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1. INTRODUCTION 
 

Petri net combines a well-defined mathematical 

theory with a graphical representation of the dynamic 

behavior of the system. The theoretic aspect of Petri 

nets allows precise modeling and analysis of system 

behavior, while the graphical representation of Petri nets 

enable visualization  of state changes of the modeled 

system [1]. The Petri net is therefore widely used to 

model various control systems. But the traditional Petri 

net doesn’t have learning capability, all the parameters 

which describe the system characteristics need to be set 

individually and empirically when a dynamic system is 

modeled. On the other hand, Reinforcement Learning is 

a framework for an agent to learn the choice of an 

optimal act ion based on a reinforcement signal [2]. 

Recently, there are some researches for making the Petri 

net is equipped with learning capability. A learning Petri 

net model which combines Petri net with neural network 

is proposed in [3]. This learn ing Petri net model can 

realize an input-output mapping through Petri net’s 

weight function which is adjusted just like an artificial 

neural network. And the learning method was applied to 

the nonlinear system control. In paper [4], a Petri net 

model which  combines the Petri net and reinforcement 

learning is also proposed. This model can adjust the arc 

weight function using Q-learning and is used to model a 

robot system. The model makes system have capability 

to optimize its behavior through interaction with 

environment when dynamic system is running. 

In this paper, we propose an intelligent control 

system model, in which system is specified by a 

High-level Petri net and transition delay time is learned 

using reinforcement learning. For solving continuous 

delay time learning, two  continuous space learning 

methods are used. 

 

2. PROPOSED SYSTEM 
 
2.1 Architecture 
 

The intelligent control system is constructed by three 

sectors: Petri net control model, Action controller and 

Delay time evaluator. Figure 1 shows its overall 

architecture. 

Petri Net control model : The control system is 

modeled by a High-level time Petri net (HLTPN). 

Petri net’s place, transition, and colored token present 

system state, action, and control signal, respectively. 

Some transitions have delay t ime which pres ents 

system action delay time or pre -state last time. 

Action controller: Action controller transfers the 

transition’s fire of Petri net to system control signal.   

Delay time Evaluator : It evaluates delay time 

according to the feedback signal from environment and 

uses this evaluated value to adjust the delay time of 

Petri net model. This is learning part o f the system. It 

makes the proposed system have learn ing capability.  
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Fig. 1 Proposed system 
 
2.2 Definition of HLTPN and its extension 
 

The proposed system is modeled by a High-level 

time Petri net (HLTPN). HLTPN is an expanded Petri 

net, in which tokens are differentiated by colors, its 

enabled transitions have a time delay and arcs are 

restrained by weight functions which are expressed as 

the number and color of Tokens that are consumed or 

generated when a transition fired [5].  

Definition 1: HLTPN has a structure HLTPN= (NG, C, 

W, DT, M0) where 

(i) NG= (P, T, F) is called net graph with P a finite 

set of nodes, called Places. ID: PN, is a function 
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marking P, N = (1, 2, …) is the set of natural number. 

Using p1, p2, …, pn represents the elements of P and n  is 

the cardinality of set P; 

T a finite set of nodes, called Transitions, which 

disjoint from P , P∩T=∅; ID:TN is a function 

marking T. Using t1, t2, …, tm represents the elements of 

T, m is the cardinality of set T; 

F  (P×T)∪ (T×P) is a  finite set of directional arcs , 

known as the flow relation；  

(ii) C is a fin ite and non-empty color set for 

describing difference type data； 

(iii) W: F  C is a weight function on F. If 

F  (P×T), the weight function W is Win which  defines 

colored Token can through the arc and enable a T. Those 

color token will be consumed when transition fire. If 

F  (T×P), the weight function W is Wout which defines 

colored Token will be generate by T and be input the P. 

(iv) DT: TN is a  delay t ime function of a 

transition which has a T delay for an enable transition 

fired. 

(v) M0: P∪p∈PμC(p) such that pP, 

M0(p)μC(p) is the initial marking function which 

associates a multi-set of tokens of correct type with each 

place. 

For using RL to adjust the parameter of LTPN, 

HLTPN will be extended. 

Definition 2: extend HLTPN has a structure, 

ex-HLTPN= (HLTPN, VT), where  

(i) HLTPN=  (NG, C, W, DT, M0) is a High-Level 

Time Pet ri Net. 

(ii) VT (the value of delay): DT R , is a function 

marking DT. Here every transition delay time DT has a 

reward value R∈ real number. 
 
2.3 Learning algorithm  
 

The delay time of transition is a continuous variable. 

So, the delay t ime learn ing is a p roblem of RL in 

continuous action spaces. Now, there are several 

methods of RL in continuous spaces: discretization 

method, function approximat ion method, and so on [6].  

Here, the Discretization method and function 

approximation method are used in the delay time 

learning. 

1) Discretization method: 

As shown in Fig. 2 (1), transition T1 has a delay time 

t1. When P1 has Token <Tokenn>, the system is at a state 

which P1 has a Token. Th is time t ransition T1 is enabled. 

Because T1 has a delay time t1, T1 don’t fire immediately. 

After lasting time t1 and T1 fires, the Token in P1 is 

taken out and this state is terminated. Then, delay time 

of T1 is P1 state lasting time.  
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Fig. 2 Transition delay time discretization 

Because the delay time is a continuous variable, we 

discretize the different delay time  for using 

reinforcement  learning to optimize  delay t ime. For 

example, T1 in  Fig. 2 (1) has an undefined delay  time t1. 

T1 is discretized into several different transitions which 

have different delay time (shown in Fig. 2 (2)) and 

every delay time has a value item Q. After T1 fired at 

delay time t1i, it gets a reward r immediately or after its 

subsequence gets rewards. The value of Q is updated by 

formula (1). 

Q(P,T) ←Q(P,T ) +α[r + γQ(P’,T’
 
) - Q(P,T)].  (1)  

where, Q(P, T) is the value of transition T at Petri net 

state P. Q(P’,T’
 
) is the value of transition T’ at  next 

state P’ of P . αis the step-size, γ is a discount rate.  

After renewing of Q, the optimal delay time will be 

selected. In Fig. 2 (2), when T11…T1n get value 

Q11…Q1n, the transition is selected by the soft-max 

method according to a probability of Gibbs distribution.  

Pr{tt=t|pt=p} =

( , )

( , )

Q p t

Q p b

b A

e

e






.              (2) 

where, Pr{tt=t|pt=p} is a probability selecting transition 

t at state p, β is a positive inverse temperature constant 

and A is a set of available transitions.  

 

Transition’s delay time learn ing algorithm 1 

(Discretization method): 

Step 1.  In itializat ion: d iscretize delay time and set 

Q(p,t) of every transition’s delay time to zero. 

Step 2.  In itialize Petri net, i.e. make the Petri net state 

as P1. 

   Repeat (i) and (ii) until system becomes end state.  

(i)  Select a t ransition using formula (2). 

(ii) After transition fired and reward  is observed

 value of Q(p,t) is adjusted using formula (1). 

Step 3. Repeat step2 until t is optimal as require. 

2) Function approximat ion method 
 First, the transition delay time is selected randomly  

and executed. The value of delay time is obtained using 

formula (1). When the system is executed m t imes, the 

data (ti, Qi(p,ti)) (i = 1, 2, …, m) is yielded. 

The relation of value of delay time Q and delay time t 

is supposed as Q = F(t). Using least squares method, F(t) 

will be obtained as follows. 

It is supposed that F is a function class which is 

constituted by a polynomial. And it is supposed that 

formula (3) hold . 

f(t) =

0

n
k

k

k

a t F


 .                         (3) 

The data (ti, Qi(p,ti)) are substituted in formula (3). 

Then: 

f(ti) =

0

n
k

k i

k

a t


  (i = 1, 2, …, m ; m ≥  n).         (4) 

Here, the degree m of data (ti, Qi(p,ti)) is not less than 

data number n of formula (3). According to least squares 

method, we have (5). 
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In fact, (5) is a problem which evaluates the min imum 

solution of function (6). 

2 2

1 0

|| || [ ]
m n

k

k i i

i k

a t Q
 

   .                     (6)

 

So, function (7), (8) are gotten from (6). 
2

1 0

|| ||
2 ( ) 0

m n
k j

k i i i

i kj

a t Q t
a



 


  


 (j =0, 1, …, n), (7)

 

1 0 1

( )
m n m

j k j

i k i i

i k i

t a t Q

  

   (j = 0, 1, …, n).       (8) 

Solution of Equation (8) a0, a1, …, an can be 

deduced and Q = f(t) is attained. The solution t*opt of Q 

= f(t) which makes maximum Q is the expected optimal 

delay time.  

( )
0

f t

t





.                                (9)

 The mult i-solution of (9) t = topt (opt = 1, 2, …, n-1) 

is checked by function (3) and a t*opt ∈topt which makes 

f(t*opt)= max f(topt) (opt = 1, 2, …, n-1) is the expected 

optimal delay t ime. We use t*opt as delay time and 

execute the system and get new Q(p, t*opt). This (t*opt, 

Q(p, t*opt)) is used as new and the least squares method 

can be used again to acquire more precise delay t ime. 

 

Transition’s  delay time learn ing algorithm 2 

( Function approximation method): 

Step 1. Init ialization: Set Q(p, t) of every transition’s 

delay time to zero. 

Step 2. Initialize Petri net, i.e . make the Petri net state 

as P1. 

   Repeat (i) and (ii) until system becomes end state.  

(i)  Randomly select the transition delay t ime t. 

(ii) After transition  fires and reward is observed,

 value of Q(p, t) is adjusted using formula (1). 

Step 3. Repeat step 2 until got adequacy data. Then, 

Evaluate the optimal t using function 

approximation method. 

 

3. APPLICATION TO RFID NAVIGATION 
GUIDE DOG ROBOT SYSTEM 

 

The proposed system was applied to guide robot 

system which uses RFID (Radio-frequency 

identification) to construct experiment environment. 

The RFID is used as navigation equipment for robot 

motion. The performance of the proposed system is 

evaluated through computer simulation and real robot 

experiment.  
 
3.1 The RFID environment construction 
 

RFID tags are used to construct a blind road which 

showed in Fig. 3. There are forthright road, corner and 

traffic light signal areas. The forthright road has two 

group tags which have two lines RFID tags. Every tag is 

stored with the informat ion about the road. The guide 

dog robot moves, turns or stops on the road according to 

the information of tags. For example, if the guide dog 

robot reads corner RFID tag, then it will turn on the 

corner. If the guide dog robot reads either outer or inner 

side RFID tag, it implies that the robot will deviate from 

the path and robot motion direction needs adjusting. If 

the guide dog robot reads traffic control RFID tag, then 

it will stop or run unceasingly as traffic light signal 

which is dynamically written to RFID.  

This area is inner 

side line 2 of road

This area is inner 

side line 1 of road

This area is  out 

side line 1 of road

This area is out side 

line 2 of road

This area is  corner of road 

This area is  signal of traffic light  

 
Fig. 3 RFID construction environment 

 
3.2 The Petri  net model  for the guide dog  
 

The extend HLTPN control model for guide dog 

robot system is presented in Fig. 4. The mining of p lace 

and transition is listed below: 

P1 System start state P2 Getting RFID information 

P3 Turn corner state P4 Left adjust state 

P5 Right adjust state T1 Read RFID environment 

T2 Stop guide dog T3 Guide dog runs 

T4 Start turn corner state T5 Start left  adjust  state 

T6 Start right adjust state T7 Stop turn corner state 

T8 Stop left adjust state T9 Stop right adjust state 

P1

P2

P4

P3

P5

T1

T6

T5

T4

T3

T2

T7

T8

T9

<Corner>,<Left>,<Right>,

<Stop>,<Start>

<ReadRFID>

<ReadRFID>

<ReadRFID>

<ReadRFID>

<ReadRFID>

<ReadRFID>

<Stop>

<Start,Run>

<Run>+<Corner>

<Run>+<Left>

<Run>+<Right>

<CornerTurn>

<LeftAdjust>

<RightAdjust>

Reward1

Reward2

Reward3

<Run>

<Run>

Fig. 4 Learning Petri net model for Guide dog  
 

When the system begins running, it firstly reads 
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RFID environment and gets the informat ion Token 

putting P2. These Tokens fire one of transition from T2 

to T6 according to weight function on P2 to T2, …, T6. 

Then, the guide dog enters stop, running, turning corner, 

left ad just or right adjust states. Here, at P3, P4, P5 states, 

the guide dog turns at a specific  speed. The delay time 

of T7-T9 decide the correction of guide dog adjusting its 

motion direct ion. This delay time is learned through 

reinforcement learn ing algorithm which described in 

Section 2.3.  
 
3.3 The reward getting  from environment 
 

When T7, T8 or T9 fires, it will get reward r as 

formula (10) (b) when the guide dog doesn’t get Token 

<Left> and <Right> until getting Token <corner> i.e. 

the robot runs according correct direct ion until arriving 

corner. It will get reward r as formula (10) (a), where t 

is time from transition fire to get Token <Left> and 

<Right>. On the contrary, it will get punishment -1 as 

(10) (c) if robot runs out the road. 

r=

1/

1

1

te


 

     

( )

( )

( )

a

b

c

.                        (10) 

 

3.4 Computer simulation and real robot experiment  

When robot reads the <Left>, <Right> and <corner> 

informat ion, it must adjust the direction of motion. The 

amount of adjusting is decided by last time of robot at 

state of P3, P4 and P5. So, the delay  time of T7, T8 and T9 

need to learn. 

d1

d2

d2

O

l1 l2

l3
1

2

inside line

inside line
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outside line
A

C

B



 
(i) Direction of robot motion adjust on forthright road 
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(ii) Direction of robot motion adjust at corner 

Fig. 5 Direction of robot motion adjust  
Before the simulat ion, some robot motion parameter 

symbols are given as: 

      v      velocity of robot 

      ω    angular velocity of robot 

      tpre   last time of former state 

t     the adjust time 

tpost   last time of the state after adjusting 

 v, ω, tpre, tpost can be measure by system when robot 

is running. The delay time of T7, T8 and T9, i.e. robot 

motion adjust time, is simulated in two cases. 

1) As shown in Fig. 5 (i), when robot is running on 

forthright road and meets inside RFID line, its deviation 

angle θ is: 

θ = arcsin(d1/l1)arcsin(d1/(tpre•v)).           (11) 

where d1 and l1 are width of area between two inside 

lines and motion length between two time read RFID 

respectively (See Fig. 5). 

Robot’s adjust time (transition delay  time) is t. If 

t•ω-θ ≥ 0, then 

tpost = 1

sin( )

d

v t 
,                      (12) 

else 

tpost = 2

sin( )

d

v t 
 .                     (13) 

Here, tpost is used to calculate reward  r using 

formula (10). In the same way, the reward r can be 

calculated when robot meets outside RFID line. 

When robot is running on forthright road and meets 

outside RFID line, the deviation angle θ is 

θ = arcsin(d2/(tpre•v)),                      (14) 

Robot’s adjust time (transition delay  time) is t. If 

t•ω-θ ≥ 0, then 

tpost  =  2

s i n ( )

d

v t 
,                     (15) 

else robot will runs out the road. And the reward r is 

calculated using formula (10). 

2) As shown in Fig. 5 (2), when robot is running at 

corner, it must adjust θ=90°. If θ≠90°, robot will read 

<Left>, <Right> after it turn corner. Now, the case 

which robot will read inner line <Left>, <Right> will be 

considered. If robot’s adjusting time is t. If t•ω-θ≥0, 

then 

tpost = 1

2 sin( )

d

v t 
,                      (16) 

else 

tpost = 1

2 sin( )

d

v t 
 .                     (17) 

Same to case (1), tpost is used to calculate reward r 

using formula (9). In the same way, the reward r can 

calculate when robot meets outside RFID line. 

The calculat ion of reward t for other cases of robot 

direction adjusting is considered as the above two cases. 

In this simulation, the value of delay time has only  a 

maximum at optimal delay  time point. The g raph of 

relation for delay t ime and its value is  parabola. So, 

when transition’s delay t ime learning algorithm 2 

(function approximation method) is used, the relation of 

delay time and its value is assumed as : 

Q =
2

2 1 0a t a t a  .                        (18) 
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Computer simulations of Transition’s delay time 

learning algorithm 1 and 2 were executed in the all 

cases of robot direction adjusting. In the simulation of 

algorithm 1, the positive inverse temperature constant β 

is set as 10.0. After the delay time of different cases was 

learned, it  is recorded in  a delay t ime table. Then, real 

robot experiment was carried out using the delay time 

table which was obtained by simulat ion process. The 

real experimental environment is shown in Fig. 6. 

 

 
Fig. 6 The real  experimental environment 

 

3.5 The result of simulation and experiment 
 

The simulation result of transition’s delay time 

learning algorithm 1, 2 in two cases is shown in Fig. 7. 

 
(i) Simulation result of motion adjusting on forthright road 

 
(ii) Simulation result of motion adjusting at corner 

Fig. 7 The result of simulation 

The simulation result of θ=5° when robot motion 

adjusting on forthright road is shown in Fig. 7 (i). The 

simulation result of robot motion adjust at corner is 

shown in Fig. 7 (ii). From the result, it is found that 

function approximation method can quickly  approach 

optimal delay time than discretization method but 

discretizat ion method can more nearly approach optimal 

delay time through long time learn ing.  

 

4. CONCLUSIONS 

We proposed a hybrid intelligent control system 

which combines a high-level time Petri net (HLTPN) 

and reinforcement learning (RL) in this paper. The 

system state last time is presented as transition delay 

time of HLTPN. For learn ing the transition delay time, a 

extend HLTPN is proposed. In the extend HLTPN, 

delay time is learned using reinforcement learn ing when 

system interacts with the environment. For solving 

continuous delay time learn ing, two continuous space 

learning methods are used in learn ing algorithm. Finally, 

the proposed system was used to model a guide dog 

robot system where the system environment was 

constructed using RFID. The result of experiment shows 

the proposed method is useful and effective. We plan to 

use RL algorithm to adjust other parameters of Petri net 

and extend our work to model other dynamic systems in 

the future. 
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