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   In this paper we shall give an example induced by standard left Hilbert
algebras and show the properties of the algebra.

   ExAMpLE1. Let ut be a left Hilbert algebra and S) the closure of ut.
Put or={(4, n)ES5eS5; 4, neut}. If we introduce the multiplication-operation,

#-operation and the Minkowsky form as follows:

                (4i, ni)(C2, n2)=(4i42, 4in2+niC2);

                (4, n)" == (4", ny");

                [(4i, ni), (42, q2)]=(4iln2)+(ni142);

then or is a left Hilbert algebra with respect to the Minkowsky form [ , ].

                        ny -   PRooF. It is evident that !t is a involutive algebra. Take (4i, ni), (42, ny2)
and (43, n3) in or. We have

     [(4i, ni)(42, n2), (43, n3)] :(4i421n3)+(4iny2+nie2143)

                         = [(e,, n,), (4,, n,)g(4,, n,)] .

For (4i, ni)E or and (42, n2)eDb Å~ Sb, we have

                [(4i, ni)", (42, n2)] =(4"ln2)+(n"le2)

                              = [(4Z, nZ), (ei, ni)]•

Hence the map: org(4, n).(4, n)""' is closable. Take (4o, no)eor. Since the

norm I14o411 + ll4on+nyo411 is equivalent with the norm 11(eo4, 4on+nyo4)ll, the map :

or g (6, n).(eo, no)(4, n) is continuous. This completes the proof. We can easily

prove the following proposition.
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   PRoposiTioN 2. (1) For (e, n) E or we have

             z(4, n)..( Z(4) O År with respect to ses.

                    Nz(n) z(4) /

(2) DS=SbxDb.

(3) or'= ut' Å~ ut'. For (4, n) E ot' we have

                    .t(e, n)=( n'(4) o År.

                           X z'(n) n'(4) 1

   PRoposlTIoN 3.
(1) 2(or),.,I( X O ); x, yeÅí(E}Dl where Åí(or)=n(or)"•

         kXY X! J
(2) 2(or)' =(( j", .O ), x, yE 9(ut)']

   pRooF. since n(or)==1( Z(4) O År;ff(4),z(n)Ez(ut)l and n(ut) is a

                     tX z(n) z(4)1 J
nondegenerate *-algebra,

                 z(or)'=:(( ;Xv xO ),x,yEn(ut)'l.

This completes the proof.

   LetS==JA't2 be the polar decomposition. By Tomita's theory we have
J9(!r)J =2(ut)' and {a,} is a one parameter group of automorphisms of Åí(ut),
where a,(x) =Aitxzi -it for xe Åí(?D. put JN = ( 6 9 ) and ttt =( Zt6t ,OI ,, )

with respect to SeS•

                  N Av   THEoREM 4. (1) J is a anti-Bogoluibov operator and Ai' is a Bogoluibov

operator.
(2) JNB(or)JN=2(or)'. Hence 2(or) is anti-U-involutive isomorphic to Åí(or)'.

(3) {S,} is a one-parameter group of U-involutive automorphisms of Åí(or),
           "v tXvwhere a,(x)=Ai'xA-i' for x e B(or).
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   PRooF. From jU=Ui j is a anti-Bogoluibov operator. Similarly ttt
is a Bogoluibov operator. Take( yX xO )E2(or). From Proposition3 and

j(yX O.)J"--(JJyXJJ J9J), we have j(yX Ox)j belongsto 2(or)'. Since a,(7X O.)

=
(21iyXAA:111 AitxOzi-i,)eÅí(or), a, is a u-involutive automorphism of 2(or).

This completes the proof.
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