
Forecasting Time Series by SOFNN with Reinforcement Learning

Takashi Kuremoto, Masanao Obayashi, and Kunikazu Kobayashi

Abstract— A self-organized fuzzy neural network (SOFNN)
with a reinforcement learning algorithm called Stochastic Gra-
dient Ascent (SGA) is proposed to forecast a set of 11 time series.
The proposed system is confirmed to predict chaotic time series
before, and is applied to predict each/every time series in NN3
forecasting competition modifying parameters of threshold of
fuzzy neurons only. The training results are obviously effective
and results of long-term prediction give convincible trend values
in the future of time series.

I. I NTRODUCTION

Though many artificial neural networks (ANN) are suitable
to forecast time series, radial basis function network (RBFN)
is still recommend to be applied on chaotic time series [1],
[2], [3] and financial time series [4]. Meanwhile, how to de-
sign the structure of hidden-layer in RBFN is a puzzling and
confusing problem in practice. Leung and Wang proposed
a technique called the cross-validated subspace method to
estimate the optimum number of hidden units, and applied
the method to prediction of noisy chaotic time series [3]
but the method may fall its efficiency when the training
sample data is not enough. To overcome the problem of
RBFN, we proposed a self-organization fuzzy network and
its effectiveness on prediction of chaotic time series was
investigated [5], [6].

Furthermore, the learning algorithm is so important to any
artificial neural network. Reinforcement learning (RL), a kind
of goal-directed learning, is well known for an agent adapting
unknown environments [7], [8]. We have proposed to apply
a kind of RL called stochastic gradient ascent (SGA) on
nonlinear predations [5], [6], [9]. The accurate of forecasting
in experiments using Lorenz chaotic time series shown its
good efficiency whatever the type of ANN is either multi-
layer perception (MLP) or SOFNN.

In this paper, we intend to use SOFNN and SGA to
forecast a set of 11 time series given by neural forecasting
competition (NN3) [10]. The prediction system is introduced
in Section 1 in detail, and all of train forecasting results and
forecasting results are shown in Section 2.

II. FORECASTINGSYSTEM

Flow of forecasting is shown in Fig. 1 and self-organized
fuzzy neural network, ANN predictor, is a RBF-like neural
network (Fig. 2). The input layer is given by data in history
of time series (Subsection 2.1). The hidden layer consists
Gaussian membership functions which number is decided
by a threshold and the rule layer realizes fuzzy inference
(Subsection 2.2 and 2.3). Forecasting is executed according

Authors are with the Graduate School of Science and Systems Engineer-
ing, Yamaguchi University , Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611,
Japan, Tel: +81-836-859520, Fax: +81-836-859501, Email:{wu, m.obayas,
koba}@yamaguchi-u.ac.jp

to a probability policy which to determinate actions in
the procedure of reinforcement learning and the error of
forecasting is as reward value (Subsection 2.4).

A. Embedding

According to the Takens embedding theorem, the inputs
of prediction system on timet, can be reconstructed as an
dimensions vector spaceX(t), which includesn observed
points with same intervals on a time seriesy(t).

X(t) = (x1(t), x2(t), · · · , xn(t)) (1)

= (y(t), y(t− τ), · · · , y(t− (n− 1)τ) (2)

where τ is time delay (interval of sampling) may be an
arbitrary value in theory but it effects prediction accuracy
in practice,n is the embedding dimension,n > 1.

B. Self-organized Fuzzy Neural Network (SOFNN)

Fig. 2 shows an architecture of self-organized fuzzy neu-
ral network (SOFNN) we proposed. The initial number of
membership function and fuzzy rule is only1, respectively.

1) Membership Function:To each elementxi(t) of the
input X(t), membership functionBij(xi(t)) is represented
as

Bij(xi(t)) = exp

{
− (xi(t)−mij)2

2σ2
ij

}
(3)

wheremij andσij are the parameters of mean and standard
deviation of the Gaussian membership function injth node,
respectively. Initially,j = 1, and with increasing of input
patterns, the new membership function will be added.

y(t)

X(t)

Evaluation of Prediction

Reinforcement learning

y(t+1)
^

Time Series

Reconstructed Inputs

Self-organized Fuzzy Neural Network

Prediction under Stochastice Policy
r: reward

Fig. 1. Flow chart of training and forecasting.

2) Fuzzy Inference:The fitnessλk(X(t)) is an algebraic
product of membership functions which connects to rulek.

λk(X(t)) =
n∏

i=1

Bio(xi) (4)

where o is the number of membership function, connects
with kth rule. o ∈ {1, 2, · · · , li}.

R1

R
2

R K

R

R

R

R

R

R

σ

σ

m ij

ij

µ

wµ1

µ2

µΚ

σ1

σ2

σΚ

w

w

w

w

w

π

x (t)= y(t)

x (t)= y(t-τ)

x (t)= y(t-(n-1)τ)

1

2

n

Inputs Fuzzy Membership Functions Fuzzy Rules Distributions of prediction Predicted Values

Average

Deviation

Stochastic Function

Fig. 2. A structure of self-organized fuzzy neural network (SOFNN)

3) Self-organization of Neural Network :A new member-
ship function will be add if

Bij(xi(s)) <
n
√

F (F̄ : threshold) (5)

corresponding to the input,li ← li + 1.
A new fuzzy rule will be added also adapting to the new

membership function.
4) Prediction Policy from Defuzzification:Integrate fuzzy

rules with connection weight, fuzzy inference can be ob-
tained. The output of signal can be considered as a new
Gaussian distribution either, i.e.,

µ(X(t), ωµk) =
∑K

k=1 λkωµk∑K
k=1 λk

(6)

σ(X(t), ωσk) =
∑K

k=1 λkωσk∑K
k=1 λk

(7)

tonaru. whereµ is the mean of output,σ is its standard
deviation. Weightωµk and ωσk are parameters concerning
with inputs setX(t), and will be renew during training.

π(ŷ(t + 1),W,X(t)) =
1√
2πσ

exp

{
− (ŷ(t + 1)− µ)2

2σ2

}

(8)
where ŷ(t + 1) is the value of one-step ahead prediction,
produce by regular random numbers.W means weightsωµk

andωσk.

C. Reinforcement Learning Algorithm (SGA)

Reinforcement learning has recently been well-known as
a kind of intelligent machine learning [7], [8]. It needs not
any model of operator but learns to approach to its goal
by observing sensing rewards from environments. Kimura
and Kobayashi suggested an algorithm called stochastic
gradient ascent (SGA), which respect to continuous action
and confirmed in control systems [8]. The error of forecasting
is as reward to adjust probability policy in training process.
SGA algorithm is shown under.

1) Accept an observationX(t) from environment.
2) Predict a future datây(t + 1) under a probability

π(ŷ(t + 1),W,X(t)).
3) Collate training samples of times series, take the error

as rewardri.
4) Calculate the degree of adaptionei(t), and its history

for all elementsωi of internal variableW . whereγ is
a discount (0 ≤ γ < 1).

ei(t) =
∂

∂ωi
ln

(
π(ŷ(t + 1),W,X(t))

)
(9)

Di(t) = ei(t) + γDi(t− 1) (10)

5) Calculate∆ωi(t) by under equation.

∆ωi(t) = (ri − b)Di(t) (11)

whereb is a constant.
6) Improvement of policy: renewW by under equation.

∆W (t) = (∆ω1(t), ∆ω2(t), · · · , ∆ωi(t), · · ·) (12)

W ← W + α(1− γ)∆W (t) (13)

whereα is a learning constant,non-negative.
7) Advance time stept to t + 1,return to(1).

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 0 20 40 60 80 100 120 140 160

"101"
"train_forecast"

"forecast"

Fig. 3. Forecasting results of time series 101.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5000 10000 15000 20000 25000 30000

"average_abs_error.dat"

Fig. 4. Change of forecasting error in training.

III. F ORECASTINGNN3 TIME SERIES

We applied the proposed forecasting system on a set of
11 time series provided by Neural Forecasting Competition
(NN3)[10]. The procedure is :

1) Obtain all data (from 1 to 126, or 123, or 115 steps)
of one time series given by NN3 and normalize their value
to around 0.0 using a linear transformation;

2) Let the input dimension be 3, and the delay of time be
1;

3) Tune parameters ,i.e.n
√

F (threshold of membership
functionBij(xi(s))), initial value ofπ (i.e, onlyσij because
mij was set to 0.0), value of rewardr, to appropriate
/satisfied values by observing change of training errors, then
train forecasting is obtained when the training error (Mean
Absolute Error) becomes to converge;

4)Forecast unknown data in the future 18 steps using
trained system. The only pre-processing to input data was
to modify values to around 0.0 using a fixed linear transfor-
mation, and the number of iterations in training was 30,000
for 11 time series.

TABLE I

RESULTS AND PARAMETERS IN TRAINING AND FORECASTING.

Data SMAPEs
n
√

F σ r
101 98.4 0.99 10.0 1.0
102 41.9 0.82 7.8 1.0
103 131.1 0.95 14.0 1.2
104 107.4 0.90 2.0 1.0
105 100.0 0.98 9.0 1.0
106 99.7 0.92 1.0 1.0
107 97.4 0.90 2.0 0.5
108 106.4 0.85 3.0 1.0
109 104.6 0.92 2.0 1.25
110 113.4 0.80 10.0 1.0
111 106.5 0.90 3.0 1.0

Fig. 3 shows training/forecasting result of time series 101.
Fig. 4 shows its membership function number’s change and
its rule number’s change is shown in Fig. 5.

The results of training shown the effectiveness of our
method, and the results of long-term forecasting gave con-

vincible trends of the time series in future.
The forecasting results for all 11 time series are shown in

Table 1, where SMAPE means the mean Symmetric Mean
Absolute Percent Error across a time series (SMAPEs =
1
n

∑n
t=1

|xt−ŷt|
(xt+ŷt)/2 ∗ 100)[10].

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

"fuzzy1.txt"
"fuzzy2.txt"
"fuzzy3.txt"

Fig. 5. Change of numbers of membership functions during training.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

"rule.txt"

Fig. 6. Change of numbers of fuzzy rules during training.

Parameters of prediction system are reported under .

1) Reconstruction of input space by embed-
ding(Equ.(1),(2)):
Embedding dimensionn = 3
Time delayτ= 1

2) Self-organized fuzzy neural network:
Initial value of weightωµk = 0.0
Initial value of weightωσk = 0.5

3) Reinforecement learning of SGA:
Limitation of errorsε = 1.0
Discountγ = 0.9
Learning constant:

For weightωµk, αωµk
= 0.003

For weightωσk, αωσk
= 3.0E-6

For mean and standard deviationmij , σij: αmij ,
ασij = 3.0E-6

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100 120 140 160

"102"
"train_forecast"

"forecast"

Fig. 7. Forecasting results of time series 102.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120 140 160

"103"
"train_forecast"

"forecast"

Fig. 8. Forecasting results of time series 103.

IV. CONCLUSION

The robustness of proposed self-organization fuzzy neural
network with reinforcement learning algorithm is confirmed
by a set of NN3 reduced data. The predictor is easy to use by
only tuning its threshold and initial deviation of membership
function and reward parameter. Except normalization to
sample data, no any additional operation to original data and
forecasting result. All train steps were limited to 30,000 and
average training time was not over 2 minutes on a personal
computer (3.0GHz CPU).

ACKNOWLEDGMENTS

This work was partly supported by Grants-in-Aid for
Scientific Research of JSPS (No.18500230).

REFERENCES

[1] M. Casdagli, Nonlinear prediction of chaotic time series,Physica D:
Nonlinear Phenomena, Vol. 35, Issue 3, pp.335-356, 1989

[2] K. A. de Oliveira, A. Vannucci, E. C. da Silva, Using artificial neural
networks to forecast chaotic time series,Physica A, No.284, pp.393-
404, 1996

[3] H. Leung, T. Lo, S. Wang, Prediction of Noisy Chaotic Time Series
Using an Optimal Radial Basis Function,IEEE Trans. on Neural
Networks, Vol. 12, No.5, pp.1163-1172, 2001

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100 120 140

"104"
"train_forecast"

"forecast"

Fig. 9. Forecasting results of time series 104.

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 0 20 40 60 80 100 120 140 160

"105"
"train_forecast"

"forecast"

Fig. 10. Forecasting results of time series 105.

[4] V. Kodogiannis, A. Lolis, Forecasting Financial Time Series using Neu-
ral Network and Fuzzy System-based Techniques,Neural Computing
and Applications, No.11, pp.90-102, 2002

[5] Kuremoto T., Obayashi M., Yamamoto A., and Kobayashi K., Neural
Prediction of Chaotic Time Series Using Stochastic Gradient Ascent
Algorithm. Proceedings of the 35th ISCIE International Symposium
on Stochastic Systems Theory and Its Applications (SSS’03), pp.17-22,
2003

[6] Kuremoto T., Obayashi M., Yamamoto A., and Kobayashi K., Predicting
Chaotic Time Series by Reinforcement Learning.Proceedings of the 2nd
International Conference on Computational Intelligence, Robotics and
Autonomous Systems (CIRAS2003), CD-ROM, 2003

[7] R.S.Sutton and A.G. Barto,Reinforcement Learning: An introduction,
The MIT Press, 1998

[8] H. Kimura, S. Kobayashi, Reinforcement Learning for Continuous
Action using Stochastic Gradient Ascent ,Intelligent Autonomous
Systems, Vol.5, pp.288-295, 1998

[9] Kuremoto T., Kobayashi K., Obayashi M., Nonlinear Prediction by
Reinforcement Learning.Lecture Notes in Computer Science (ICIC
2005), Vol.3644, pp.1085-1094, 2005

[10] http://www.neural-forecasting-competition.com/

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 20 40 60 80 100 120 140 160

"106"
"train_forecast"

"forecast"

Fig. 11. Forecasting results of time series 106.

 3300

 3400

 3500

 3600

 3700

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 0 20 40 60 80 100 120 140 160

"107"
"train_forecast"

"forecast"

Fig. 12. Forecasting results of time series 107.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140

"108"
"train_forecast"

"forecast"

Fig. 13. Forecasting results of time series 108.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 20 40 60 80 100 120 140 160

"train_forecast"
"109"

"forecast"

Fig. 14. Forecasting results of time series 109.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160

"110"
"train_forecast"

"forecast"

Fig. 15. Forecasting results of time series 110.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 20 40 60 80 100 120 140 160

"111"
"train_forecast"

"forecast"

Fig. 16. Forecasting results of time series 111.

