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In this paper we shall give an example induced by standard left Hilbert
algebras and show the properties of the algebra.

ExaMPLE 1. Let U be a left Hilbert algebra and $ the closure of .
Put A={(&, ) e HDH; & neW}. If we introduce the multiplication-operation,
#-operation and the Minkowsky form as follows:

(€15 1) (&2 M2y =182, Euma+1m185);
(@ mF=(*, n*);
(e 11)s (€25 12)]=(E1lm2) +(m:11¢5);
then 9 is a left Hilbert algebra with respect to the Minkowsky form [ , ].

ProoF. It is evident that 9 is a involutive algebra. Take (¢,, 7,); (&5, #,)
and (&3, n;) in W. We have

L&1s 1) (€25 M2), (&3, m3)T=(&1&aln3) +(E1ma+111801E5)
=02, 12), 1 M) (5, 1)1
For (¢;, ;) e ¥ and (&,, 1,) € D x D?, we have
[ 1), (E2o )] =(E¥Im2) + (n*1E)

=[(€I%’ rll%), (él: 111)] .

Hence the map: A3 (¢, n)—(&, n)* is closable. Take (€0 o)€M, Since the
norm || o&ll + 1€on +no&]| is equivalent with the norm ||(€oé, Egn+10E)]|, the map:
A3 (& n)—(Eos M0) (&, 1) is continuous.  This completes the proof. We can easily
prove the following proposition.
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ProrosiTION 2. (1) For (¢, 1) e ¥ we have

n() O

n(¢, n)=<
n(n) w(&)

) with respect to H$D9 .

(2) DI=Dbx D",
3) W=WxW. For (& n)eN we have

'@ O )

(S 11)=<
() 7'(&)

PRrROPOSITION 3.

0
1 @)= {( ¥ ); X, ye B(QI)] where () =n(%)" .
y X,

x 0
@ 2= [( ); X, y€ 53(%[)'} .
y x

) 0

ProoF. Since n(‘f[)=l<
n(n) =(&)

); 7(&), n(n)en(@[)} and 7(A) is a

nondegenerate *-algebra,

x 0
n(ﬁ)’=[< >;x,yen(91)’].
y X

This completes the proof.
Let S=JA'Y2 be the polar decomposition. By Tomita’s theory we have
JRAJ =A) and {o,} is a one parameter group of automorphisms of L(A),

ity A—it s+_(JO0 ~_( A% 0
where g(x)=A4"x4 for xe&A). Put J= 0J and A% = 0 Al
with respect to HP 9.

Tueorem 4. (1) J is a anti-Bogoluibov operator and A% is g Bogoluibov
operator.
2 JeONJT=LNY. Hence &N) is anti-U-involutive isomorphic to LY.
(3) {8} is a one-parameter group of U-involutive automorphisms of (%),
where 6,(x)=ﬁx2>7‘ for x e ).
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ProoF. From JU=UJ, J is a anti-Bogoluibov operator. Similarly A%

is a Bogoluibov operator. Take ;g)eﬂ(ﬁ). From Proposition 3 and

.7(; 2).7=(";;§ J?cJ)’ we have ](; g)i belongs to £(AY. Since &,(; g)

—(j::;j:i: A“g A-it e &), 6, is a U-involutive automorphism of 2(M).

This completes the proof.
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