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Abstract—We give a trace inequality related to the uncertainty
relation of generalized Wigner-Yanase-Dyson skew information
which includes our result in [16].

I. INTRODUCTION

It is known that the relation between quantum covariances
and quantum Fisher informations is studied and the study is
applied to generalize a recently proved uncertainty relation
based on quantum Fisher information. For example see [1],
[6], [7]. Wigner-Yanase skew information

7 #])]

= TrlpH?] = Trlp'/*Hp'/* H]

Ip(H) =

was defined in [13]. This quantity can be considered as a kind
of the degree for non-commutativity between a quantum state
p and an observable H. Here we denote the commutator by
[X,Y] = XY —Y X. This quantity was generalized by Dyson
to

TpalH) = STr[lo" H)lo'~, H))
= Tr[pH?| —Tr[p*Hp' *H],a € [0,1]

which is known as the Wigner-Yanase-Dyson skew informa-
tion. It is famous that the convexity of I, o(H) with respect
to p was successfully proven by E.H.Lieb in [10]. And also
this quantity was generalized by Chen and Luo in [4] to

Ip,a,B(H)
= STl H) (il H])p' )

1
= S{TrlpH? + Trlp™  Hp' =~  H]
~Trlp*Hp'~“H] - Trlp’ Hp' P H]},

where o, > 0, + 8 < 1. The convexity of I, , g(H)
with respect to p was proven by Cai and Luo in [3] under
some restrictive condition. From the physical point of view,
an observable H is generally considered to be an unbounded
opetrator, however in the present paper, unless otherwise
stated, we consider H € B(H) (the set of all bounded
linear operators on the Hilbert space ) as a mathematical
interest. We also denote the set of all self-adjoint operators

(observables) by L, (H) and the set of all density operators
(quantum states) by S(H) on the Hilbert space H. The
relation between the Wigner-Yanase skew information and the
uncertainty relation was studied in [12]. Moreover the relation
between the Wigner-Yanase-Dyson skew information and the
uncertainty relation was studied in [9], [14]. In our paper [14]
and [16], we defined a generalized skew information and then
derived a kind of uncertainty relation. In section 2, we discuss
various properties of Wigner-Yanase-Dyson skew information.
In section 3, we give an uncertainty relation of generalized
Wigner-Yanase-Dyson skew information.

II. TRACE INEQUALITY OF WIGNER-YANASE-DYSON
SKEW INFORMATION

We review the relation between the Wigner-Yanase skew
information and the uncertainty relation. In quantum mechan-
ical system, the expectation value of an observable H in a
quantum state p is expressed by Tr[pH]. It is natural that the
variance for a quantum state p and an observable H is defined
by V,(H) = Trlp(H — Tr[pH|I)*] = Tr[pH?| - Tr[pH]*.
It is famous that we have

Vy(AWy(B) > {ITrlp(A, B (1)

for a quantum state p and two observables A and B. The
further strong results was given by Schrodinger

Vo(AYV,(B) ~ [Couy(4, B > {|TrlolA, B,

where the covariance is defined by Cov,(A, B) = Tr[p(A —
Tr[pA]I)(B — Tr[pB]I)]. However, the uncertainty relation
for the Wigner-Yanase skew information failed. (See [12], [9],
[14]) )

1,(A),(B) > LITrp[A, B

Recently, S.Luo introduced the quantity U,(H) representing
a quantum uncertainty excluding the classical mixture:

Up(H) = \JV,(H)2 = (V,(H) = L(H))2, @)

then he derived the uncertainty relation on U,(H) in [11]:

Up(A)U,(B) > {ITrlplA, B G)
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Note that we have the following relation

0<I,(H)<U,(H)<V,(H). 4)

The inequality (3) is a refinement of the inequality (1) in
the sense of (4). In [16], we studied one-parameter extended
inequality for the inequality (3).

Definition 2.1: For 0 < o < 1, a quantum state p and
an observable H, we define the Wigner-Yanase-Dyson skew
information

IpalH) = STl Hol)(ilp' =, Ho))]

= TrlpHg) = Tr[p®Hop' *Ho] ()
and we also define
1 —Q
Tna(H) = STrl{p", Ho) (o'~ Ho)]
= Tr[pHg) + Trlp*Hop' “Hol,  (6)

where Hy = H—Tr[pH]I and we denote the anti-commutator
by {X,Y} = XY + Y X.
Note that we have

1 1
STrl(le™, Hol)(ilp' =, Hol)] = 5 Tr((ilp®, H])(ilp' =, H])]
but we have
STl Hol o ™ Hol # JTrl{o™ HYp ™, H)]
Then we have the following inequalities:
Lyo(H) < I,(H) < J,(H) < J,o(H), @)

since we have Tr[p'/2Hp'/?H] < Tr[p*Hp'~*H]. (See [2],
[5] for example.) If we define

Upa(H) = \JVp(H)2 = (V,(H) = L a(H)2,  (8)
as a direct generalization of Eq.(2), then we have
0 < I o(H) < Uy o(H) < Uy(H) ©)

due to the first inequality of (7). We also have

Up.a(H) = \/Lpa(H)Jpa(H).

From the inequalities (4),(8),(9), our situation is that we have
0 < I,.a(H) < I(H) < U,(H)

and
0 < I o(H) < Uy o(H) < U,(H).

We gave the following uncertainty relation with respect to
Up,o(H) as a direct generalization of the inequality (3).

Theorem 2.1 ([16]): For 0 < o < 1, a quantum state p and
observablea A, B,

Upa(A)Up,a(B) = a(l = a)[Tr[p[A, B][>.  (10)

Now we define the two parameter extensions of Wigner-
Yanase skew information and give an uncertainty relation
under some conditions in the next section.

Definition 2.2: For o, > 0, a quantum state p and
an observable H, we define the generalized Wigner-Yanase-
Dyson skew information

Ip.o.p(H)

= T (Gl Hol)Gl?, Ho)' )

= S {TrlpH3) + Trlp™ Hop =" i
—Tr[p®Hop*~®Hy| — Tr[p” Hop' =P Ho]}

and we define

Jp.cp(H)

= ST (o™ Hob)(i{o®, Ho})p' ]

= SATrpH3) + o[+ Hop i)
+Tr[p™Hop'~*Ho] + TT[PBH()Pl_BH()]}7

where Hy = H—Tr[pH]I and we denote the anti-commutator
by {X,Y} = XY +YX. We remark that a + 8 = 1 implies
Ipo(H) = Ipai-o(H) and Jpo(H) = Jpa1-a(H). We
also define

Up () = \[ Ty ()T 005 (H).

III. MAIN THEOREM

In this section we assume that p is an invertible density
matrix and A, B are Hermitian matrices. We also assume that
«, B > 0 do not necessarily satisfy the condition o + 8 < 1.
We give the main theorem as follows;

Theorem 3.1: For a, 3> 0and o+ B >1ora+ < 3,

Upag(A)Upap(B) > aB|Tr[plA, B]>. (1)

In order to prove Theorem 3.1, we use the several lem-
mas. By spectral decomposition, there exists an orthonor-
mal basis {¢1,Pa,...,¢,} consisting of eigenvectors of p.
Let Aq, A2,..., A, be the corresponding eigenvalues, where
> A =1land \; > 0. Thus, p has a spectral representation

p=> Nilo) (il (12)
=1

We use the notation [, (i,j) = )\?A}_O‘ + )\%_a)\?. And
we also use hij = <¢Z|H0|¢]>, Ai5 = <¢Z|A0|¢J> and bij =
(¢i|Bo|#;). Then we have the following lemmas.

Lemma 3.1:

I 0p(H)
= %Z{)\z + )\j + fa+5(i,j) - foz(imj) - f5(27.7)}|hl3‘2

1<j

Proof of Lemma 3.1. By (12),
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From (5), (13), (14), (15), (16),

n
Ip,a,ﬁ(H)
pH = Z)\i|¢i><¢i|H3~ 1 o _
~ = 3 Z(Ai F MO AT = NNy
4.J
Then _ 1 2
= 3 Zi:()\i +Ai = A — A B
- 1 o o o _
TrlpHg) = > \i(¢ilHg| i) = ZA 1Holoa)?.  (13) +3 Do AT AN T = AN T g
i=1 1<y
1 at+Byl—a—B _ yayl—a _ \By1-8 2
Since +§ ;()‘j AN = AT = AN )[Ryl
i<j
_”a :1 VY . S () B2
Ho =S X860 (@il Ho 5 2N+ farp(ind) = fali9) = fa(i. ) higl*
i=1 i<j
O
and Lemma 3.2:
" Toap(H) =Y (Nt Aj+farp(is )+ falis 5)+ 50, 5)) hi .
p' T Ho =Y AT %6i) (¢l Ho, i<
i=1
Proof of Lemma 3.2. By (6), (13), (14), (15), (16), we have
we have

a « « a J a H
o Hop " Hy = 37 ATAT100) (041 Ho ) (651 Ho. To.cop (H) 1 1
inj=1 = 5 XTI AT AT g
]
Thus 1 9
= §Z(Ai+>\i+)\i+)\i)|hii|
Tr[paHopl_aHo] 1 a l1—a— ayl—a 1—
. 5 D+ AN TN AN
ayl—a 1<J
s 4 atBylma=B | yayl- EENTIE
= 5 AT
= Y AN (14) :
i = 2 ARl
1
By the similar calculations we have +3 > AN+ fars(ind) + falis §) + fo(0 ) |
i<y
_ 1
Trlp”Hop' =" Hy| > 5 2 A farp(ing) + fa6,9) + 500, 5) byl
n 1 i<j
= Y AN hihys O
”:1 Lemma 3.3: For any t > 0 and o, > 0,a+ 3 > 1 or
_ Z Aiﬁ)‘;_ﬂ|hij|2' (15) a+p< %, the following inequality holds;
irj=1 (P L )22 — D)t — 1) > 16a8(t — 1)%. (17)
Proof of Lemma 3.3. It is sufficient to prove (17) for ¢ > 1
Tr[p®t? Hop' =P Hy] and o, 8 > 0,04+ 3 > 1 or a+ 3 < 5. By Lemma 3.3 in
n [16] we have for 0 < p <1 and s > 1,

NN hshg
2NN I (1—-2p)3(s —1)* = (s* —s'7P)2 > 0.

i,j=1
_ z”: X-"JFB)\I._O‘_ﬁ\h' P (16) Then we can rewrite as follows;
ij=1 (s = 1)(s*U7P) — 1) > 4p(1 —p)(s — 1)*.
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We assume that o, > 0. We put p =
st/(@+8) — ¢ Then

af/(a + B) and

4ap

2a 28 _ a+B _ 1)2
(B =) —1) 2 s 1)2.
Then we have
(tl—a—ﬁ + 1)2(t2a _ 1)([;/25 _ 1)
40[5 1—a—p 2/ 04+6 _ 1)\2
> 7(a+ﬂ)2(t +1)%(¢ 1% (18)

We put a+ 3 =k and f(t) = (1 +1)(tF — 1) — 2k(t - 1).
Then

f@) = A=kt * @t —1) + k@ + 1)tk — 2k
= (=R — ")+ k1 + ") - 2k,
and
@) (1 — k)t 4 k(k — 1)tk 2

= k(k—1)(tF"2 -7k,

When k=a+f8>1ork=a+ <3, itis easy to show
that f”(t) > 0 for t > 1. Since f (1) = 0, we have f () >0
for t > 1. And since f(1) = 0, we have f(¢t) > 0 for ¢ > 1.
Hence we have for o + 3 > 1ora+ 8 < 3,

2P L (P —1) > 2(a + B)(t — 1).
It follows from (18) that we get

(#7070 $ 122 — 1)(t2° — 1) > 160(t — 1)

Proof of Theorem 3.1. Since
(ETTPDAE - (7 - 1)
_ (t 414 ta+[3 + tl—a—ﬁ)Q _ (toz 4 tl—a =+ tﬂ 4 tl—[ﬁ)Z’
i

J
ﬁ+1+ ﬁ 06+B+ ﬁ 1_04_5 2
Aj Aj Aj
2
LA T (AN (AT
Aj Aj Aj Aj
i 2
>1 — =1 .
= 100p ()\j )
Then we have

i + A+ farp(ig) = fa(i,5) — fa(i,5)}

X{Ni +Aj + farp(isd) + fali, 3) + fs(i,5)}
N+ X+ fars(@,0))? = (falis 4) + f5(5,4))?
16aB(\; — \j)%. (19)

we put t = in (17). Then we have

>

Y

Since
TrlplA, B = TrlplAo, Bol]
= 2iImTr[pAoBo]
= 2ilm Z(/\'L — /\j)a,»jbji
1<j
= 27, Z()\z — Aj)lmaijbﬂ,
1<j
ITrlp[A, Bl = 21> (A = Aj)Imai;by|
i<j
S 2Z|)\Z—)\J||Ima”bﬂ\
1<j

Then we have

ITr[p[A, B]II> < 48 [Xi — Aj|[Tmai;bji|

i<j

By (19) and Schwarz inequality,

af|Tr[plA, B]]|?
2
< 4B N = Al Tmaigbyil
1<J
2
1
= 3 24\/@\)\i—)\j\|1maijbji|
1<
2
1
< > avaBINi = Ajllaislbjil
i<y
2
1
< 4 AR = L2 P as bl
1<J
1 1
< §Z(K—L)‘aij|2 X §Z(K+L)|bij|2»
i<j 1<j

where K = X\j+X\j+ fay5(2,7), L = fa(i,7)+ f3(i, j). Then
we have

Ipa(A)Jpa8(B) > ap|Tr[plA, B]|*.
We also have
Lya3(B)Jpas(A) > ap|Tr[plA, B]|*.

Hence we have the final result (11). O
Remark 3.1: We remark that (10) is derived by putting 5 =
1—ain (11). Then Theorem 3.1 is a generalization of Theorem
2.1 given in [16].
Remark 3.2: When o, 8 > 0 and % < a+ <1, we can
show an example which Theorem 3.1 does not hold as follows;

Leta=1/2,6=1/4 and
(3/4 0 (0 (01
”‘(o 1/4>’A_(—i0)’B_<1 o)'
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Then we have
Up.a,8(A)Up.a,5(B) = 0.004487,
aB|Tr(plA, B]]|> = 0.125.
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