Generalized Wigner-Yanase-Dyson Skew Information and Uncertainty Relation

Kenjiro Yanagi
Applied Mathematical Science, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube, 755-8611, Japan.
Email: yanagi@yamaguchi-u.ac.jp

Abstract

We give a trace inequality related to the uncertainty relation of generalized Wigner-Yanase-Dyson skew information which includes our result in [16].

I. Introduction

It is known that the relation between quantum covariances and quantum Fisher informations is studied and the study is applied to generalize a recently proved uncertainty relation based on quantum Fisher information. For example see [1], [6], [7]. Wigner-Yanase skew information

$$
\begin{aligned}
I_{\rho}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{1 / 2}, H\right]\right)^{2}\right] \\
& =\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}\left[\rho^{1 / 2} H \rho^{1 / 2} H\right]
\end{aligned}
$$

was defined in [13]. This quantity can be considered as a kind of the degree for non-commutativity between a quantum state ρ and an observable H. Here we denote the commutator by $[X, Y]=X Y-Y X$. This quantity was generalized by Dyson to

$$
\begin{aligned}
I_{\rho, \alpha}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H\right]\right)\left(i\left[\rho^{1-\alpha}, H\right]\right)\right] \\
& =\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}\left[\rho^{\alpha} H \rho^{1-\alpha} H\right], \alpha \in[0,1]
\end{aligned}
$$

which is known as the Wigner-Yanase-Dyson skew information. It is famous that the convexity of $I_{\rho, \alpha}(H)$ with respect to ρ was successfully proven by E.H.Lieb in [10]. And also this quantity was generalized by Chen and Luo in [4] to

$$
\begin{aligned}
& I_{\rho, \alpha, \beta}(H) \\
= & \frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H\right]\right)\left(i\left[\rho^{\beta}, H\right]\right) \rho^{1-\alpha-\beta}\right] \\
= & \frac{1}{2}\left\{\operatorname{Tr}\left[\rho H^{2}\right]+\operatorname{Tr}\left[\rho^{\alpha+\beta} H \rho^{1-\alpha-\beta} H\right]\right. \\
& \left.-\operatorname{Tr}\left[\rho^{\alpha} H \rho^{1-\alpha} H\right]-\operatorname{Tr}\left[\rho^{\beta} H \rho^{1-\beta} H\right]\right\},
\end{aligned}
$$

where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. The convexity of $I_{\rho, \alpha, \beta}(H)$ with respect to ρ was proven by Cai and Luo in [3] under some restrictive condition. From the physical point of view, an observable H is generally considered to be an unbounded opetrator, however in the present paper, unless otherwise stated, we consider $H \in B(\mathcal{H})$ (the set of all bounded linear operators on the Hilbert space \mathcal{H}) as a mathematical interest. We also denote the set of all self-adjoint operators
(observables) by $\mathcal{L}_{h}(\mathcal{H})$ and the set of all density operators (quantum states) by $\mathcal{S}(\mathcal{H})$ on the Hilbert space \mathcal{H}. The relation between the Wigner-Yanase skew information and the uncertainty relation was studied in [12]. Moreover the relation between the Wigner-Yanase-Dyson skew information and the uncertainty relation was studied in [9], [14]. In our paper [14] and [16], we defined a generalized skew information and then derived a kind of uncertainty relation. In section 2, we discuss various properties of Wigner-Yanase-Dyson skew information. In section 3, we give an uncertainty relation of generalized Wigner-Yanase-Dyson skew information.

II. Trace inequality of Wigner-Yanase-Dyson SKEW INFORMATION

We review the relation between the Wigner-Yanase skew information and the uncertainty relation. In quantum mechanical system, the expectation value of an observable H in a quantum state ρ is expressed by $\operatorname{Tr}[\rho H]$. It is natural that the variance for a quantum state ρ and an observable H is defined by $V_{\rho}(H)=\operatorname{Tr}\left[\rho(H-\operatorname{Tr}[\rho H] I)^{2}\right]=\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}[\rho H]^{2}$. It is famous that we have

$$
\begin{equation*}
V_{\rho}(A) V_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2} \tag{1}
\end{equation*}
$$

for a quantum state ρ and two observables A and B. The further strong results was given by Schrodinger

$$
V_{\rho}(A) V_{\rho}(B)-\left|\operatorname{Cov}_{\rho}(A, B)\right|^{2} \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

where the covariance is defined by $\operatorname{Cov}_{\rho}(A, B)=\operatorname{Tr}[\rho(A-$ $\operatorname{Tr}[\rho A] I)(B-\operatorname{Tr}[\rho B] I)]$. However, the uncertainty relation for the Wigner-Yanase skew information failed. (See [12], [9], [14])

$$
I_{\rho}(A) I_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

Recently, S.Luo introduced the quantity $U_{\rho}(H)$ representing a quantum uncertainty excluding the classical mixture:

$$
\begin{equation*}
U_{\rho}(H)=\sqrt{V_{\rho}(H)^{2}-\left(V_{\rho}(H)-I_{\rho}(H)\right)^{2}} \tag{2}
\end{equation*}
$$

then he derived the uncertainty relation on $U_{\rho}(H)$ in [11]:

$$
\begin{equation*}
U_{\rho}(A) U_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2} \tag{3}
\end{equation*}
$$

Note that we have the following relation

$$
\begin{equation*}
0 \leq I_{\rho}(H) \leq U_{\rho}(H) \leq V_{\rho}(H) \tag{4}
\end{equation*}
$$

The inequality (3) is a refinement of the inequality (1) in the sense of (4). In [16], we studied one-parameter extended inequality for the inequality (3).

Definition 2.1: For $0 \leq \alpha \leq 1$, a quantum state ρ and an observable H, we define the Wigner-Yanase-Dyson skew information

$$
\begin{align*}
I_{\rho, \alpha}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H_{0}\right]\right)\left(i\left[\rho^{1-\alpha}, H_{0}\right]\right)\right] \\
& =\operatorname{Tr}\left[\rho H_{0}^{2}\right]-\operatorname{Tr}\left[\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}\right] \tag{5}
\end{align*}
$$

and we also define

$$
\begin{align*}
J_{\rho, \alpha}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H_{0}\right\}\left\{\rho^{1-\alpha}, H_{0}\right\}\right] \\
& =\operatorname{Tr}\left[\rho H_{0}^{2}\right]+\operatorname{Tr}\left[\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}\right] \tag{6}
\end{align*}
$$

where $H_{0}=H-\operatorname{Tr}[\rho H] I$ and we denote the anti-commutator by $\{X, Y\}=X Y+Y X$.

Note that we have
$\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H_{0}\right]\right)\left(i\left[\rho^{1-\alpha}, H_{0}\right]\right)\right]=\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H\right]\right)\left(i\left[\rho^{1-\alpha}, H\right]\right)\right]$ but we have

$$
\frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H_{0}\right\}\left\{\rho^{1-\alpha}, H_{0}\right\}\right] \neq \frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H\right\}\left\{\rho^{1-\alpha}, H\right\}\right]
$$

Then we have the following inequalities:

$$
\begin{equation*}
I_{\rho, \alpha}(H) \leq I_{\rho}(H) \leq J_{\rho}(H) \leq J_{\rho, \alpha}(H) \tag{7}
\end{equation*}
$$

since we have $\operatorname{Tr}\left[\rho^{1 / 2} H \rho^{1 / 2} H\right] \leq \operatorname{Tr}\left[\rho^{\alpha} H \rho^{1-\alpha} H\right]$. (See [2], [5] for example.) If we define

$$
\begin{equation*}
U_{\rho, \alpha}(H)=\sqrt{V_{\rho}(H)^{2}-\left(V_{\rho}(H)-I_{\rho, \alpha}(H)\right)^{2}} \tag{8}
\end{equation*}
$$

as a direct generalization of Eq.(2), then we have

$$
\begin{equation*}
0 \leq I_{\rho, \alpha}(H) \leq U_{\rho, \alpha}(H) \leq U_{\rho}(H) \tag{9}
\end{equation*}
$$

due to the first inequality of (7). We also have

$$
U_{\rho, \alpha}(H)=\sqrt{I_{\rho, \alpha}(H) J_{\rho, \alpha}(H)}
$$

From the inequalities (4),(8),(9), our situation is that we have

$$
0 \leq I_{\rho, \alpha}(H) \leq I_{\rho}(H) \leq U_{\rho}(H)
$$

and

$$
0 \leq I_{\rho, \alpha}(H) \leq U_{\rho, \alpha}(H) \leq U_{\rho}(H)
$$

We gave the following uncertainty relation with respect to $U_{\rho, \alpha}(H)$ as a direct generalization of the inequality (3).

Theorem 2.1 ([16]): For $0 \leq \alpha \leq 1$, a quantum state ρ and observablea A, B,

$$
\begin{equation*}
U_{\rho, \alpha}(A) U_{\rho, \alpha}(B) \geq \alpha(1-\alpha)|\operatorname{Tr}[\rho[A, B]]|^{2} \tag{10}
\end{equation*}
$$

Now we define the two parameter extensions of WignerYanase skew information and give an uncertainty relation under some conditions in the next section.

Definition 2.2: For $\alpha, \beta \geq 0$, a quantum state ρ and an observable H, we define the generalized Wigner-YanaseDyson skew information

$$
\begin{aligned}
& I_{\rho, \alpha, \beta}(H) \\
= & \frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H_{0}\right]\right)\left(i\left[\rho^{\beta}, H_{0}\right]\right) \rho^{1-\alpha-\beta}\right] \\
= & \frac{1}{2}\left\{\operatorname{Tr}\left[\rho H_{0}^{2}\right]+\operatorname{Tr}\left[\rho^{\alpha+\beta} H_{0} \rho^{1-\alpha-\beta} H_{0}\right]\right. \\
& \left.-\operatorname{Tr}\left[\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}\right]-\operatorname{Tr}\left[\rho^{\beta} H_{0} \rho^{1-\beta} H_{0}\right]\right\}
\end{aligned}
$$

and we define

$$
\begin{aligned}
& J_{\rho, \alpha, \beta}(H) \\
= & \frac{1}{2} \operatorname{Tr}\left[\left(i\left\{\rho^{\alpha}, H_{0}\right\}\right)\left(i\left\{\rho^{\beta}, H_{0}\right\}\right) \rho^{1-\alpha-\beta}\right] \\
= & \frac{1}{2}\left\{\operatorname{Tr}\left[\rho H_{0}^{2}\right]+\operatorname{Tr}\left[\rho^{\alpha+\beta} H_{0} \rho^{1-\alpha-\beta} H_{0}\right]\right. \\
& \left.+\operatorname{Tr}\left[\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}\right]+\operatorname{Tr}\left[\rho^{\beta} H_{0} \rho^{1-\beta} H_{0}\right]\right\}
\end{aligned}
$$

where $H_{0}=H-\operatorname{Tr}[\rho H] I$ and we denote the anti-commutator by $\{X, Y\}=X Y+Y X$. We remark that $\alpha+\beta=1$ implies $I_{\rho, \alpha}(H)=I_{\rho, \alpha, 1-\alpha}(H)$ and $J_{\rho, \alpha}(H)=J_{\rho, \alpha, 1-\alpha}(H) . \mathrm{We}$ also define

$$
U_{\rho, \alpha, \beta}(H)=\sqrt{I_{\rho, \alpha, \beta}(H) J_{\rho, \alpha, \beta}(H)}
$$

III. Main Theorem

In this section we assume that ρ is an invertible density matrix and A, B are Hermitian matrices. We also assume that $\alpha, \beta \geq 0$ do not necessarily satisfy the condition $\alpha+\beta \leq 1$. We give the main theorem as follows;

Theorem 3.1: For $\alpha, \beta \geq 0$ and $\alpha+\beta \geq 1$ or $\alpha+\beta \leq \frac{1}{2}$,

$$
\begin{equation*}
U_{\rho, \alpha, \beta}(A) U_{\rho, \alpha, \beta}(B) \geq \alpha \beta|\operatorname{Tr}[\rho[A, B]]|^{2} \tag{11}
\end{equation*}
$$

In order to prove Theorem 3.1, we use the several lemmas. By spectral decomposition, there exists an orthonormal basis $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ consisting of eigenvectors of ρ. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the corresponding eigenvalues, where $\sum_{i=1}^{n} \lambda_{i}=1$ and $\lambda_{i}>0$. Thus, ρ has a spectral representation

$$
\begin{equation*}
\rho=\sum_{i=1}^{n} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \tag{12}
\end{equation*}
$$

We use the notation $f_{\alpha}(i, j)=\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}+\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}$. And we also use $h_{i j}=\left\langle\phi_{i}\right| H_{0}\left|\phi_{j}\right\rangle, a_{i j}=\left\langle\phi_{i}\right| A_{0}\left|\phi_{j}\right\rangle$ and $b_{i j}=$ $\left\langle\phi_{i}\right| B_{0}\left|\phi_{j}\right\rangle$. Then we have the following lemmas.

Lemma 3.1:

$$
=\begin{aligned}
& \quad \begin{array}{l}
I_{\rho, \alpha, \beta}(H) \\
\frac{1}{2}
\end{array} \sum_{i<j}\left\{\lambda_{i}+\lambda_{j}+f_{\alpha+\beta}(i, j)-f_{\alpha}(i, j)-f_{\beta}(i, j)\right\}\left|h_{i j}\right|^{2} .
\end{aligned}
$$

Proof of Lemma 3.1. By (12),

$$
\rho H_{0}^{2}=\sum_{i=1}^{n} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| H_{0}^{2}
$$

Then

$$
\begin{equation*}
\operatorname{Tr}\left[\rho H_{0}^{2}\right]=\sum_{i=1}^{n} \lambda_{i}\left\langle\phi_{i}\right| H_{0}^{2}\left|\phi_{i}\right\rangle=\sum_{i=1}^{n} \lambda_{i} \| H_{0}\left|\phi_{i}\right\rangle \|^{2} . \tag{13}
\end{equation*}
$$

Since

$$
\rho^{\alpha} H_{0}=\sum_{i=1}^{n} \lambda_{i}^{\alpha}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| H_{0}
$$

and

$$
\rho^{1-\alpha} H_{0}=\sum_{i=1}^{n} \lambda_{i}^{1-\alpha}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| H_{0}
$$

we have

$$
\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}=\sum_{i, j=1}^{n} \lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| H_{0}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| H_{0}
$$

Thus

$$
\begin{align*}
& \operatorname{Tr}\left[\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}\right] \\
= & \sum_{i, j=1}^{n} \lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha} h_{i j} h_{j i} \\
= & \sum_{i, j=1}^{n} \lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\left|h_{i j}\right|^{2} . \tag{14}
\end{align*}
$$

By the similar calculations we have

$$
\begin{align*}
& \operatorname{Tr}\left[\rho^{\beta} H_{0} \rho^{1-\beta} H_{0}\right] \\
= & \sum_{i, j=1}^{n} \lambda_{i}^{\beta} \lambda_{j}^{1-\beta} h_{i j} h_{j i} \\
= & \sum_{i, j=1}^{n} \lambda_{i}^{\beta} \lambda_{j}^{1-\beta}\left|h_{i j}\right|^{2} . \tag{15}\\
= & \sum_{i, j=1}^{n} \lambda_{i}^{\alpha+\beta} \lambda_{j}^{1-\alpha-\beta} h_{i j} h_{j i} \\
= & \sum_{i, j=1}^{n} \lambda_{i}^{\alpha+\beta} \lambda_{j}^{1-\alpha-\beta}\left|h_{i j}\right|^{2} .
\end{align*}
$$ $\alpha+\beta \leq \frac{1}{2}$, the following inequality holds;

$$
\left(t^{1-\alpha-\beta}+1\right)^{2}\left(t^{2 \alpha}-1\right)\left(t^{2 \beta}-1\right) \geq 16 \alpha \beta(t-1)^{2}
$$

Proof of Lemma 3.3. It is sufficient to prove (17) for $t \geq 1$ and $\alpha, \beta \geq 0, \alpha+\beta \geq 1$ or $\alpha+\beta \leq \frac{1}{2}$. By Lemma 3.3 in [16] we have for $0 \leq p \leq 1$ and $s \geq 1$,

$$
(1-2 p)^{2}(s-1)^{2}-\left(s^{p}-s^{1-p}\right)^{2} \geq 0
$$

Then we can rewrite as follows;

$$
\left(s^{2 p}-1\right)\left(s^{2(1-p)}-1\right) \geq 4 p(1-p)(s-1)^{2}
$$

We assume that $\alpha, \beta \geq 0$. We put $p=\alpha /(\alpha+\beta)$ and $s^{1 /(\alpha+\beta)}=t$. Then

$$
\left(t^{2 \alpha}-1\right)\left(t^{2 \beta}-1\right) \geq \frac{4 \alpha \beta}{(\alpha+\beta)^{2}}\left(t^{\alpha+\beta}-1\right)^{2}
$$

Then we have

$$
\begin{align*}
& \left(t^{1-\alpha-\beta}+1\right)^{2}\left(t^{2 \alpha}-1\right)\left(t^{2 \beta}-1\right) \\
\geq & \frac{4 \alpha \beta}{(\alpha+\beta)^{2}}\left(t^{1-\alpha-\beta}+1\right)^{2}\left(t^{\alpha+\beta}-1\right)^{2} \tag{18}
\end{align*}
$$

We put $\alpha+\beta=k$ and $f(t)=\left(t^{1-k}+1\right)\left(t^{k}-1\right)-2 k(t-1)$. Then

$$
\begin{aligned}
f^{\prime}(t) & =(1-k) t^{-k}\left(t^{k}-1\right)+k\left(t^{1-k}+1\right) t^{k-1}-2 k \\
& =(1-k)\left(1-t^{-k}\right)+k\left(1+t^{k-1}\right)-2 k
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(t) & =(1-k) k t^{-k-1}+k(k-1) t^{k-2} \\
& =k(k-1)\left(t^{k-2}-t^{-k-1}\right)
\end{aligned}
$$

When $k=\alpha+\beta \geq 1$ or $k=\alpha+\beta \leq \frac{1}{2}$, it is easy to show that $f^{\prime \prime}(t) \geq 0$ for $t \geq 1$. Since $f^{\prime}(1)=0$, we have $f^{\prime}(t) \geq 0$ for $t \geq 1$. And since $f(1)=0$, we have $f(t) \geq 0$ for $t \geq 1$. Hence we have for $\alpha+\beta \geq 1$ or $\alpha+\beta \leq \frac{1}{2}$,

$$
\left(t^{1-\alpha-\beta}+1\right)\left(t^{\alpha+\beta}-1\right) \geq 2(\alpha+\beta)(t-1)
$$

It follows from (18) that we get

$$
\left(t^{1-\alpha-\beta}+1\right)^{2}\left(t^{2 \alpha}-1\right)\left(t^{2 \beta}-1\right) \geq 16 \alpha \beta(t-1)^{2}
$$

Proof of Theorem 3.1. Since

$$
\begin{aligned}
& \left(t^{1-\alpha-\beta}+1\right)^{2}\left(t^{2 \alpha}-1\right)\left(t^{2 \beta}-1\right) \\
= & \left(t+1+t^{\alpha+\beta}+t^{1-\alpha-\beta}\right)^{2}-\left(t^{\alpha}+t^{1-\alpha}+t^{\beta}+t^{1-\beta}\right)^{2}
\end{aligned}
$$

we put $t=\frac{\lambda_{i}}{\lambda_{j}}$ in (17). Then we have

$$
\begin{gathered}
\left\{\frac{\lambda_{i}}{\lambda_{j}}+1+\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{\alpha+\beta}+\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{1-\alpha-\beta}\right\}^{2} \\
-\left\{\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{\alpha}+\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{1-\alpha}+\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{\beta}+\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{1-\beta}\right\}^{2} \\
\geq 16 \alpha \beta\left(\frac{\lambda_{i}}{\lambda_{j}}-1\right)^{2}
\end{gathered}
$$

Then we have

$$
\begin{align*}
& \left\{\lambda_{i}+\lambda_{j}+f_{\alpha+\beta}(i, j)-f_{\alpha}(i, j)-f_{\beta}(i, j)\right\} \\
& \times\left\{\lambda_{i}+\lambda_{j}+f_{\alpha+\beta}(i, j)+f_{\alpha}(i, j)+f_{\beta}(i, j)\right\} \\
= & \left(\lambda_{i}+\lambda_{j}+f_{\alpha+\beta}(i, j)\right)^{2}-\left(f_{\alpha}(i, j)+f_{\beta}(i, j)\right)^{2} \\
\geq & 16 \alpha \beta\left(\lambda_{i}-\lambda_{j}\right)^{2} . \tag{19}
\end{align*}
$$

Since

$$
\begin{aligned}
\operatorname{Tr}[\rho[A, B]] & =\operatorname{Tr}\left[\rho\left[A_{0}, B_{0}\right]\right] \\
& =2 i \operatorname{ImTr}\left[\rho A_{0} B_{0}\right] \\
& =2 i \operatorname{Im} \sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right) a_{i j} b_{j i} \\
& =2 i \sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right) \operatorname{Ima}_{i j} b_{j i} \\
|\operatorname{Tr}[\rho[A, B]]| & =2\left|\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right) \operatorname{Ima} a_{i j} b_{j i}\right| \\
& \leq 2 \sum_{i<j}\left|\lambda_{i}-\lambda_{j}\right|\left|\operatorname{Ima}_{i j} b_{j i}\right|
\end{aligned}
$$

Then we have

$$
|\operatorname{Tr}[\rho[A, B]]|^{2} \leq 4\left\{\sum_{i<j}\left|\lambda_{i}-\lambda_{j}\right|\left|\operatorname{Ima}_{i j} b_{j i}\right|\right\}^{2}
$$

By (19) and Schwarz inequality,

$$
\begin{aligned}
& \alpha \beta|\operatorname{Tr}[\rho[A, B]]|^{2} \\
\leq & 4 \alpha \beta\left\{\sum_{i<j}\left|\lambda_{i}-\lambda_{j}\right| \mid \text { Ima }_{i j} b_{j i} \mid\right\}^{2} \\
= & \frac{1}{4}\left\{\sum_{i<j} 4 \sqrt{\alpha \beta}\left|\lambda_{i}-\lambda_{j}\right| \mid \text { Ima }_{i j} b_{j i} \mid\right\}^{2} \\
\leq & \frac{1}{4}\left\{\sum_{i<j} 4 \sqrt{\alpha \beta}\left|\lambda_{i}-\lambda_{j}\right|\left|a_{i j}\right|\left|b_{j i}\right|\right\}^{2} \\
\leq & \frac{1}{4}\left\{\sum_{i<j}\left\{K^{2}-L^{2}\right\}^{1 / 2}\left|a_{i j}\right|\left|b_{j i}\right|\right\}^{2} \\
\leq & \frac{1}{2} \sum_{i<j}(K-L)\left|a_{i j}\right|^{2} \times \frac{1}{2} \sum_{i<j}(K+L)\left|b_{i j}\right|^{2},
\end{aligned}
$$

where $K=\lambda_{i}+\lambda_{j}+f_{\alpha+\beta}(i, j), L=f_{\alpha}(i, j)+f_{\beta}(i, j)$. Then we have

$$
I_{\rho, \alpha, \beta}(A) J_{\rho, \alpha, \beta}(B) \geq \alpha \beta|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

We also have

$$
I_{\rho, \alpha, \beta}(B) J_{\rho, \alpha, \beta}(A) \geq \alpha \beta|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

Hence we have the final result (11).
Remark 3.1: We remark that (10) is derived by putting $\beta=$ $1-\alpha$ in (11). Then Theorem 3.1 is a generalization of Theorem 2.1 given in [16].

Remark 3.2: When $\alpha, \beta \geq 0$ and $\frac{1}{2}<\alpha+\beta<1$, we can show an example which Theorem 3.1 does not hold as follows; Let $\alpha=1 / 2, \beta=1 / 4$ and

$$
\rho=\left(\begin{array}{cc}
3 / 4 & 0 \\
0 & 1 / 4
\end{array}\right), A=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then we have

$$
\begin{aligned}
U_{\rho, \alpha, \beta}(A) U_{\rho, \alpha, \beta}(B) & =0.004487 \\
\alpha \beta|\operatorname{Tr}[\rho[A, B]]|^{2} & =0.125
\end{aligned}
$$

Acknowledgment

The author is grateful to Dr. Shigeru Furuichi for useful discussion. This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Scientific Research (C), 20540175

REFERENCES

[1] K.Audenaert, L.Cai and F.Hansen, Inequalities for quantum skew information, Lett. Math. Phys., vol.85(2008), pp.135-146.
[2] J.C.Bourin, Some inequalities for norms on matrices and operators, Linear Algebra and its Applications, vol.292(1999), pp.139-154.
[3] L.Cai and S.Luo, On convexity of generalized Wigner-Yanase-Dyson information, Lett. Math. Phys., vol.83(2008), pp.253-264.
[4] P.Chen and S.Luo, Direct approach to quantum extensions of Fisher information, Front. Math. China, vol.2(2007), pp.359-381.
[5] J.I.Fujii, A trace inequality arising from quantum information theory, Linear Algebra and its Applications, vol.400(2005), pp.141-146.
[6] P.Gibilisco, D.Imparato and T.Isola, A Robertson-type uncertainty principle and quantum Fisher information, Linear Algebra and its Applications, vol.428(2008), pp.1706-1724.
[7] P.Gibilisco, F.Hiai and D.Petz, Quantum covariance, quantum Fisher information, and the uncertainty relations, IEEE Trans. Information Theory, vol.55(2009), pp.439-443.
[8] W.Heisenberg, Über den anschaulichen Inhat der quantummechanischen Kinematik und Mechanik, Zeitschrift für Physik, vol.43(1927), pp.172198.
[9] H.Kosaki, Matrix trace inequality related to uncertainty principle, Internatonal Journal of Mathematics, vol.16(2005), pp.629-646.
[10] E.H.Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math., vol.11(1973), pp.267-288.
[11] S.Luo, Heisenberg uncertainty relation for mixed states, Phys. Rev. A, vol.72(2005), p. 042110.
[12] S.Luo and Q.Zhang, On skew information, IEEE Trans. Information Theory, vol.50(2004), pp.1778-1782, and Correction to "On skew information", IEEE Trans. Information Theory, vol.51(2005), p. 4432.
[13] E.P.Wigner and M.M.Yanase, Information content of distribution, Proc. Nat. Acad. Sci. U,S,A., vol.49(1963), pp.910-918.
[14] K.Yanagi, S.Furuichi and K.Kuriyama, A generalized skew information and uncertainty relation, IEEE Trans. Information Theory, vol.51(2005), pp.4401-4404.
[15] S.Furuichi, K.Yanagi and K.Kuriyama, Trace inequalities on a generalized Wigner-Yanase skew information, J. Math. Anal. Appl., vol.356(2009), pp.179-185.
[16] K.Yanagi, Uncertainty relation on Wigner-Yanase-Dyson skew information, J. Math. Anal. Appl., vol.365(2010), pp.12-18.

