Springer 128 (1970).
- [4] M. TOMITA, Standard forms of von Neumann algebras, The Vth Functional Analysis Symposium of the Math. Soc. of Japan, Sendai. (1967).