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An improved self-organizing map (SOM), parameterless-growing-SOM (PL-G-SOM), is proposed in this paper. To overcome
problems existed in traditional SOM (Kohonen, 1982), kinds of structure-growing-SOMs or parameter-adjusting-SOMs have
been invented and usually separately. Here, we combine the idea of growing SOMs (Bauer and Villmann, 1997; Dittenbach et al.
2000) and a parameterless SOM (Berglund and Sitte, 2006) together to be a novel SOM named PL-G-SOM to realize additional
learning, optimal neighborhood preservation, and automatic tuning of parameters. The improved SOM is applied to construct
a voice instruction learning system for partner robots adopting a simple reinforcement learning algorithm. User’s instructions of
voices are classified by the PL-G-SOM at first, then robots choose an expected action according to a stochastic policy. The policy
is adjusted by the reward/punishment given by the user of the robot. A feeling map is also designed to express learning degrees
of voice instructions. Learning and additional learning experiments used instructions in multiple languages including Japanese,
English, Chinese, and Malaysian confirmed the effectiveness of our proposed system.

1. Introduction

Kohonen’s self-organizing map (SOM) is a kind of a neural
network which maps a high-dimensional input onto a reg-
ular low-dimensional grid orderly by unsupervised learning
schemes [1–4]. Because of its simple algorithm and powerful
performance, SOM has been developed and applied widely to
the fields of pattern recognition, signal processing, intelligent
control, and so on [5–15]. In a website of SOM library [6],
more than 7,000 papers concern with this technique are
collected.

Generally, SOM algorithm maps an n-dimension fea-
ture data in an input space x(x1, x2 . . . , xn) to a unit
i in a low-dimensional output space with connections
mi(m1,m2 . . . ,mn) by a simple rule using Euclidean dis-
tance, winner-takes-all,

c = arg min
i

(‖x −mi‖), (1)

that is, a high-dimensional input is corresponded to a most
suitable unit i with position c, best-match-unit (BMU) on

the output map. For all inputs and initial connections with
random values, a competitive learning rule enhances that the
input data with similar features keep closely on the visualized
topological output map

Δmi = αhci (x −mi), (2)

where α is learning rate and hci is a neighborhood function

hci = exp

(
−‖ci − c‖

2

2σ2

)
. (3)

Here, ci, c denote the positions of an arbitrary unit on the
output map and BMU, respectively, i = 1, 2, . . . , k ≤ N ×
M, σ is a constant. Obviously, hci(x) ≥ 0, hci(0) = 1, and
hci(∞) = 0.

In fact, the size of the output space N×M in the original
SOM is fixed in advance, and parameters such as learning
rate α and the scale of neighborhood σ are often determined
empirically. These constraints result in 2 kinds of problems
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in technical applications [6–14]:

(1) the fixed size of output map prevents additional
learning when new feature data are presented and
BMUs are difficult to be found on the trained output
map;

(2) annealing schemes for tuning the learning rate and
the neighborhood size are necessary to improve the
operation rate of output map; however, it usually
increases computational load to realize the annealing.

Variations of SOM with growing structures are proposed
to solve the first problem [7–10]. The basic idea of these
kinds of SOM is to set the output feature map with a small
size initially, for example, 2 units, then insert rows/columns
into the map in training, where/when a most visited BMU
exists [7, 10] or the deviation of the distance between the
units on input layer and output map [8, 9]. We proposed
another kind of method to solve the lack of units by using
a memory layer to store matured units on the feature map
during training process and release the matured units to
be initialized, that is, the units come to available to be
reused [12, 13]. When a feature data set is input to the
learning system, the process searches corresponding BMU
on memory layer at first, feature map which is produced by
SOM just become to an intermediate map, so we called it
transient SOM (T-SOM).

To solve the second problem, there have been also various
approaches such as reducing learning rate (α in (2)) and
neighborhood size (σ in (3)) linearly, that is, multiplying
attenuation coefficients, calculating the neighborhood size
in the input space, or using Kalman filters to find BMU on
the output space [6]. Berglund and Sitte proposed a low-
cost parameterless SOM algorithm (PLSOM) recently which
uses the fitting error between the input and the map only to
decide the annealing schemes [11].

In this paper, we combine the idea of growing SOM
algorithm and the method of PLSOM to construct a novel
SOM names parameterless-growing-SOM (PL-G-SOM) to
tackle both problems of SOM described above. This new PL-
G-SOM increases its structure adapting to the input data,
and anneals parameters to realize sensitive clustering on the
output space automatically. We also adopt PL-G-SOM into
a voice instruction learning system where it serves as an
automatic classifier of input features as well as T-SOM has
been applied to a hand image instruction learning system
[12, 13] and a voice instruction learning system [14].

The rest of this paper is organized as follows. Section 2
presents the details of PL-G-SOM. Section 3 shows a voice
instruction learning system using PL-G-SOM. In Section 4,
instruction learning experiments with 4 languages were
reported to confirm the ability of learning and additional
learning of the proposed system. Section 5 is the conclusion.

2. A New SOM: PL-G-SOM

2.1. Growing of Output Map. To construct a growing SOM
which is more sensitive to larger categories of input data
comparing with the SOM with fixed size in advance, different

c

f

c

r

f

Figure 1: Insert a row/column into the feature map. Unit c is a
BMU, and f is the farthest unit among the neighbors of c, r the
inserted row/column.

Feeling map
(evaluation)

Action map
(labeling)

Feature map
(classification)

Input
layer x1 x2

· · ·
xn

Instructions

Instructor

Reward/punishment

Figure 2: The structure of a voice instruction learning system using
PL-G-SOM. It is similar to the system using T-SOM in [12–14],
however, instead of memory layer of BMU in T-SOM, each map
grows with training. Annealing schemes of their neighborhood size
and learning rates are given by PL-G-SOM.

criteria have been proposed. Fritzke chose to insert a new
row/column adjacent to a most often visited BMU in his
Growing Grid [7]. The reason for this criterion of map
enlargement is that the earlier map may be considered
as a coarse one and likelihood BMUs need to raise their
resolution to deal with the change of input. Meanwhile,
Bauer and Villmann suggested adding units in the direction
or even new dimension of the largest error between input
data and the output map in their GSOM [8, 9]. However, the
process of enlarging the output map either in Growing Grid
or GSOM is similar and it is shown in Figure 1. In fact, when
a new row/column needs to be inserted to the neighbor of
a BMU c, for example, in the middle of c and f, the weights
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Figure 3: Flow chart of the proposed voice instruction learning
system processing.

of connections between input and new nodes take average
values of c and f :

mr = 0.5
(

mc + m f

)
, (4)

and so do them of r’s neighbors

mr±l = 0.5
(

mc±l + m f±l
)

, (5)

where l = 1, 2, . . . ,N or M. Unit f is chosen which has
a largest Euclidean distance from the BMU c among the
neighbors of c, and after this process, the map size changes
to N × (M + 1), or (N + 1)×M.

We use the same growing process here however, a new
criterion to choose the BMU is proposed by concerning with
a reinforcement learning algorithm when SOM is adopted
into a human-machine interaction learning system. The
detail will be given in Section 3.

2.2. Annealing of Parameters. To decide the learning rate and
the size of neighborhood function, we adopt the method
of PLSOM proposed by Berglund and Sitte [11]. Either the
learning rate α = ε(t) or the neighborhood size σ(t) is
calculated by the distance between input and the BMU:

ε(t) = ‖x(t)−mc(t)‖2

r(t)
,

r(t) = max
(
‖x(t)−mc(t)‖2, r(t − 1)

)
,

r(0) = ‖x(0)−mc(0)‖2,

hεci(t) = exp

(
− ‖ci − c‖2

(σ(ε(t)))2

)
,

σ(ε(t)) = σmax · ε(t), σ(ε(t)) ≥ σmin,

(6)

where σmax, σmin are positive parameters, for example, the
value may be the size of the map and 1.0, respectively.

The competitive learning rule of the connections between
input and output units that is, (2), can be changed to an
online learning algorithm

mi(t + 1) = mi(t) + Δmi(t)

= mi(t) + ε(t)hεci(t)(x(t)−mi(t)).
(7)

3. A Voice Instruction Learning System
Using PL-G-SOM

A voice instruction learning system is supposed as an internal
model of an autonomous robot which performs kinds of
available actions when external signal in voices is presented
at first and learns to output requested actions using the
reward or punishment from the instructor. So the system
supports the robot to keep learning and additional learning
abilities. For example, a robot with the voice instruction
learning system is able to “understand” human’s instructions
in different languages, or a pet robot like “AIBO” [16] comes
easily to used to change a new owner.

3.1. The Structure. To realize the human-machine interac-
tion, an internal model of autonomous robot is constructed
as shown in Figure 2. The structure is similar to a learning
system using Transient-SOM (T-SOM) which is proposed
in our previous work [12–14]. In [12, 13], a hand image
instruction learning system which has 5 layers including
Input Layer, Feature Map, Action Map, Feeling Map, and
Memory Layer is composed with SOM algorithm and
reinforcement learning rules. Instructions to the robot are
presented by kinds of shapes of human’s hand, and robots
categorize them, that is, image signals in an 80-dimensional
space with SOM, and the instructions are labeled with a
series of autonomous actions according to a stochastic policy.
Instructor observes the action of the robot and provides
reward/punishment of the action to robot, so the action
policy of the robot is able to be modified to cooperate with
the instructions of hand images. For online learning and
additional learning, T-SOM adopted a memory layer which
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(a) Japanese: Osuwari (sit down)
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(b) English: Sit (sit down)
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(c) Chinese: Zuoxia (sit down)
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(d) Malaysian: Duduk (sit down)

Figure 4: An instruction (sit down) features input to robot in different languages. Left: sound waves; right: normalized features in 20-
dimentional space.
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Figure 5: Comparison of the Euclidean distance (SE: squared error) between input and BMUs in learning (the first 300 iterations)/additional
learning process between T-SOM [12–14] (broken lines) and PL-T-SOM (solid lines).

stores “matured” BMUs, and input features are matched
with units on the memory layer before executing SOM on
feature map. We also adopted annealing plan to decide the
size of neighborhood and learning rate into T-SOM, and
a voice instruction learning system using the improved T-
SOM named PL-T-SOM was developed in [14]. However, a
problem that exists in T-SOM is that its memory layer stores
only the value of matured units without the topology of the
feature map. Even if the memory layer could remember the

topology of the feature map trained online, the new topology
would not be able to be established on it. For this reason, we
propose a new voice instruction learning system using PL-G-
SOM given in Section 2 instead of T-SOM.

In Figure 2, Feature Map is the basic growing SOM
and the size of Action Map and Feeling Map growing with
the Feature Map too. In fact, instructions given by voice
data are transformed into feature vectors of input space
(layer) at first, the PL-G-SOM algorithm is then executed
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Figure 6: Feeling values rose to the maximum happiness 1.0 according to training iterations. PL-G-SOM proposed here (solid lines) showed
faster and longer convergence than T-SOM in [12–14] (dash lines).

on the Feature Map, and the rules of growing given by
(4) and (5) (Figure 1) are also applied to increase Action
Map and Feeling Map. Action Map is composed by those
units which correspond to the units on Feature Map; that
is, each unit on Action Map represents each kind of features
of input data. The units on Action Map are labeled by a
reinforcement learning algorithm given by Section 3.2 to
limit each feature to adaptive actions of the robot. Feeling
Map has the same distribution of units as which of Action
Map. The action number that comes from Action Map is
furnished with a feeling value which expresses the degree of
the action mastered by the robot. The details of Feeling Map
are described in Section 3.3.

3.2. Reinforcement Learning Algorithm. The value of units on
Action Map is given by a value function of state and action,
that is, (8), where Q(st, at(i)) has the value of selected action
at(i) when the robot is in the state st , and Q(s0, a0(i)) =
random numbers initially:

Qt+1(st+1, at+1(i)) = Qt(st , at(i))± r, (8)

where ±r is the empirical value of reward (+)/punishment
(−) given by the instructor, for example, a positive constant
when the robot acted correctly according to its policy
function and a negative constant oppositely.

Now suppose that there are N × M units that exist on
Action Map; that is, N ×M states exist in the environment
of Markov decision process (MDP), each unit has K actions
to be selected available, then a reinforcement learning (RL)
algorithm [17] can be used to label the classes of the states
which are units on Action Map yielded by the Feature Map.
According to (8), a Q-value table can be established as shown
in Table 1.

For each state st that is, presented voice instruction,
robot intends to select a valuable action at(i) according

Table 1: Q-value table. Each unit of Action Map has a Qt(st , at(i))
value corresponding to an action.

st at(1) at(2) at(i) at(K)

1 6 2 −8 0

2 10 1 0 1

· · ·
N ×M 0 2 7 2

to a stochastic action policy π given by Gibbs distribution
(Boltzmann distribution) as shown in

πt(at(i) | st) = eQt(st ,at(i))/T∑
j∈A eQt(st ,at( j))/T . (9)

Here, T is a positive parameter named temperature [17],
higher T causes an active exploration of actions (each action
is selected under a similar probability), and lower T gives a
greedy selection of the action with higher Q value oppositely.

We propose to use Q(st, at(i)) as a criterion of growing
the size of Feature Map, Action Map, and Feeling Map. In
fact, when the robot chooses an action with high Q(st, at(i))
but instructor judges that it is wrong, then a new row/column
is inserted nearby the st, that is, the BMU c. The growing
process is described in Section 2.1.

3.3. Feeling Map. To express the degree of how a voice
instruction is learned by robot, a Feeling Map which has
the same number of units with Action Map is designed
(Figure 2). The distance from input pattern to BMU of
Feature Map and the reward from instructor are used to
calculate feeling values which is normalized in [−1.0, 1.0]
where high positive value means happiness and 0.0 is the
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Comparing the learning result showed by (c) and (d), it is easy to find that except of the action “1”, PL-G-SOM showed to be more effective
in gathering the similar input on its Action Map as neighbored output comparing with T-SOM.

(a) Feature Map of PL-G-SOM
(t = 1200)

1 1 1 1 1 1 1 4
444

4
4

44 4
4
4

4
4

44

4
4

4
4
4

4
4

4
4

4
44

4
4 44

4
4 4

4

4 4
4
4

4
4

1
11

1
1 1

11 1
22

2 2
22
22

2 2
2
2 2 2 2

2 2

2
2 2233

3 3
33
3

22

22
2 2

22
22

2

222 2
22 2

2

2

2
22

2
2
22

2 2 2 2
2 2

22
222

22
2

222
2
2 2

23
3

33
33

3 3 3
3 3

3
33

33
33

22
22

22
1 1

1

1 1 1
11

(b) Action Map of PL-G-SOM (t =
1200)

Figure 8: Results of feature classification and instruction learning/additional learning using PL-G-SOM. The sizes of maps grew to 11× 15
(165 units) when they began with 5× 5 (25 units) in the experiment.

initial value of each unit; negative values express sadness. The
learning algorithm which was also used in [12–14] is given by

Ft+1(i) = Ft(i)± aC − bDi, (10)

where F(i) notes the feeling value of unit i on the Feeling
Map (zero initially), C notes the continue times of reward
or punishment, Di is the Euclidean distance (squared error)
between the unit on Feature Map corresponding to i, and the
input data, a, b are constants and 0 < a < 1, 0 < b� 1.

4. Experiments

4.1. Descriptions. Learning and additional learning experi-
ments were performed using the system with PL-G-SOM

proposed in Section 3 and the system with T-SOM in [12–
14].

Four kinds of voice instructions were used in experi-
ments: sit down, lie down, stand up, and walk. Instructions
in Japanese were used to training the system. Additional
learning using voice instructions given by other languages
was executed after training using the Japanese. Three kinds
of languages: English, Chinese, and Malaysian were used to
confirm additional learning ability of the system. The voices
were recorded in a normal room by 3 males who pronounced
each instruction 3 times. So, there were 3 samples of one
instruction used for each kind of languages while 4 actions
with 48 samples.

Sound waves were preprocessed by normalization and
noise elimination, and windowed by 20 intervals to yield
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Figure 10: Comparison of recognition error (SE: squared error
between input and BMU) in learning process between T-SOM and
PL-T-SOM.

20 feature vectors of input space. Figure 4 shows an
example of instruction “sit down” pronounced in Japanese
(“Osuwari”), English (“Sit”), Chinese (“Zuoxia”), and
Malaysian (“Duduk”). Parameters used in the experiments
are shown in Table 2.

4.2. Results and Analyses. Either T-SOM or PL-G-SOM
realized 100% recognition rates for 4 actions in different
languages after learning and additional learning. However,
PL-G-SOM showed faster and better convergence than T-
SOM when the Euclidean distance (SE: squared error)
between input and BMUs (Figure 5). This means that
the classification to the input pattern was executed more
efficiently by PL-G-SOM. Furthermore, the feeling values
which express instruction recognition rate showed more
obviously that correct actions of robot corresponding to
instructions in voices were acquired more quickly and stably
(Figure 6). Figure 7 shows the internal states of Feature Map

Table 2: Parameters used in the experiments.

Description Symbol Quantity

Size of Feature Map of
T-SOM

N ×M 5× 5

Size of initial
PL-G-SOM

N ×M 5× 5

Iteration times for
one instruction

t 300× 4

Temperature T 1.0

Number of
instructions (actions)

a(i) 4

Maximum/Minimum
neighborhood in
PL-G-SOM

σmax, σmin N×M/2, 0.7

Reward for one action
selected

r 10.0

Parameters of Feeling
Map

a, b 0.2, 0.05

Number of samples — 48

Sampling rate — 8 KHz

Sample size — 8 bit

Channel — monaural

(left) and Action Map (right) changing in training. The
curves in each unit on Feature Map in Figure 7 express values
of mi (m1,m2 . . . ,mn), i = 1, 2, . . . ,N ×M. Numbers with
different colors on the Action Map express the different
actions which were classified (labeled) by the reinforcement
learning process described in Section 3.

Figures 7(a) and 7(b) show the initial states of T-SOM
and PL-G-SOM, where random numbers were used. Figures
7(c) and 7(d) are the results of learning using Japanese
instructions. Comparing with T-SOM, PL-G-SOM showed
more effective on the topology formation of actions; that is,
numbers of actions on the Action Map clustered more clearly.
After additional learning, that is, using English, Chinese, and
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Figure 11: Comparison of recognition rates between T-SOM and PL-T-SOM using voice instructions with 10% noises.

Table 3: Recognition rates of different actions with noises.

Language Method Success rate (10% noises) Success rate (20% noises) Success rate (30% noises)

Japanese
T-SOM 45.9 40.9 35.0

PL-G-SOM 88.5 57.8 46.6

English
T-SOM 50.8 45.3 27.0

PL-G-SOM 93.2 57.6 39.9

Chinese
T-SOM 44.5 41.1 32.5

PL-G-SOM 88.3 60.1 43.9

Malaysian
T-SOM 51.0 40.0 37.1

PL-G-SOM 81.9 54.9 47.2

Average
T-SOM 48.0 41.6 33.1

PL-G-SOM 86.7 57.6 44.4

Malaysian 300 times, respectively, the size of Feature Map
and Action map of PL-G-SOM grew from 25 (5 × 5) units
to 165 (11× 15) (Figure 8).

The scaling variable ε used in PL-G-SOM ((6)-(7))
changed with the training, and by Figure 9, one can confirm
that ε decreased eventually during learning at first; however,
when a new kind of language was input, the scaling variable
ε suddenly changed to be larger and repeated its annealing
scheme. Figure 10 shows the increase of the number of units
on Memory Layer of T-SOM and the increase of the number
of units on PL-G-SOM. Both units grew with additional
learning and the number of units on Memory Layer of T-
SOM stopped at 33, meanwhile 140 units were inserted into
PL-G-SOM each layer. To confirm the robustness of the two
learning system, we also tested noisy samples.

Table 3 shows the results of recognition rates of different
actions with 10%, 20%, and 30% noises added to the 48 voice
samples (i.e., N% of data in 20 dimensions were replaced by
random numbers between [0.0, 1.0] ). The average rate of
success actions using T-SOM and PL-G-SOM was 48.0% and
86.7, respectively, given by 10 times of executions. Table 4

shows the results of recognition rates of different languages
with the respective noisy samples.

Figure 11 shows the comparison of recognition rates of
T-SOM and PL-G-SOM when 10% noises existed in all 48
instruction samples.

The results using PL-G-SOM proposed here show advan-
tages than those with conventional learning system in all
cases. In fact, we also investigated the use of frequency
features for recognition of different instructions, however,
similar results were observed in the experiments.

5. Conclusion

PL-G-SOM, a novel self-organizing map, was proposed using
a reinforcement learning algorithm and annealing schemes
of parameters. Online learning and additional learning are
available with PL-G-SOM, and it was adopted into a voice
instruction learning system of autonomous robot instead of
conventional T-SOM. Experiments results showed that the
advantage of the new learning system is speed and noise
robustness.
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Table 4: Recognition rates of different languages with noises.

Instruction Method Success rate (10% noises) Success rate (20% noises) Success rate (30% noises)

Sit down T-SOM 48.8 55.2 33.6

PL-G-SOM 87.2 62.0 42.0

Lay down T-SOM 47.2 34.0 36.4

PL-G-SOM 90.8 67.2 56.0

Stand up T-SOM 45.6 33.2 25.2

PL-G-SOM 86.4 48.4 33.2

Walk T-SOM 50.4 44.0 37.6

PL-G-SOM 82.4 52.8 46.4

Average T-SOM 48.0 41.6 33.1

PL-G-SOM 86.7 57.6 44.4

Acknowledgment

This paper was supported by Grant-in-Aid for Scientific
Research (JSPS nos. 20500207, 20500277).

References

[1] T. Kohonen, “Self-organized formation of topologically cor-
rect feature maps,” Biological Cybernetics, vol. 43, no. 1, pp.
59–69, 1982.

[2] T. Kohonen, “Analysis of a simple self-organizing process,”
Biological Cybernetics, vol. 44, no. 2, pp. 135–140, 1982.

[3] T. Kohonen, “The self-organizing map,” Neurocomputing, vol.
21, no. 1–3, pp. 1–6, 1998.

[4] T. Kohonen, Self-Organizing Maps, Springer Series in Informa-
tion Sciences, Springer, Berlin, Germany, 1995.

[5] M. Cottrell, J. C. Fort, and G. Pagès, “Theoretical aspects of the
SOM algorithm,” Neurocomputing, vol. 21, no. 1–3, pp. 119–
138, 1998.

[6] Bibliography of SOM, http://www.cis.hut.fi/nnrc/refs/.
[7] B. Fritzke, “Growing grid—a self-organizing network with

constant neighborhood range and adaptation strength,” Neu-
ral Processing Letters, vol. 2, no. 5, pp. 9–13, 1995.

[8] H.-U. Bauer and T. Villmann, “Growing a hypercubical output
space in a self-organizing feature map,” IEEE Transactions on
Neural Networks, vol. 8, no. 2, pp. 218–226, 1997.

[9] T. Villmann and H.-U. Bauer, “Applications of the growing
self-organizing map,” Neurocomputing, vol. 21, no. 1–3, pp.
91–100, 1998.

[10] M. Dittenbach, D. Merkl, and A. Rauber, “Growing hierar-
chical self-organizing map,” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN ’00), vol. 6, pp.
15–19, July 2000.

[11] E. Berglund and J. Sitte, “The parameterless self-organizing
map algorithm,” IEEE Transactions on Neural Networks, vol.
17, no. 2, pp. 305–316, 2006.

[12] T. Kuremoto, T. Hano, K. Kobayashi, and M. Obayashi,
“For partner robots: a hand instruction learning system
using transient-SOM,” in Proceedings of the 2nd International
Conference on Natural Computation and the 3rd International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD
’06), pp. 403–414, 2006.

[13] T. Hano, T. Kuremoto, K. Kobayashi, and M. Obayashi,
“A hand image instruction learning system using transient-
SOM,” Transaction on Society of Instrument and Control
Engineering, vol. 43, no. 11, pp. 1004–1006, 2007.

[14] T. Kuremoto, T. Komoto, K. Kobayshi, and M. Obayashi,
“A voice instruction learning system using PL-T-SOM,” in
Proceedings of the 2nd International Congress on Image and
Signal Processing (CISP ’09), pp. 4294–4299, 2009.

[15] V. Moschou, D. Ververidis, and C. Kotropoulos, “Assessment
of self-organizing map variants for clustering with application
to redistribution of emotional speech patterns,” Neurocomput-
ing, vol. 71, no. 1–3, pp. 147–156, 2007.

[16] AIBO, http://www.jp.aibo.com/.
[17] S. S. Sutton and A. G. Barto, Reinforcement Learning: An

Instruction, The MIT Press, London,UK, 1998.


