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hc   

Hippocampus composes DG, MCNN and CA1 neurons. DG executes pattern 

encoding (Eq. (5)) with a competition learning (Eq. (6)). 
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1cxdg

ijw 
 denotes the weight of connection between the i th neuron in CX1 

(output) and the j th neuron in DG, 
1cx

jx  is the output of the i th neuron in CX1, 

dg hc hchc    

CA3 accepts the encoded information from DG and executes chaotic processing of 

storage and recollection with MCNN. It consists of two CNN layers which dynamics 

is given by Eq. (12) – Eq. (15) and one output layer which neuron’s output is given by 

Eq. (7) – Eq. (9). 
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CA1 in hippocampus decodes output pattern of MCNN which is expressed by n 

neurons to patterns stored by associative cortex CX2 which has N neurons (Eq. (10)). 

Hebbian learning rule is described by Eq. (11) where input from CX1 is a teacher 

signal ( 0.111 cxca
ijw ).  
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Where hc  is a parameter of learning rate, .,...,2,1 Ni   

CNN1 and CNN2 are Adachi & Aihara’s CNN proposed in [1] [2] and combined to 

each other in our MCNN model [7]. The dynamics are described by Eq. (12) – Eq. 

(15).  
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When a MCNN is composed by two CNN layers, learning rules of the connections 

between the CNN layers  are described by Eq. (16) and Eq. (17).  
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Where   is a parameter of learning rate, usually m/1 , m is the number of 

stored patterns.
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Where iS  denotes input stimuli from sensory cortex and thalamus to ith neuron in 

amygdala, 
iA  denotes the output of ith neuron in amygdala, iO  denotes the output 

of ith neuron in orbitofrontal cortex, E  is the output of amygdala which control the 

internal state of MCNN by tuning damping parameters as same as our conventional 

method. AMYAMY    are learning rates, ii WV , are variables of connections in 

Amygdala model. Reward R coming from other area of brain is used to renew Eq. 

(21) and Eq. (22) which belongs to reinforcement learning algorithm. 

Suppose that the unstable degree of a CNN provides a reward R to amygdala model, 

then an emotional control can be realized by Eq. (18) – Eq. (27). 
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Where Si in Eq. (23) corresponds to input of Amygdala (Eq. (19) and Eq. (20)), xj 

denotes the output of chaotic neuron in CNN layers, NAMY is the number of amygdala 

layer in Amygdala model, n is the number of CNN layers, R  is a reward according 

to Eq. (25) where F  expresses fire rate of the neurons in amygdala layer, R  is a 

threshold of the output of the amygdala layer, Rn is a threshold of the reward 

function Eq. (25), )(g  is a Sigmoid function. The output of Amygadala E controls 

state of MCNN with threshold AMY  which is described in Eq. (27). 

To confirm the effectiveness of the proposed model of limbic system, we performed 

two kinds of simulations using a personal computer loaded a Pentium 4 CPU. The fist 

simulation was designed to compare the mutual association abilities between 

conventional MCNN and Amygdala  Hippocampus model. This simulation was also 

described in [10], however, new statistical results would be reported more in this 

paper. The second simulation was designed to compare one-to-many association 

abilities, and long-term memory formation abilities between Amydala-Hippocampus 

model and the model of limbic system proposed in this paper. 

Two time series patterns used in mutual association simulation of MCNN and 

Amygdala-Hippocampus model are as same as those in [7] and [10]. All parameters 

value or their initial value used in these simulations were decided by empirical 

knowledge or according to the previous works and they are shown in Table 1. The 

comparison of storage time and recollection time of different models is shown by 

Table 2. Amygdala-Hippocampus model had a faster storage than MCNN however a 

slower recollection. The results can be explained as that emotional model enhanced 

the storage processing in the meaning of efficient and enhanced the recollection more 

―carefully‖ in the meaning of precision. In fact we confirmed that retrieved patterns 

using emotional control method showed their completeness meanwhile MCNN failed 

sometime. Illustrations of the results by MCNN are omitted here for want of space, 

and results by Amygadala-Hippocampus model are shown in Fig. 2. 

Two time series patterns shown in Input layer of Fig. 3 similar to the simulations of 

Ito et al’s [5] were used to investigate the association and long-term memory 

formation abilities of proposed model of limbic system. Binary patterns in each time 

series were orthogonal, and a 4-step interval between the two time series was set to 

distinguish them. The procedure of simulation is described according to time 

sequence as following: 



A. Input the two time series patterns. The first pattern of each time series was 

same to serve as a key pattern of one-to-many association. 

B. Intermediate memory recollection. Input the key pattern to associate time series 

patterns stored on the time A. 

C. Recollection without hippocampus. Stop the output of hippocampus and 

amygdala temporarily to investigate long-term memory formation on CX2. 

D. Consolidate long-term memory with a long-term potentiation (LPT) process, 

i.e., input the key pattern repeatedly. Hippocampus works to transform intermediate 

memory to long-term memory. 

E. Recollection of long-term memory. Stop hippocampus and amygdala to 

investigate long-term memory formation on CX2.  

 

Table 1.  Parameter values (or initial values) used in the simulations. 
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Table 2.  Comparison of memory processing performance with results of mutual association 

simulations. 
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Table 3.  Comparison of successful rate of recollection with results of one-to-many times 

series pattern association simulations (%). 
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4   Conclusion 

A model of limbic system is proposed by combining a conventional hippocampus-

neocortex model, chaotic neural works and an amygdala model. The proposed 

mathematical model can realize mutual association and long-term memory of multiple 

time series patterns with higher performance comparing with the conventional models. 

Different learning rules, such as Hebbian competition rule and reinforcement learning 

rule, are functionally adopted in the proposed model. This integration of memory 

models and emotion models gives an evidence of the realization probability of the 

computational artificial brain in the future.  

1. Adachi, M., Aihara, K.: Associative Dynamics in Chaotic Neural Network. Neural Networks, 
No.10, pp. 83--98 (1997) 

2. Aihara, K., Takabe, T., Toyoda, M.: Chaotic Neural Networks. Physics Letters A. Vo.144, 
No.6-7, pp. 333--340 (1990) 

3. Balkenius, C., Morén, J.: Emotional Learning: A Computational Model the Amygdala, 
Cybernetics and Systems, Vol.32, No.6, pp. 611--636 (2000) 

4. Ito, M., Kuroiwa, J., Sawada, Y., Miyake, S.: A model of hippocampus-neocortex for 

episodic memory. Proc. 5th Intern. Conf. Neural Information Processing. 1P-16, pp. 431--

434 (1998) 

5. Ito, M., Miyake, S., Inawashiro, S., Kuroiwa, J., Sawada, Y.: Long term memory of temporal 

patterns in a hippocampus-cortex model. (in Japanese) Technical Report of IEICE. 

NLP2000, Vol.18, pp. 25--32 (2000) 
6. Kajiwara, R., Takashima, I., Mimura, Y., Witter, M. P. Iijima, T.: Amygdala Input Promotes 

Spread of Excitatory Neural Activity from Perirhinal Cortex to the Entorhinal-Hippocampal 
circuit, J. europhysiology, Vol. 89, pp. 2176--2184 (2003) 

7. Kuremoto, T., Eto, T., Kobayashi, K. and Obayashi, M.: A multilayered chaotic neural 

network for associative memory. Proc. of SICE Annual Conf., pp. 1020-1023 (2005) 

8. Kuremoto, T., Eto, T., Kobayashi, K. and Obayashi, M.: A chaotic model of hippocampus 

neocortex. In: Wang, L., Chen, K., Ong, Y. S. (eds.), LNCS 3610, pp. 439--448 (2005) 

9. Kuremoto, T., Eto, T., Kobayashi, K. and Obayashi, M.: A Hippocampus-Neocortex Model 

for Chaotic Association. In: Chen, K., Wang, L. (eds.) Trends in Neural Computation 

(Studies in Computational Intelligence Vol.35), pp. 111--133 (2006) 

10. Kuremoto, T., Ohta, T., Obayashi, M., Kobayashi, K.: A Dynamic Associative System by 

Adopting an Amygdala Model. Artif. Life and Robotics, Vol. 13, No.2, pp.478--482 (2009) 

11. MaGaugh, J., L., Cahill, L., Roozendaal, B.: Involvement of the Amygdala in Memory 

Storage: Interation with Other Brain Systems. Proc. Natl. Acad. Sci. USA, Vol. 93, pp. 

13508—13514 (1996) 

12. Mizutani, S., Sano, T. Uchiyama, T., Sonehara, N.: Controlling Chaos in Chaotic Neural 

Networks. Electronics and Communications in Japan, Part III: Fundamental Electronics 

Science, Vol. 81, No.8, pp. 73--82 (1998) 

13. Morén, J., Balkenius, C.: A Computational Model of Emotional Learning in the Amygdala. 

Proc. of the 6th Intern. Conf. on the Simulation of Adaptive Behavior, Cambridge MA, 

MIT Press (2000) 
14. Rouhani, H., Jalili, M., Araabi, B. N., Eppler, W., Luscas, W.: Brain Emotional Learning 

Based Intelligent Controller Applied to Neurofuzzy Model of Micro-Heat Exchanger. Expert 
Sys. with Appli., Vol. 32, pp. 911--918 (2007) 

 


