
Nonlinear Prediction by Reinforcement Learning

Takashi Kuremoto, Masanao Obayashi, and Kunikazu Kobayashi

Dept. of Computer Science and Systems Eng., Eng. Fac., Yamaguchi Univ.
Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611, Japan

{wu, m.obayas, koba}@yamaguchi-u.ac.jp

Abstract. Artificial neural networks have presented their powerful abil-
ity and efficiency in nonlinear control, chaotic time series prediction, and
many other fields. Reinforcement learning, which is the last learning al-
gorithm by awarding the learner for correct actions, and punishing wrong
actions, however, is few reported to nonlinear prediction.

In this paper, we construct a multi-layer neural network and using rein-
forcement learning, in particular, a learning algorithm called Stochastic
Gradient Ascent (SGA) to predict nonlinear time series. The proposed
system includes 4 layers: input layer, hidden layer, stochastic parameter
layer and output layer. Using stochastic policy, the system optimizes its
weights of connections and output value to obtain its prediction ability
of nonlinear dynamics. In simulation, we used the Lorenz system, and
compared short-term prediction accuracy of our proposed method with
classical learning method.

1 Introduction

Artificial neural network models, as a kind of soft-computing methods, have
been considered as effective nonlinear predictors [1–4] in last decades. Casdagli
employed the radial basis function network (RBFN) in chaotic time series pre-
diction in early time [1]. Leung and Wang analyzed the structure of hidden-layer
in RBFN, and proposed a technique called the cross-validated subspace method
to estimate the optimum number of hidden units, and applied the method to
prediction of noisy chaotic time series [3]. Oliveira ,Vannucci and Silva suggested
a two-layered feed-forward neural network, where the hyperbolic tangent acti-
vation function was chosen for all hidden units, the linear function for the final
output unit, and obtained good results for the Lorenz system, Henon and Logistic
maps [2]. Such of neural network models are not only developed on fundamental
studies of chaos, but also applied in many nonlinear predictions, e.g., oceanic
radar signals [3], financial time series [4], etc. Kodogiannis and Lolis compared
the performance of some neural networks, i.e., Multi-layer perceptron (MLP),
RBFN, Autoregressive recurrent neural network (ARNN), etc., and fuzzy sys-
tems, used for prediction of currency exchange rates [4].

Meanwhile, reinforcement learning, a kind of goal-directed learning, is of
great use for a learner (agent) adapting unknown environments [5, 6]. When
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the environment belongs to Markov decision process (MDP), or Partially ob-
servable Markov decision process (POMDP), an learner acts some trial-and-
error searches according to certain policies, and receives reward or punishment.
Through the interactions between the environment and learner, both exploration
and exploitation are carried out, the learner adapts to environment gradually.
Though reinforcement learning has been showing more contributions on artificial
intelligence, optimal control theory and other fields, however, this algorithm of
machine learning is hardly applied in nonlinear prediction [7].

We have proposed a self-organized fuzzy neural network, which using a re-
inforcement learning algorithm called Stochastic Gradient Ascent (SGA) [6] to
predict chaotic time series [7], and obtained a high precision result in simulation.
However, the prediction system used multiple softcomputing techniques includ-
ing fuzzy system, self-organization function, stochastic policy and so on, so it was
complained too complex to use. In this paper, we intend to use a simple multi-
layer neural network but apply SGA on it, to predict nonlinear time series. This
system includes 4 layers: input layer, hidden layer, stochastic parameter layer
and output layer. Using stochastic policy, the system optimizes its weights of
connections and output value to obtain its prediction ability of nonlinear dy-
namics. In simulation, we used the Lorenz system [8], and compared short-term
prediction accuracy of our proposed method with classical learning method, i.e.
error back propagation (BP) [9].

2 Prediction Systems

2.1 Conventional prediction system

Traditionally, multiple-layer feedforward neural networks serve as a good pred-
itor of nonlinear time series [1, 2, 4]. Fig. 1 gives an example diagram of the
networks. Units in each layer are linear functions, or monotonous functions i.e.
sigmoid function, generally. Output of units are transfer by weighted connection
to the units in next layer, and by adjusting the weights, network output approach
to a teacher signal, e.g. training data of time series here. The optimal structure
for chaotic time series prediction of this kind of networks are researched detailly
in Ref. [2]. In convenient, multiple nodes in hidden layer accept input with
weights wkn, and their output is given by:

Hk(t) =
1

1 + e−βH

∑
xn(t)wkn

(1)

where βH is a constant.
Similarly, output of unit in output layer of system can be described as:

Ŷ (t + 1) =
1

1 + e−βY

∑
Hk(t)wyk

(2)

where βY is a constant.



3

H1

H
2

H K

wy1

y2

yΚ

k1

k2

Κn

w

w

w
w

w

x (t)= y(t)

x (t)= y(t-τ)

x (t)= y(t-(n-1)τ)

1

2

n

Inputs Hidden Layer

Predicted Value

Sigmoid Function

y(t+1)^

Y

(Sigmoid Function)
w11

w

w
12

1n

Fig. 1. Architecture of a prediction system using error back propagation learning al-
gorithm (conventional system)

2.2 Proposal prediction system

To deal with nonlinear dynamcs, we could not neglect stochastic methods, which
are more effective on resolving problems in real world. We propose a multiple-
layer neural network here, as a nonlinnear predictior, using reinforcement learn-
ing algorithm which has a stochastic policy (Fig. 2).

This hierarchical network is composed by 4 layers:
1) Input layer which receiving information of environment, i.e., reconstructed

data of time series;
2) Hidden layer which is constructed by multiple nodes of sigmoid function;
3) Stochastic layer (Distribution of prediction layer in Figure 2) which are

parameters of probability function, and the nodes fire according to sigmoid func-
tion too;

4) Output layer which is a probability function, we use Gaussian function
here. Stochastic gradient ascent (SGA) [6], which respects to continuous action,
is naturally served into the learning of our predictor. The prediction system and
its learning method will be described in detail in this section.

Reconstructed Inputs According to the Takens embedding theorem [10], the
inputs of prediction system on time t, can be constructed as a n dimensions
vector space X(t), which includes n observed points with same intervals on time
series y(t).

X(t) = (x1(t), x2(t), · · · , xn(t)) (3)
= (y(t), y(t− τ), · · · , y(t− (n− 1)τ) (4)
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Fig. 2. Architecture of a prediction system using reinforcement learning algorithm
(proposal system)

where τ is time delay (interval of sampling), n is the embedding dimension.
If we set up a suitable time delay and embedding dimension, then a track

which shows the dynamics of time series will be observed in the reconstructed
state space X(t) when time step t increases.

Hidden Layer Multiple nodes accept input with weights wij , and their output
is given by:

Rj(t) =
1

1 + e−βR

∑
xi(t)wij

(5)

where βR is a constant.

Stochastic Layer To each hidden node Rj(t) in hidden layer, parameters of
distribution function are connected in weight wjµ and weight wjσ when we con-
sider the output is according to Gaussian distribution. Nodes in stochastic layer
give their output µ, σ as:

µ(Rj(t), wjµ) =
1

1 + e−βµ

∑
Rj(t)wjµ

(6)

σ(Rj(t), wjσ) =
1

1 + e−βσ

∑
Rj(t)wjσ

(7)

where βµ, βσ is constant, respectively.
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Output Layer The node in output layer means a stochastic policy in reinforce-
ment learning. Here we use a 1-dimension Gaussian function π(ŷ(t+1),W,X(t))
simply, to predict time series data:

π(ŷ(t + 1),W,X(t)) =
1√
2πσ

e−
(ŷ(t+1)−µ)2

2σ2 (8)

where ŷ(t + 1) is the value of one-step ahead prediction, produce by regular
random numbers. W means weights wij , wjµ and wjσ. This function causes
learner’s action so it is called stochastic policy in reinforcement learning.

Reinforcement learning: SGA algorithm Kimura and Kobayashi suggested
a reinforcement learning algorithm called stochastic gradient ascent(SGA), to
respect to continuous action[6]. Using this stochastic approximation method, we
train the proposed multiple-layer neural network to be nonlinear predictor. The
SGA algorithm is given under.

1. Accept an observation X(t) from environment.
2. Predict a future data ŷ(t + 1) under a probability π(ŷ(t + 1), W,X(t)).
3. Collate training samples of times series, take the error as reward ri.
4. Calculate the degree of adaption ei(t), and its history for all elements ωi of

internal variable W . where γ is a discount(0 ≤ γ < 1).

ei(t) =
∂

∂ωi
ln

(
π(ŷ(t + 1),W,X(t))

)
(9)

Di(t) = ei(t) + γDi(t− 1) (10)

5. Calculate ∆ωi(t) by under equation.

∆ωi(t) = (ri − b)Di(t) (11)

where b is a constant.
6. Improvement of policy: renew W by under equation.

∆W (t) = (∆ω1(t),∆ω2(t), · · · ,∆ωi(t), · · ·) (12)

W ← W + α(1− γ)∆W (t) (13)

where α is a learning constant, non-negative.
7. Advance time step t to t + 1, return to (1).

3 Simulation

Using time series data of the Lorenz system [8], we examine efficiency of proposed
prediction system and compare with error back propagation (BP) method, a
classical learning of hierarchical neural network. Both prediction system act in
same procedure: observe the Lorenz time series till 1,500 steps, use the beginning
1,000 steps to be training samples, then perform learning loops till prediction
errors going to a convergence. After the architecture of system becomes stable,
it is employed to predict data from 1,001 step to 1,500 step.
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3.1 The Lorenz System

The Lorenz system, which is leaded from convection analysis, is composed with
ordinary differential equations of 3 variableso(t), p(t), q(t). Here, we use their dis-
crete difference equations (Equ. 14 – 16), and predicts the variable o(t)(Equ. 16).

o(t + 1) = o(t) + ∆t · σ · (p(t)− o(t)) (14)

p(t + 1) = p(t)−∆t(o(t) · q(t)− r · o(t) + p(t)) (15)

q(t + 1) = q(t) + ∆t(o(t) · p(t)− b · q(t)) (16)

here,we set ∆t = 0.005, σ = 16.0, γ = 45.92, b = 4.0.
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Fig. 3. Error back propagation (BP): learning result (2,000 iterations)

3.2 Parameters of Prediction System

Parameters in every part of prediction system are reported here.

1. Reconstruction of input space by embedding(Equ.(1),(2)): Embedding di-
mension n : 3 , Time delay τ : 1 , (i.e.,in the case of input to be data of step
1,2,3, then the data of step 4 will be predicted).

2. Multiple neural network using BP:
Number of hidden layer: 1, Number of hidden layer’s nodes: 6, Constant
βH of units in hidden layer: 1.0, Constant βY of unit in output layer: 1.0,
Learning rate: 0.01, Maximum value of error: 0.1.
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Fig. 4. Error back propagation (BP): Short-term (1-step ahead) prediction result
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3. Proposed neural network:
Number of nodes Rj : 60, Constant βR of units in hidden layer: 10.0, Constant
βµ of unit µ in stochastic layer: 8.0, Constant βσ of unit σ in hidden layer:
18.0, Learning constant: For weight wij , αij : 2.0E-6, for weight wjµ, αjµ:
2.0E-5, for weight wjσ, αjσ: 2.0E-6, Reinforcement learning of SGA: Reward
from prediction error rt is

rt =
{

4.0E − 4 if |ŷ(t + 1)− y(t + 1)| ≤ ε

−4.0E − 4 if |ŷ(t + 1)− y(t + 1)| > ε

. Limitation of errorsε: 0.1, Discountγ: 0.9.
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Fig. 6. Stochastic Gradient Ascent (SGA): Learning result (5,000 iterations)

3.3 Simulation Result

For conventional learning algorithm (BP), Fig. 3 shows its learning result after
2,000 times iteration, and one-head prediction result is shown in Fig. 4. The
average value of prediction error in 500 steps short-term prediction is 0.0129
(values of time series data are regularized into (0, 1)).

For proposed system using reinforcement learning, Fig. 5 and Fig. 6 show
its learning aspects, Fig. 7 shows its learning result after 30,000 times iteration,
and one-head prediction result is shown in Fig. 8. The average value of pre-
diction error in 500 steps short-term prediction is 0.0112 (values of time series
data are regularized into (0, 1)), i.e., prediction precision is raised 13.2% than
conventional algorithm.
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Fig. 7. SGA: Learning result (30,000 iterations)
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4 Conclusions

An algorithm of reinforcement learning with stochastic policy, SGA, was applied
to a multi-layer neural network to predict nonlinear time series in this paper. Us-
ing Lorenz chaotic time series, prediction simulation demonstrated the proposed
system provided successful learning results and prediction results comparing with
conventional learning algorithm. For its stochastic output, the proposed system
is expected to be applied on the noise contained complex dynamics, or particially
observable Markov decision process in real world.
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