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Abstract—We give a trace inequality related to the uncertainty
relation of generalized Wigner-Yanase-Dyson skew information
which includes our result in [16].

I. INTRODUCTION
It is known that the relation between quantum covariances

and quantum Fisher informations is studied and the study is
applied to generalize a recently proved uncertainty relation
based on quantum Fisher information. For example see [1],
[6], [7]. Wigner-Yanase skew information

Iρ(H) =
1

2
Tr

[(
i
[
ρ1/2, H

])2
]

= Tr[ρH2]− Tr[ρ1/2Hρ1/2H]

was defined in [13]. This quantity can be considered as a kind
of the degree for non-commutativity between a quantum state
ρ and an observable H . Here we denote the commutator by
[X,Y ] = XY −Y X . This quantity was generalized by Dyson
to

Iρ,α(H) =
1

2
Tr[(i[ρα, H])(i[ρ1−α, H])]

= Tr[ρH2]− Tr[ραHρ1−αH], α ∈ [0, 1]

which is known as the Wigner-Yanase-Dyson skew informa-
tion. It is famous that the convexity of Iρ,α(H) with respect
to ρ was successfully proven by E.H.Lieb in [10]. And also
this quantity was generalized by Chen and Luo in [4] to

Iρ,α,β(H)

=
1

2
Tr[(i[ρα, H])(i[ρβ , H])ρ1−α−β ]

=
1

2
{Tr[ρH2] + Tr[ρα+βHρ1−α−βH]

−Tr[ραHρ1−αH]− Tr[ρβHρ1−βH]},
where α, β ≥ 0, α + β ≤ 1. The convexity of Iρ,α,β(H)
with respect to ρ was proven by Cai and Luo in [3] under
some restrictive condition. From the physical point of view,
an observable H is generally considered to be an unbounded
opetrator, however in the present paper, unless otherwise
stated, we consider H ∈ B(H) (the set of all bounded
linear operators on the Hilbert space H) as a mathematical
interest. We also denote the set of all self-adjoint operators

(observables) by Lh(H) and the set of all density operators
(quantum states) by S(H) on the Hilbert space H. The
relation between the Wigner-Yanase skew information and the
uncertainty relation was studied in [12]. Moreover the relation
between the Wigner-Yanase-Dyson skew information and the
uncertainty relation was studied in [9], [14]. In our paper [14]
and [16], we defined a generalized skew information and then
derived a kind of uncertainty relation. In section 2, we discuss
various properties of Wigner-Yanase-Dyson skew information.
In section 3, we give an uncertainty relation of generalized
Wigner-Yanase-Dyson skew information.

II. TRACE INEQUALITY OF WIGNER-YANASE-DYSON
SKEW INFORMATION

We review the relation between the Wigner-Yanase skew
information and the uncertainty relation. In quantum mechan-
ical system, the expectation value of an observable H in a
quantum state ρ is expressed by Tr[ρH]. It is natural that the
variance for a quantum state ρ and an observable H is defined
by Vρ(H) = Tr[ρ(H − Tr[ρH]I)2] = Tr[ρH2] − Tr[ρH]2.
It is famous that we have

Vρ(A)Vρ(B) ≥ 1

4
|Tr[ρ[A,B]]|2 (1)

for a quantum state ρ and two observables A and B. The
further strong results was given by Schrodinger

Vρ(A)Vρ(B)− |Covρ(A,B)|2 ≥ 1

4
|Tr[ρ[A,B]]|2,

where the covariance is defined by Covρ(A,B) = Tr[ρ(A−
Tr[ρA]I)(B − Tr[ρB]I)]. However, the uncertainty relation
for the Wigner-Yanase skew information failed. (See [12], [9],
[14])

Iρ(A)Iρ(B) ≥ 1

4
|Tr[ρ[A,B]]|2.

Recently, S.Luo introduced the quantity Uρ(H) representing
a quantum uncertainty excluding the classical mixture:

Uρ(H) =
√
Vρ(H)2 − (Vρ(H)− Iρ(H))2, (2)

then he derived the uncertainty relation on Uρ(H) in [11]:

Uρ(A)Uρ(B) ≥ 1

4
|Tr[ρ[A,B]]|2. (3)
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Note that we have the following relation

0 ≤ Iρ(H) ≤ Uρ(H) ≤ Vρ(H). (4)

The inequality (3) is a refinement of the inequality (1) in
the sense of (4). In [16], we studied one-parameter extended
inequality for the inequality (3).
Definition 2.1: For 0 ≤ α ≤ 1, a quantum state ρ and

an observable H , we define the Wigner-Yanase-Dyson skew
information

Iρ,α(H) =
1

2
Tr[(i[ρα, H0])(i[ρ

1−α, H0])]

= Tr[ρH2
0 ]− Tr[ραH0ρ

1−αH0] (5)

and we also define

Jρ,α(H) =
1

2
Tr[{ρα, H0}{ρ1−α, H0}]

= Tr[ρH2
0 ] + Tr[ραH0ρ

1−αH0], (6)

where H0 = H−Tr[ρH]I and we denote the anti-commutator
by {X,Y } = XY + Y X .
Note that we have

1

2
Tr[(i[ρα, H0])(i[ρ

1−α, H0])] =
1

2
Tr[(i[ρα, H])(i[ρ1−α, H])]

but we have
1

2
Tr[{ρα, H0}{ρ1−α, H0}] �=

1

2
Tr[{ρα, H}{ρ1−α, H}].

Then we have the following inequalities:

Iρ,α(H) ≤ Iρ(H) ≤ Jρ(H) ≤ Jρ,α(H), (7)

since we have Tr[ρ1/2Hρ1/2H] ≤ Tr[ραHρ1−αH]. (See [2],
[5] for example.) If we define

Uρ,α(H) =
√

Vρ(H)2 − (Vρ(H)− Iρ,α(H))2, (8)

as a direct generalization of Eq.(2), then we have

0 ≤ Iρ,α(H) ≤ Uρ,α(H) ≤ Uρ(H) (9)

due to the first inequality of (7). We also have

Uρ,α(H) =
√
Iρ,α(H)Jρ,α(H).

From the inequalities (4),(8),(9), our situation is that we have

0 ≤ Iρ,α(H) ≤ Iρ(H) ≤ Uρ(H)

and
0 ≤ Iρ,α(H) ≤ Uρ,α(H) ≤ Uρ(H).

We gave the following uncertainty relation with respect to
Uρ,α(H) as a direct generalization of the inequality (3).
Theorem 2.1 ([16]): For 0 ≤ α ≤ 1, a quantum state ρ and

observablea A,B,

Uρ,α(A)Uρ,α(B) ≥ α(1− α)|Tr[ρ[A,B]]|2. (10)

Now we define the two parameter extensions of Wigner-
Yanase skew information and give an uncertainty relation
under some conditions in the next section.

Definition 2.2: For α, β ≥ 0, a quantum state ρ and
an observable H , we define the generalized Wigner-Yanase-
Dyson skew information

Iρ,α,β(H)

=
1

2
Tr

[
(i[ρα, H0])(i[ρ

β , H0])ρ
1−α−β

]

=
1

2
{Tr[ρH2

0 ] + Tr[ρα+βH0ρ
1−α−βH0]

−Tr[ραH0ρ
1−αH0]− Tr[ρβH0ρ

1−βH0]}
and we define

Jρ,α,β(H)

=
1

2
Tr

[
(i{ρα, H0})(i{ρβ , H0})ρ1−α−β

]

=
1

2
{Tr[ρH2

0 ] + Tr[ρα+βH0ρ
1−α−βH0]

+Tr[ραH0ρ
1−αH0] + Tr[ρβH0ρ

1−βH0]},
where H0 = H−Tr[ρH]I and we denote the anti-commutator
by {X,Y } = XY + Y X . We remark that α+ β = 1 implies
Iρ,α(H) = Iρ,α,1−α(H) and Jρ,α(H) = Jρ,α,1−α(H). We
also define

Uρ,α,β(H) =
√
Iρ,α,β(H)Jρ,α,β(H).

III. MAIN THEOREM
In this section we assume that ρ is an invertible density

matrix and A,B are Hermitian matrices. We also assume that
α, β ≥ 0 do not necessarily satisfy the condition α + β ≤ 1.
We give the main theorem as follows;
Theorem 3.1: For α, β ≥ 0 and α+ β ≥ 1 or α+ β ≤ 1

2 ,

Uρ,α,β(A)Uρ,α,β(B) ≥ αβ|Tr[ρ[A,B]]|2. (11)

In order to prove Theorem 3.1, we use the several lem-
mas. By spectral decomposition, there exists an orthonor-
mal basis {φ1, φ2, . . . , φn} consisting of eigenvectors of ρ.
Let λ1, λ2, . . . , λn be the corresponding eigenvalues, where∑n

i=1 λi = 1 and λi > 0. Thus, ρ has a spectral representation

ρ =
n∑

i=1

λi|φi〉〈φi|. (12)

We use the notation fα(i, j) = λα
i λ

1−α
j + λ1−α

i λα
j . And

we also use hij = 〈φi|H0|φj〉, aij = 〈φi|A0|φj〉 and bij =
〈φi|B0|φj〉. Then we have the following lemmas.
Lemma 3.1:

Iρ,α,β(H)

=
1

2

∑

i<j

{λi + λj + fα+β(i, j)− fα(i, j)− fβ(i, j)}|hij |2.

Proof of Lemma 3.1. By (12),
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ρH2
0 =

n∑

i=1

λi|φi〉〈φi|H2
0 .

Then

Tr[ρH2
0 ] =

n∑

i=1

λi〈φi|H2
0 |φi〉 =

n∑

i=1

λi‖H0|φi〉‖2. (13)

Since

ραH0 =
n∑

i=1

λα
i |φi〉〈φi|H0

and

ρ1−αH0 =
n∑

i=1

λ1−α
i |φi〉〈φi|H0,

we have

ραH0ρ
1−αH0 =

n∑

i,j=1

λα
i λ

1−α
j |φi〉〈φi|H0|φj〉〈φj |H0.

Thus

Tr[ραH0ρ
1−αH0]

=

n∑

i,j=1

λα
i λ

1−α
j hijhji

=
n∑

i,j=1

λα
i λ

1−α
j |hij |2. (14)

By the similar calculations we have

Tr[ρβH0ρ
1−βH0]

=
n∑

i,j=1

λβ
i λ

1−β
j hijhji

=
n∑

i,j=1

λβ
i λ

1−β
j |hij |2. (15)

Tr[ρα+βH0ρ
1−α−βH0]

=
n∑

i,j=1

λα+β
i λ1−α−β

j hijhji

=

n∑

i,j=1

λα+β
i λ1−α−β

j |hij |2. (16)

From (5), (13), (14), (15), (16),

Iρ,α,β(H)

=
1

2

∑

i,j

(λi + λα+β
i λ1−α−β

j − λα
i λ

1−α
j − λβ

i λ
1−β
j )|hij |2

=
1

2

∑

i

(λi + λi − λi − λi)|hii|2

+
1

2

∑

i<j

(λi + λα+β
i λ1−α−β

j − λα
i λ

1−α
j − λβ

i λ
1−β
j )|hij |2

+
1

2

∑

i<j

(λj + λα+β
j λ1−α−β

i − λα
j λ

1−α
i − λβ

j λ
1−β
i )|hji|2

=
1

2

∑

i<j

(λi + λj + fα+β(i, j)− fα(i, j)− fβ(i, j))|hij |2.

�

Lemma 3.2:

Jρ,α,β(H) ≥
∑

i<j

(λi+λj+fα+β(i, j)+fα(i, j)+fβ(i, j))|hij |2.

Proof of Lemma 3.2. By (6), (13), (14), (15), (16), we have

Jρ,α,β(H)

=
1

2

∑

i,j

(λi + λα+β
i λ1−α−β

j + λα
i λ

1−α
j + λβ

i λ
1−β
j )|hij |2

=
1

2

∑

i

(λi + λi + λi + λi)|hii|2

+
1

2

∑

i<j

(λi + λα+β
i λ1−α−β

j + λα
i λ

1−α
j + λβ

i λ
1−β
j )|hij |2

+
1

2

∑

i<j

(λj + λα+β
j λ1−α−β

i + λα
j λ

1−α
i + λβ

j λ
1−β
i )|hji|2

= 2
∑

i

λi|hii|2

+
1

2

∑

i<j

(λi + λj + fα+β(i, j) + fα(i, j) + fβ(i, j)|hij |2

≥ 1

2

∑

i<j

(λi + λj + fα+β(i, j) + fα(i, j) + fβ(i, j)|hij |2.

�

Lemma 3.3: For any t > 0 and α, β ≥ 0, α + β ≥ 1 or
α+ β ≤ 1

2 , the following inequality holds;

(t1−α−β + 1)2(t2α − 1)(t2β − 1) ≥ 16αβ(t− 1)2. (17)

Proof of Lemma 3.3. It is sufficient to prove (17) for t ≥ 1
and α, β ≥ 0, α + β ≥ 1 or α + β ≤ 1

2 . By Lemma 3.3 in
[16] we have for 0 ≤ p ≤ 1 and s ≥ 1,

(1− 2p)2(s− 1)2 − (sp − s1−p)2 ≥ 0.

Then we can rewrite as follows;

(s2p − 1)(s2(1−p) − 1) ≥ 4p(1− p)(s− 1)2.
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We assume that α, β ≥ 0. We put p = α/(α + β) and
s1/(α+β) = t. Then

(t2α − 1)(t2β − 1) ≥ 4αβ

(α+ β)2
(tα+β − 1)2.

Then we have

(t1−α−β + 1)2(t2α − 1)(t2β − 1)

≥ 4αβ

(α+ β)2
(t1−α−β + 1)2(tα+β − 1)2. (18)

We put α+β = k and f(t) = (t1−k +1)(tk− 1)− 2k(t− 1).
Then

f
′
(t) = (1− k)t−k(tk − 1) + k(t1−k + 1)tk−1 − 2k

= (1− k)(1− t−k) + k(1 + tk−1)− 2k.

and

f
′′
(t) = (1− k)kt−k−1 + k(k − 1)tk−2

= k(k − 1)(tk−2 − t−k−1).

When k = α + β ≥ 1 or k = α + β ≤ 1
2 , it is easy to show

that f
′′
(t) ≥ 0 for t ≥ 1. Since f

′
(1) = 0, we have f

′
(t) ≥ 0

for t ≥ 1. And since f(1) = 0, we have f(t) ≥ 0 for t ≥ 1.
Hence we have for α+ β ≥ 1 or α+ β ≤ 1

2 ,

(t1−α−β + 1)(tα+β − 1) ≥ 2(α+ β)(t− 1).

It follows from (18) that we get

(t1−α−β + 1)2(t2α − 1)(t2β − 1) ≥ 16αβ(t− 1)2.

�

Proof of Theorem 3.1. Since

(t1−α−β + 1)2(t2α − 1)(t2β − 1)

= (t+ 1 + tα+β + t1−α−β)2 − (tα + t1−α + tβ + t1−β)2,

we put t =
λi

λj
in (17). Then we have

{
λi

λj
+ 1 +

(
λi

λj

)α+β

+

(
λi

λj

)1−α−β
}2

−
{(

λi

λj

)α

+

(
λi

λj

)1−α

+

(
λi

λj

)β

+

(
λi

λj

)1−β
}2

≥ 16αβ

(
λi

λj
− 1

)2

.

Then we have

{λi + λj + fα+β(i, j)− fα(i, j)− fβ(i, j)}
×{λi + λj + fα+β(i, j) + fα(i, j) + fβ(i, j)}

= (λi + λj + fα+β(i, j))
2 − (fα(i, j) + fβ(i, j))

2

≥ 16αβ(λi − λj)
2. (19)

Since

Tr[ρ[A,B]] = Tr[ρ[A0, B0]]

= 2iImTr[ρA0B0]

= 2iIm
∑

i<j

(λi − λj)aijbji

= 2i
∑

i<j

(λi − λj)Imaijbji,

|Tr[ρ[A,B]]| = 2|
∑

i<j

(λi − λj)Imaijbji|

≤ 2
∑

i<j

|λi − λj ||Imaijbji|.

Then we have

|Tr[ρ[A,B]]|2 ≤ 4

⎧
⎨
⎩
∑

i<j

|λi − λj ||Imaijbji|

⎫
⎬
⎭

2

.

By (19) and Schwarz inequality,

αβ|Tr[ρ[A,B]]|2

≤ 4αβ

⎧
⎨
⎩
∑

i<j

|λi − λj ||Imaijbji|

⎫
⎬
⎭

2

=
1

4

⎧
⎨
⎩
∑

i<j

4
√

αβ|λi − λj ||Imaijbji|

⎫
⎬
⎭

2

≤ 1

4

⎧
⎨
⎩
∑

i<j

4
√

αβ|λi − λj ||aij ||bji|

⎫
⎬
⎭

2

≤ 1

4

⎧
⎨
⎩
∑

i<j

{K2 − L2}1/2|aij ||bji|

⎫
⎬
⎭

2

≤ 1

2

∑

i<j

(K − L)|aij |2 ×
1

2

∑

i<j

(K + L)|bij |2,

where K = λi+λj+fα+β(i, j), L = fα(i, j)+fβ(i, j). Then
we have

Iρ,α,β(A)Jρ,α,β(B) ≥ αβ|Tr[ρ[A,B]]|2.

We also have

Iρ,α,β(B)Jρ,α,β(A) ≥ αβ|Tr[ρ[A,B]]|2.

Hence we have the final result (11). �

Remark 3.1: We remark that (10) is derived by putting β =
1−α in (11). Then Theorem 3.1 is a generalization of Theorem
2.1 given in [16].
Remark 3.2: When α, β ≥ 0 and 1

2 < α + β < 1, we can
show an example which Theorem 3.1 does not hold as follows;
Let α = 1/2, β = 1/4 and

ρ =

(
3/4 0
0 1/4

)
, A =

(
0 i
−i 0

)
, B =

(
0 1
1 0

)
.
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Then we have

Uρ,α,β(A)Uρ,α,β(B) = 0.004487,

αβ|Tr[ρ[A,B]]|2 = 0.125.
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