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Abstract. A functional model of limbic system of brain is proposed by
combining four conventional models: a chaotic neural network (CNN), a multi-
layered chaotic neural network (MCNN), a hippocampus-neocortex model
and an emotional model of amygdala. The composite model can realize mutual
association of multiple time series patterns and transform short-term memory to
long-term memory. The simulation results showed the effectiveness of the
proposed model, and this study suggests the possibility of the brain model
construction by means of integration of different kinds of artificial neural
networks.

1 Introduction

Artificial neural networks have been developed for decades from last century and
successfully used in fields of function approximation, optimization, pattern
recognition, intelligent control, and so on. Functionally, Hopfield network, a recurrent
neural network in which all connections are symmetric, has the ability of stationary
auto-association, meanwhile chaotic neural networks can realize dynamic association
[1, 2]. Emotion models are also proposed and applied in control systems recently [3].
However, realization of an integrated artificial brain model including multiple
functions of brain is still a high hurdle even though learning models, memory models,
emotion models and other functional neural networks have been proposed.

The limbic system of mammalian brain locates on the under of brain including the
parts of hippocampus, amygdala, anterior thalamic nuclei, and entorhinal cortex. It
serves to a variety of functions including to transform short-term memory (working
memory) into long-term memory (declarative memory), to control the emotional
response and support decision of behaviors. In this paper, we propose a limbic system
mathematical model, which combines several functional models, to present how input
patterns are stored in hippocampus and transformed into long-term memory on cortex,
and how emotion models participate in these processes. Our functional model of the
limbic system is developed according to the following points:

1) Hippocampus plays an important role of transforming intermediate-term
memory to long-term memory. Ito et al proposed a hippocampus-cortex model [4]
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and a hippocampus-neocortex model [5] which composed a circuit of cortex - dentate
gyrus — hippocampus — cortex to realize episode memory and long-term memory,
respectively. For its characteristic structure of neuroanatomy and computational
availability of mathematics, we adopt this hippocampus-cortex model as a part of our
model of limbic system.

2) The structure of hippocampus is organized with stratified slices and chaotic
response is observed appearing among these neurons. We proposed a new
hippocampus-neocortex model to realize mutual association and long-term memory in
our previous works [8, 9]. The main difference between our model and Ito et al’s
model is that a model of CA3 layer of hippocampus was presented by multi-layered
chaotic neural networks (MCNN) [7]. MCNN is also used to realize dynamical
memory process in this study.

3) Amygdala plays important roles in emotional responses of brain, and neighbored
to hippocampus in location. We consider that emotion can promote the efficiency of
memory process, so adopt an emotion model proposed by Balkenius and Moren [3]
[13] into our model of limbic system. The main components of the emotion model are
thalamus, amygdala, orbitofrontal cortex and sensory cortex. The model has been
used successfully in an intelligent control system [14] and we also used it to improve
the chaos control process in hippocampus-neocortex model efficiently [10].

According to the knowledge of neuroanatomy, neurophysiology and physiological
psychology, we propose a higher function model of limbic system fusing
hippocampus-neocortex model, MCNN and emotion model described above in this

paper.

2 A Model of Limbic System

A model of limbic system which is composed with a hippocampus-neocortex model
[8, 9] and an amygdala model [3] [13] is shown in Fig. 1. The hippocampus-neocortex
model consists of a memory circuit including cortex — dentate gyrus — hippocampus —
cortex given by Ito et al [4] [5]. Entorhinal cortex and CA2 of hippocampus are
omitted for their weak connections. A chaotic model of CA3 layer in hippocampus is
adopted in with multi-layered chaotic neural networks (MCNN) [7] which combines
two chaotic neural networks [1] instead of the single layer of Ito e al’s model to serve
intermediate-memory processing. MCNN showed its effectiveness of mutual
association of plural time series patterns and long-term memory formation in our
previous simulations [7] [8] [9]. However, emotional effect is not considered in the
memorization process of MCNN, likewise almost of conventional association systems.
In fact, amygdala, which locates adjacent of hippocampus, plays important roles in
the emotional responses such as fear and aggression, and also in the memorization
process such as learning of Pavlovian fear conditioning and enhancing of long-term
memory formation [14]. We adopt an amygdala model given by Balkenius and Moren
[3] [13] here to evaluate and promote the efficiency of memory processing.
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Fig. 1. A model of limbic system proposed in this paper. Neurons in cortex, hippocampus
and amygdala are expressed with dark, gray and white dots respectively. Signals are expressed
with arrow lines.

2.1 A hippocampus-neocortex Model

The dark dots and gray dots in Fig. 1 express neurons of neocortex and hippocampus,
and symbols of CX1, CX2, DG, CA3 and CAIl denote the first layer of cortex, the
second layer of cortex, dentate gyrus, the third layer of hippocampus and the first
layer of hippocampus respectively. The signal flow of the hippocampus-neocortex
model is showed with arrows, i.e.: input stimuli (Input layer) — sensory memory
(CX1) — short-term memory (CX2) — intermediate memory (DG) — Hebbian
learning and chaotic processing of storage and recollection (CA3) — decoding (CA1)
— long-term memory (CX2). The output of CA3, which is a result of chaotic memory
processing, projects to Amygdala and the output of Amygdala is input to CA3 to
realize chaotic state control of MCNN in CA3.
The dynamics of association cortex is given as following.
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Where | (t) is the output value of the i th neuron in the Input layer of association

cx2

cortex, XiCXl(t) and X;

X 2-CX2
ij

(t) are the output value of the ith neuron in CX1 and

CX2 respectively, W denotes the weight of connection (variable) between the

J th neuron (output) and the i th neuron in the CX2 layer, wozed

W% denote the weights of connections (fixed) between layers of CX1 and CX2,

CX2 and CA1 respectively, x™(t) is the output of the i th neuron in CAl, 6% is
a threshold value of cortex neurons, N is the number of neurons in CX1 as same as
CX2, f expresses a step function. Eq. (3) endows CX2 associative function for

input patterns and long-term memory formation function for output patterns of
hippocampus.

The learning rule of the synapses in CX2 is given by Eq. (4) which is a Habbian
rule using the different output of neurons in time t and t-1.

AWEFO? = g - xPP (XS (t-1). @)

Where . is a parameter of learning rate.
Hippocampus composes DG, MCNN and CA1l neurons. DG executes pattern
encoding (Eqg. (5)) with a competition learning (Eg. (6)).
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Where Wi‘}g'c’d denotes the weight of connection between the i th neuron in CX1

(output) and the ~ J th neuron in DG, X?Xl is the output of the i th neuron in CX1,

6% is a threshold value of DG neurons, /[, is a learning rate and ¢, < [y -

CA3 accepts the encoded information from DG and executes chaotic processing of
storage and recollection with MCNN. It consists of two CNN layers which dynamics
is given by Eg. (12) — Eq. (15) and one output layer which neuron’s output is given by
Eq. (7) — Eq. (9).
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Here the jth neuron in CNN1 x” () and the jth neuron in CNN2 x"(7) are used
to transform the output of MCNN by the ith neuron in output layer of MCNN

c3out ~a3out.cnnl 3out.cnn2 .
XN () weeem! and we ™, denote the connections between the output

layer and CNNI, CNN2 respectively. Learning rule is given as
ca3out-cnn 1 ca3out cn
Aw;j =5 (x5 "(0).

Mutual associative memory process is realized by the output layer of MCNN
receives the output of CNN1 and CNN2, i.e., Eq. (7) and Eq. (8), alternatively. In fact,
when there are two time series patterns are processed by the two CNN layers of
MCNN, one layer of CNN plays a role of static external stimuli meanwhile another
layer of CNN executes chaotic storage or recollection processing dynamically. In
another word, CNN layers fire alternatively in CA3. To switch their roles of CNNss,
we used a simple threshold in [7] [8] [9], however, an emotional control given by
subsection 2.2 and subsection 2.3 can raise the performance of MCNN [10].

CAL in hippocampus decodes output pattern of MCNN which is expressed by n
neurons to patterns stored by associative cortex CX2 which has N neurons (Eg. (10)).
Hebbian learning rule is described by Eq. (11) where input from CX1 is a teacher

signal (Wicjal'CX1 =1.0).

Xical (t) = f (Z?:O Wﬁa1~ca3x<j:a3out (t o 1) +
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Where . isaparameter of learning rate, i=12,...,N.

CNN1 and CNNZ2 are Adachi & Aihara’s CNN proposed in [1] [2] and combined to
each other in our MCNN model [7]. The dynamics are described by Eq. (12) — Eqg.
(15).

X t+) =g(y;t+D)+z,t+D) +y-v;(t+1)). (12)

Yilt+D) =k yi(t) —ox(t) +a . (13)



zi(t+1)=kfzi(t)+znzwijxj(t). (14)
j=1

v (t+1) = kov; () + iwij*xj (t). (15)
j=1

Where x,(¢) is the output value of ith neuron at time ¢, » is the number of neurons
of input layer, w; is the weight of connection from jth neuron to ith neuron, y; (¥)
denotes internal state of ith neuron, a is a learning rate of ith neuron, 4y, k,, &, are
damping rates, a;is a parameter as the summation of threshold and external input, y is
a rate of effectiveness from another layer, W' ; denotes the weight of connection from
jth neuron of different CNN layer to ith neuron in current CNN layer, x*,- (f) is the
output value of jth neuron in different CNN layer at time ¢ g(-) is a sigmoid

function.
When a MCNN is compgsed by two CNN layers, learning rules of the connections
between the CNN layers I ; are described by Eq. (16) and Eq. (17).

AWijcnnl~cr1n2 — :B . Xicnnl (t)qunnz (t) (16)
AWijcr1r12~cnn1 — ﬁ . Xicnn2 (t)X(j:nnl (t) . (17)

Where f is a parameter of learning rate, usually #=1/m, m is the number of

stored patterns.

Conventionally, we calculated the temporal change of the internal state of a CNN
layer Ax(r), and when Ax(¢) is less than a threshold 6, the chaotic retrieval of the
layer is stopped by changing values of parameters k,, k; into zero, as a result, the
CNN layer becomes to a Hopfield model. The recalled pattern of one CNN layer
provides an input pattern to the other CNN layer, and the network realizes mutual
association and one-to-many retrieval for plural time series patterns [7] [8] [9].

2.2 An Amygdala-Hippocampus Model

Balkenius & Moren’s computational amygdala model [3] [13], which is shown in the
right part of limbic system model in Fig. 1, is combined with hippocampus-neocortex
described above to evaluate and promote the performance of memory processing.
Recently, we proposed an amygdala-hippocampus model which showed faster storage
ability and higher precision of recollection of plural time series patterns dynamical
association [10]. The main idea of the adoption of emotional model comes from the
consideration that unstable state of hippocampus may result emotional response, i.e.,
arousal of amygdala, or the high value of amygdale output may enhance memory
processing happened in hippocampus.
The dynamics of the amygdale model is described as follows:
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Where S; denotes input stimuli from sensory cortex and thalamus to ith neuron in
amygdala, A, denotes the output of ith neuron in amygdala, O; denotes the output

of ith neuron in orbitofrontal cortex, E s the output of amygdala which control the
internal state of MCNN by tuning damping parameters as same as our conventional

method. @amv>Bawy  are learning rates, Vi.Wi are variables of connections in
Amygdala model. Reward R coming from other area of brain is used to renew Eq.
(21) and Eq. (22) which belongs to reinforcement learning algorithm.

Suppose that the unstable degree of a CNN provides a reward R to amygdala model,
then an emotional control can be realized by Eq. (18) — Eq. (27).
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Where §; in Eq. (23) corresponds to input of Amygdala (Eq. (19) and Eq. (20)), X;
denotes the output of chaotic neuron in CNN layers, Navy is the number of amygdala
layer in Amygdala model, n is the number of CNN layers, R is a reward according
to Eq. (25) where F expresses fire rate of the neurons in amygdala layer, 8y is a

threshold of the output of the amygdala layer, ngis a threshold of the reward
function Eq. (25), g(-) is a Sigmoid function. The output of Amygadala E controls

state of MCNN with threshold &amy which is described in Eq. (27).

3 Simulations

To confirm the effectiveness of the proposed model of limbic system, we performed
two kinds of simulations using a personal computer loaded a Pentium 4 CPU. The fist
simulation was designed to compare the mutual association abilities between
conventional MCNN and Amygdala — Hippocampus model. This simulation was also
described in [10], however, new statistical results would be reported more in this
paper. The second simulation was designed to compare one-to-many association
abilities, and long-term memory formation abilities between Amydala-Hippocampus
model and the model of limbic system proposed in this paper.

3.1 Simulation of Mutual Association

Two time series patterns used in mutual association simulation of MCNN and
Amygdala-Hippocampus model are as same as those in [7] and [10]. All parameters
value or their initial value used in these simulations were decided by empirical
knowledge or according to the previous works and they are shown in Table 1. The
comparison of storage time and recollection time of different models is shown by
Table 2. Amygdala-Hippocampus model had a faster storage than MCNN however a
slower recollection. The results can be explained as that emotional model enhanced
the storage processing in the meaning of efficient and enhanced the recollection more
“carefully” in the meaning of precision. In fact we confirmed that retrieved patterns
using emotional control method showed their completeness meanwhile MCNN failed
sometime. lllustrations of the results by MCNN are omitted here for want of space,
and results by Amygadala-Hippocampus model are shown in Fig. 2.

3.2 Simulation of Long-term Memory

Two time series patterns shown in Input layer of Fig. 3 similar to the simulations of
Ito et al’s [5] were used to investigate the association and long-term memory
formation abilities of proposed model of limbic system. Binary patterns in each time
series were orthogonal, and a 4-step interval between the two time series was set to
distinguish them. The procedure of simulation is described according to time
sequence as following:



A. Input the two time series patterns. The first pattern of each time series was

same to serve as a key pattern of one-to-many association.

B. Intermediate memory recollection. Input the key pattern to associate time series
patterns stored on the time A.

C. Recollection without hippocampus. Stop the output of hippocampus and
amygdala temporarily to investigate long-term memory formation on CX2.

D. Consolidate long-term memory with a long-term potentiation (LPT) process,
i.e., input the key pattern repeatedly. Hippocampus works to transform intermediate
memory to long-term memory.

E. Recollection of long-term memory. Stop hippocampus and amygdala to
investigate long-term memory formation on CX2.

Table 1. Parameter values (or initial values) used in the simulations.
Symbol Description Value
N Number of neurons in association cortex 50
n Number of neurons in association cortex 30

Wirj;x2-cxl Weight of connection from CX1 to CX2 1.0
Wﬁxzcal Weight of connection from CX2 to CA1 1.0
e Learning rate in association cortex 0.0015
Bre Learning rate in hippocampus 1.0
Ay Learning rate in amygdala part 0.2
Bamy Learning rate in ortbitofrontal part 0.8
ki Damping coefficient in CNN 0.02
Ke Damping coefficient in CNN 0.02
k, Damping coefficient in CNN 0.1,0.9
N amy Number of neurons in Amygdala 10
L2 Threshold of conventional control 5
Onmy Threshold of emotional control 0.0-1.0
Or Threshold of Amygdala neurons 0.3,0.6,0.9
o Threshold of association cortex 0.5
Nk Threshold of Amygdala reward 0.0-1.0

Table 2. Comparison of memory processing performance with results of mutual association

simulations.

Model Storage time (steps) Recollection time (steps)

Conventional MCNN [7] [8] [9] 18
Amygdala — Hippocampus model 8

17
35
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Fig. 2. Results of memory processing simulations with Amygadala — Hippocampus model
proposed in [10].

Table 3. Comparison of successful rate of recollection with results of one-to-many times
series pattern association simulations (%).

Models Time series A Time series B Failed
Hippocampus — neocortex model [8] [9] 7 3 90
Proposed model of limbic system 9 9 82

One simulation result of one-to-many association and long-term memory formation
are shown in Fig. 3. One time series pattern was stored in CX2, while the rate of
storage including failed one is reported by Table 3. The output of amygdala model
during storage and recollection processes is shown in Fig. 4. Comparing with
conventional hippocampus-neocortex model [8] [9], the model of limbic system
proposed raised 8% rate of successful recollection.
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Fig. 3. Simulation results of long-term memory formation. Two time series patterns were
presented during learning process and a piece of a common pattern was used to be a clue
pattern until long-term memory was formed on CX2 layer.
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Fig. 4. The change of output of Amygdala during storage and recollection process.



4  Conclusion

A model of limbic system is proposed by combining a conventional hippocampus-
neocortex model, chaotic neural works and an amygdala model. The proposed
mathematical model can realize mutual association and long-term memory of multiple
time series patterns with higher performance comparing with the conventional models.
Different learning rules, such as Hebbian competition rule and reinforcement learning
rule, are functionally adopted in the proposed model. This integration of memory
models and emotion models gives an evidence of the realization probability of the
computational artificial brain in the future.
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