
A Bayesian Local Linear
Wavelet Neural Network

Kunikazu Kobayashi, Masanao Obayashi, and Takashi Kuremoto

Yamaguchi University, 2-16-1, Tokiwadai, Ube, Yamaguchi 755-8611, Japan
{koba, m.obayas, wu}@yamaguchi-u.ac.jp
http://www.nn.csse.yamaguchi-u.ac.jp/k/

Abstract. In general, wavelet neural networks have a problem on the
curse of dimensionality, i.e. the number of hidden units to be required are
exponentially rose with increasing an input dimension. To solve the above
problem, a wavelet neural network incorporating a local linear model has
already been proposed. On their network design, however, the number of
hidden units is empirically determined and fixed during learning. In the
present paper, a design method based on Bayesian method is proposed for
the local linear wavelet neural network. The performance of the proposed
method is evaluated through computer simulation.

1 Introduction

Wavelet neural networks (WNNs) have been mainly developed on signal process-
ing and image processing [1]. The greatest characteristic of the WNNs is based on
a temporally and spacially localized basis function, called mother wavelet. The
localized basis function can identify the localization with arbitrary precision be-
cause both location and resolution can be freely adjusted by translation and
dilation parameters. Radial basis function (RBF) networks also use a localized
function [2], but it is difficult to adjust resolution with arbitrary precision.

Y. C. Pati et al. proposed a WNN introducing a discrete affine wavelet trans-
form and presented the solutions to three problems on general feedforward neural
networks, i.e. (1) how to determine the number of hidden units, (2) how to utilize
information on training data and (3) how to escape local minima [3]. Q. Zhang et
al. derived a WNN from a wavelet series expansion and mathematically proved
that it can approximate any continuous functions [4]. K. Kobayashi et al. pro-
posed a network design method utilizing a wavelet spectrum on training data
[5] and another design method using genetic algorithm [6].

However, WNNs still have a problem on the curse of dimensionality, i.e. the
number of hidden units rises exponentially as the number of input dimensions
increases. To solve the above problem, T. Wang et al. introduced a local linear
model into a WNN and developed a local linear wavelet neural network (LL-
WNN) [7]. After that, a lot of effort were mainly devoted into the LLWNN from
parameter learning aspect. T. Wang et al. proposed two methods employing
gradient descent method and genetic programing for parameter learning [7, 8].

Y. Chen et al. also presented two methods using gradient descent method and
PSO (particle swarm optimization) for parameter learning [9, 10] Most research,
however, does not focused on the network design.

On the other hand, Bayesian method based on Bayesian statistics has applied
to the network design of neural networks [11]. S. Albrecht et al. formulated a RBF
network by Bayesian method and employed EM (Expectation-Maximization)
algorithm for parameter learning [12]. C. Andrieu et al. also formulated a RBF
network and approximated the integral calculation in posteriori distribution by
MCMC (Markov Chain Monte Carlo) method [13]. N. Ueda et al. proposed a
split and merge EM algorithm to network design and parameter learning for a
mixture of experts model [14]. M. Sato et al. presented a design method based
on variational Bayes method for a normalized Gaussian network (NGnet) [15].
C. C. Holmes et al. proposed a Bayesian design method for a feedforward neural
network [16].

In the present paper, a Bayesian-based method for both network design and
parameter learning of LLWNN is proposed. The proposed method basically fol-
lows a framework which proposed by C. C. Holmes et al. and tries to formulate
a LLWNN. The LLWNN applying the proposed method is called a BLLWNN
(Bayesian local linear wavelet neural network). Through computer simulation
using function approximation problem, the performance of the BLLWNN is ver-
ified.

2 Local Linear Wavelet Neural Network (LLWNN)

Figure 1 shows a three-layered feedforward local linear wavelet neural network
with N inputs and one output [7]. When an input vector x = {x1, x2, · · · , xN} ∈
RN is given, LLWNN converts it to a weighted output f̂(x) with a local linear
parameter ck. That is, the output f̂ of LLWNN is denoted by the follwoing

Fig. 1. Architecture of a local linear wavelet neural network

equation.

f̂(x) =
K∑

k=1

ck Ψk(x) =
K∑

k=1

(wk0 + wk1x1 + · · · + wkNxN)Ψk(x). (1)

In (1), the basis function Ψk is defined by

Ψk(x) = |ak|−
1
2 ψ

(
x − bk

ak

)
, (2)

where ak ∈ RN and bk ∈ RN refer to dilation and translation parameters, re-
spectively. Then, the basis function ψ in (2) must satisfy the following admissible
condition. ∫

R

|Ψ̂(λ)|2

λ
dλ <∞, (3)

where Ψ̂(λ) means Fourier transform of Ψ(x). For a localized basis function, (3)
is equivalent to

∫
R
ψ(x)dx = 0. That is, the basis function has no direct current

component.
The difference between general WNN and LLWNN depends on the parameter

ck. The parameter ck is scalar for WNN and a local linear model for LLWNN.
This allows LLWNN could cover larger area in input space compared with WNN.
As a result, LLWNN may resolve the curse of dimensionality because it can
reduce the numbers of hidden units and free parameters. Furthermore, it is
clarified that the local linear model realizes good interpolation even if the number
of learning samples is small [7].

On network design of LLWNN, however, almost all the models empirically
determine the number of hidden units [7–10]. Namely, the network structure is
determined in advance and fixed during learning. Y. Chen et al. has tried to
construct a LLWNN using eCGP (Extended Compact Genetic Programming)
[17]. However, since they represented the network as a hierarchical structure, it
seems that the numbers of hidden units and free parameters tend to be large
[10].

In the present paper, a Bayesian method is applied to network design and
parameter learning of LLWNN.

3 Bayesian Design Method for LLWNN

3.1 Bayesian Method

First of all, D, x, y and θ denote observed data D = (x, y), training data, desired
data and unknown parameter, respectively. The Bayesian method follows the
following procedure [18].

(1) Modeling p(·|θ)

(2) Determine a prior distribution p(θ)
(3) Observe data p(D|θ)
(4) Calculate a posteriori distribution p(θ|D)
(5) Estimate a predictive distribution q(y|x,D)

The posteriori distribution p(θ|D) is derived using the following Bayes’ theorem.

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (4)

Then, if the complexity of model is known, the predictive distribution q(y|x,D)
is derived as

q(y|x,D) =
∫
p(y|x, θ)p(θ|D)dθ, (5)

and if the the complexity of the model, m, is unknown, it is derived as

q(y|x,D) =
∑
m

∫
p(y|x, θ,m)p(θ,m|D)dθ. (6)

The Bayesian method estimates the parameters of observed data to be ap-
proximated as the posteriori distribution of parameters [11]. Its characteristics
are listed as follows.

• It can utilize a priori knowledge as the prior distribution.
• It shows high generalization ability even if training data is small.
• It can evaluate the reliability of the predictive value.
• It can automatically select models.

On the other hand, the Bayesian method has a serious problem on the integral
calculation in posteriori distribution. It requires any approximation methods or
any numerical calculation methods. So far, four method, (1) Laplace approxima-
tion method [18], (2) mean field method [19], (3) MCMC (Markov Chain Monte
Carlo) method [20] and (4) variational Bayes method [21] have been proposed.

A method to be proposed in the present paper utilizes the above MCMC
method. In the present paper, as both network design and parameter learning
of LLWNN are conducted and then the size of model is unknown, the reversible
jump MCMC method [20] is employed

3.2 Proposed Bayesian Design Method

In this section, the proposed Bayesian method for LLWNN is described. The
proposed method follows a framework by C. C. Holmes et al. [16] and formulates
a LLWNN. In the present paper, the LLWNN by applying the proposed method
is called a BLLWNN (Bayesian Local Linear Wavelet Neural Network).

At first, data set D = {(xi, yi) | i = 1 ∼ n} is defined by input data xi ∈ RN

and output data yi ∈ R. The relation between xi and yi is represented by

yi = f(xi) + εi, (7)

where εi referes to a noise term. After that, the input-output characteristic f(·)
is modeled by (1). Then, a model Mk and model space M are written as

Mk = {a1,b1, · · · , ak,bk}, (8)
M = {k,Mk,W}, (9)

respectively, where W = (w1, · · · ,wk) means a weight matrix and a vector
element wk is written as wk = (wk0, wk1, · · · , wkN)′ (w′ refers to a transpose
of w). Furthermore, an unknown parameter θk of LLWNN is written as θk =
{ak,bk,wk}.

The predictive distribution is derived by averaging predictive output f̂M (x)
with the posteriori distributions p(W |Mk, D) and p(Mk|D).

p(y|x, D) =
∑

k

∫∫
f̂M (x)p(W |Mk, D)p(Mk|D)dMkdW, (10)

where p(W |Mk, D) and p(Mk|D) are written as

p(W |Mk, D) =
p(D|W,Mk)p(W)

p(D)
, (11)

p(Mk|D) =
p(D|Mk)p(Mk)

p(D)
. (12)

In (7), if the noise term εi follows a normal distribution with mean 0 and variation
σ2, p(D|W,Mk) in (11) is derived as

p(D|W,Mk) = log
N∏

i=1

p(εi)

= log
N∏

i=1

1√
2πσ

exp
(
− (yi − f(xi,Mk,W))2

2σ2

)

= −n
2

log(2π) − n log σ − 1
2σ2

N∑
i=1

{yi − f(xi,Mk,W)}2
. (13)

In the present paper, prior distributions p(W) in (11) and p(M) in (12) are
assumed by the following normal and gamma distributions, respectively.

p(W) = N(W |0, λ−1I), (14)
p(M) = Ga(DF |α, β), (15)

where DF means a degrees of freedom of model and is defined by

DF = tr
(
Ψ(Ψ ′Ψ + λI)−1Ψ ′) , (16)

where tr(S) refers to a trace of matrix S. From (14) and (15),

p(M,W) = Ga(DF |α, β)N(W |0, λ−1I)

∝ DFα−1 exp (−βDF) exp
(
−λ

2
||W ||2

)
. (17)

In the present paper, the integral calculation in (10) is solved using the re-
versible jump MCMC method, which is a type of MCMC that allows for dimen-
sional changes in the probability distribution being simulated [20]. Therefore,
(10) is approximated by

p(y|x, D) ≈ 1
ns − n0

ns∑
t=n0

fπt
(x), (18)

where πt is a Markov chain sample followed by the probability distribution
p(π|D), n0 is the number of samples in burn-in time and ns is the total number
of samples. In the present paper, a Metropolis-Hastings algorithm [11] is used
for sampling.

4 Computer Simulation

This section describes computer simulation to evaluate the performance of the
proposed method.

In the simulation, a function approximation problem was used. The following
two-dimensional continuous function used by T. Wang et al. [7] was employed.

f(x1, x2) =
sin(πx1) cos(πx2) + 1.0

2.0
, (19)

where the domains of input variables x1 and x2 were set to x1, x2 ∈ [−1.0, 1.0].
The training data set consists of 49 input points (x1, x2) which generated by
equally spaced on a 7×7 grid in [−1.0, 1.0]×[−1.0, 1.0] and corresponding output
f(x1, x2). Then, testing data set consists of 400 input points which generated by
equally spaced on a 20 × 20 grid in the same domain.

The basis function, i.e. ψ in (2) is defined by

ψ(x) = −x exp
(
−x

2

2

)
. (20)

Then, function Ψ is written as tensor product of ψ for input xi as follows.

Ψ(x) =
N∏

i=1

ψ(xi). (21)

The performance was evaluated by three factors, i.e. the number of hidden
units, the number of free parameters and the root-mean-square error (RMSE)
defined by

RMSE =

√√√√ 1
Np

Np∑
j=1

{
f(xj) − f̂(xj)

}2

, (22)

where f(xj) and f̂(xj) are desired and predictive values for input xj , respectively
and Np is the number of training data.

Table 1. Parameter setting

Parameter Value

σ 1.0
λ 0.01
α 0.1
β 0.1
ns 10000
n0 5000

Table 2. Simulation result

Method # of hidden units # of free parameters RMSE

WNN 8 40 1.65 × 10−2

LLWNN 4 28 1.58 × 10−2

BLLWNN 4 28 1.56 × 10−2

The parameter setting and the simulation results are shown in Table 1 and
2, respectively. In Table 2, the results of general WNN and LLWNN [7] are
also provided to compare with the proposed method, i.e. BLLWNN. Both WNN
and LLWNN empirically determine the number of hidden units. The BLLWNN,
however, could automatically determine the numbers of hidden units and free
parameters because of the Bayesian method.

As shown in Table 2, BLLWNN is much better than WNN. Furthermore,
the BLLWNN shows almost the same performance with LLWNN. Therefore,
BLLWNN is superior than LLWNN and WNN because it could automatically
build network structure and determine its parameters.

5 Summary

In the present paper, the Bayesian method to determine both network structure
and parameter of LLWNN has been proposed. Through computer simulation
using function approximation problem, the effectiveness of the proposed method
is confirmed. The evaluation for higher-dimensional functions and time-series
prediction are future work.

References

1. Chui, C. K.: An Introduction to Wavelets. Academic Press (1992)

2. Poggio, T. and Girosi, F.: Networks for approximation and learning. Proc. of the
IEEE, Vol.78, No.9, pp.1481–1497 (1990)

3. Pati, Y. C. and Krishnaprasad, P. S.: Discrete affine wavelet transformations for
analysis and synthesis of feedforward neural networks. Advances in Neural Infor-
mation Processing Systems, Vol.3, pp.743–749, MIT Press (1991)

4. Zhang, Q. and Benveniste, A.: Wavelet networks. IEEE Trans. on Neural Networks,
Vol.3, No.6, pp.889–898 (1992)

5. Kobayashi, K., Torioka, T. and Yoshida, N.: A Wavelet Neural Network with Net-
work Optimizing Function. Systems and Computers in Japan, Vol.26, No.9, pp.61-
71 (1995)

6. Ueda, N., Kobayashi, K. and Torioka, T.: A Wavelet Neural Network with Evo-
lutionally Generated Structures. Trans. on the Institute of Electronics, Informa-
tion and Communication Engineers, Vol.J80-D-II, No.2, pp.652–659 (1997) (in
Japanese)

7. Wang, T. and Sugai, Y.: A local linear adaptive wavelet neural network. Trans. on
the Institute of Electrical Engineers of Japan, Vol.122-C, No.2, pp.277–284 (2002)

8. Wang, T. and Sugai, Y.: The local linear adaptive wavelet neural network with
hybrid ep/gradient algorithm and its application to nonlinear dynamic system
identification. Trans. on the Institute of Electrical Engineers of Japan, Vol.122-C,
No.7, pp.1194–1201 (2002)

9. Chen, Y., Dong, J., Yang, B. and Zhang, Y.: A local linear wavelet neural network.
Proc. of the 5th World Congress on Intelligent Control and Automation, pp.1954–
1957 (2004)

10. Chen, Y., Yang, B. and Dong, J.: Time-series prediction using a local linear wavelet
neural network. Neurocomputing, Vol.69, pp.449–465 (2006)

11. MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge
University Press (2003)

12. Albrecht, S., Busch, J., Kloppenburg, M., Metze, F. and Tavan, P.: General-
ized radial basis function networks for classification and novelty detection: Self-
organization of optimal Bayesian decision. Neural Networks, Vol.13, pp.755–764
(2000)

13. Andrieu, C., de Freitas, N. and Doucet, A.: Robust full Bayesian learning for radial
basis networks. Neural Computation, Vol.13, pp.2359–2407, 2001.

14. Ueda, N., Nakano, R., Ghahramani, Z. and Hinton, G. E.: Split and merge EM
algorithm for improving Gaussian mixture density estimates. Proc. of the 1998
IEEE Signal Processing Society Workshop, pp.274–283 (1998)

15. Sato, M.: Online model selection based on the variational Bayes. Neural Compu-
tation, Vol.13, pp.1649–1681 (2001)

16. Holmes, C. C. and Mallick, B. K.: Bayesian radial basis functions of variable di-
mension. Neural Computation, Vol.10, pp.1217–1233 (1998)

17. Sastry, K. and Goldberg, D. E.: Probabilistic Model Building and Competent Ge-
netic Programming. pp.205–220, Kluwer (2003)

18. MacKay, D. J. C.: Bayesian interpolation. Neural Computation, Vol.4, pp.415–447
(1992)

19. Peterson, C. and Anderson, J. R.: A Mean Field Theory Learning Algorithm for
Neural Networks. Complex Systems, Vol.1, pp.995–1019 (1987)

20. Green, P. J.: Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, Vol.82, pp.711–732 (1995)

21. Attias, H.: Inferring parameter and structure of latent variable models by vari-
ational Bayes. Proc. of the 15th Conf. on Uncertainty in Artificial Intelligence,
pp.21–30 (1999)

