
180 Genome Informatics 15(1): 180–197 (2004)

A Versatile Petri Net Based Architecture for Modeling

and Simulation of Complex Biological Processes

Masao Nagasaki1 Atsushi Doi2

masao@ims.u-tokyo.ac.jp atsushi@ib.sci.yamaguchi-u.ac.jp

Hiroshi Matsuno3 Satoru Miyano1

matsuno@sci.yamaguchi-u.ac.jp miyano@ims.u-tokyo.ac.jp

1 Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1
Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan

2 Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida,
Yamaguchi 753-8512, Japan

3 Faculty of Science, Yamaguchi University, Yoshida, Yamaguchi 753-8512, Japan

Keywords: biopathway, hybrid functional Petri net with extension, biological process modeling,
simulation, p53, frameshift, alternative splicing, Huntington’s Disease

Abstract

The research on modeling and simulation of complex biological systems is getting more impor-
tant in Systems Biology. In this respect, we have developed Hybrid Function Petri net (HFPN) that
was newly developed from existing Petri net because of their intuitive graphical representation and
their capabilities for mathematical analyses. However, in the process of modeling metabolic, gene
regulatory or signal transduction pathways with the architecture, we have realized three extensions
of HFPN, (i) an entity should be extended to contain more than one value, (ii) an entity should be
extended to handle other primitive types, e.g. boolean, string, (iii) an entity should be extended
to handle more advanced type called object that consists of variables and methods, are necessary
for modeling biological systems with Petri net based architecture. To deal with it, we define a new
enhanced Petri net called hybrid functional Petri net with extension (HFPNe). To demonstrate the
effectiveness of the enhancements, we model and simulate with HFPNe four biological processes
that are difficult to represent with the previous architecture HFPN.

1 Introduction

Our knowledge about cellular processes with biological experiments is increasing at a rapidly growing
pace. With the knowledge, one of the most important topics in the Systems Biology is to understand
and predict a cell’s behavior. Related to this, particularly needed is a software environment with which
biological and medical scientists (users) can comfortably model and simulate biological processes in the
cell. Especially among biological processes, modelings and simulation of gene regulations, metabolic
pathways, and signal-transduction cascades (say biopathways) are usually focused on the targets of
software platforms.

First of all, to model and simulate biopathways, architecture is necessary. Thus, in 1999, we
surveyed which architecture is suitable when modeling and simulating biopathway for biological and
medical scientists. At that time, there were ODE-based attempts for modeling and simulating chemical
reactions - e.g. Gepasi [26], E-Cell [35] - and others - e.g. the Lisp [25] based architecture, QSIM [17]
and our other work, the π-Calculus based architecture, Bio-Calculus [28]. Unfortunately, applications
based on these architectures are not acceptable in their fields. This is due to poor GUI interfaces,
e.g. lacking biopathway editors, or their architectures themselves. To overcome this situation, we came

A Versatile Petri Net Based Architecture for Modeling 181

to the conclusion that an architecture based on Petri nets should be suitable because of their intuitive
graphical representation and their capabilities for mathematical analyses [29, 30, 31]. Then we have
newly developed HFPN for easy biopathway modeling [22]. With HFPN, we can model rule based
biological processes in biopathways, e.g. gene regulation and also ODEs-based kinetics, e.g. chemical
processes in biopathways. In fact, with HFPN, we have modeled and simulated: the glycolytic pathway
of Escherichia coli, gene regulation of circadian rhythms in Drosophila, boundary formation by notch
signaling in Drosophila [23], and apoptosis induced by Fas ligand [21].

However, when modeling biopathways with HFPN, we have realized that three extensions will be
useful for modeling and simulating more complicated biopathway processes (e.g. activities of enzymes
for a multi-modification protein,) and other biological processes that are not normally treated in
biopathways (e.g. alternative splicings, frameshiftings). The first is, an entity should be extended to
contain more than one value, such as list and pair, because, (i) every part in a cell should contain
3D information, e.g. position and speed, (ii) proteins often have many modified states, e.g. p53 has
known sixteen phosphorylation positions and two acetylation positions as in Table 8 and modified
states of p53 can be 218 [16]. In HFPN, an entity can contain only one value. The second is,
HFPN should be extended to handle other primitive types, e.g. boolean, string, because major
parts in a cell contain information similar to strings such as DNA sequences, mRNA sequences and
protein sequences. In HFPN, an entity has only two types, discrete (non-negative integers) and
continuous (non-negative real numbers). The third is, HFPN should be extended to handle more
advanced type, object that consists of variables and methods. Many parts in a cell, e.g. DNA, mRNA,
protein, have known functions, e.g. translation, transcription, degradation, and modification. Thus,
if an entity takes the type object that has the methods with these known functions, each process
that connects to the entity only needs to call a method of the object in the entity. To realize these
three extensions, we have defined two special components; entity and process, called generic entity
and generic process, respectively. We name this extension of Petri net hybrid functional Petri net with
extension (HFPNe) that is defined in Section 2. By extensively using the new features of HFPNe,
we model two biological processes that are not normally treated in biopathway modelings, alternative
splicing and frameshifting, in Sections 3.1 and 3.2 and two biopathways that contain complicated
processes, the pathway of Huntington’s disease and the pathway of multi domain modifiable protein
p53, in Sections 3.3 and 3.4. All these models with HFPNe demonstrate the new features of HFPNe
are important for easy modeling and simulation. In Section 4 discusses the related works of HFPNe by
comparing other object based Petri nets, OCPN [19] and Reference nets [18] and our ongoing works.

2 HFPNe: Hybrid Functional Petri Net with Extension

For modeling complex biological processes intuitively, we are required to deal with various kinds of
biological information, e.g. the density of molecules, the number of molecules, sequences, molecular
modifications, binding location, localization of molecules, etc. To cope with this feature in biological
system modeling, we introduce types for biological entities and processes.

The set T of types is defined by the following abstract syntax:
〈type〉 ::= boolean || integer || integer+ || real || real+ || string ||

pair(〈type〉,〈type〉) || list 〈type〉 || object(〈type〉,· · ·,〈type〉).
Then, for θ ∈ T , we define the domain D(θ) of θ as follows:

1. D(boolean) = {true, false}, D(integer) = Z (the set of integers), D(integer+) = N (the
set of nonnegative integers), D(real) = R (the set of real numbers), D(real+) = R≥0 (the set
of nonnegative real numbers), D(string) = S (the set of strings over some alphabet).

2. D(pair(θ1, θ2)) = D(θ1)×D(θ2).

3. D(listθ) =
⋃

k≥0 D(θ)k.

182 Nagasaki et al.

connector type process connector

process type discrete continuous generic

entity discrete
√ − √

type continuous
√ √ √

generic − − √

connector type associate or
inhibitory connector

process type discrete continuous generic

entity discrete
√ √ √

type continuous
√ √ √

generic
√ √ √

(a)

connector type process connector

process type discrete continuous generic

entity discrete
√ − √

type continuous
√ √ √

generic
√ √ √

(b)

Table 1: (a) For a connector c = (e, p) ∈
EP , the entity type h(e), the process
type h(p) and the connector type a(c)
must satisfy the following conditions,
where

√
means that the connection is

allowed and − means that the connec-
tion is not allowed. (b) For a connec-
tor c = (p, e) ∈ PE, the connector type
a(c) is process by definition. The entity
type h(e) and the process type h(p) must
satisfy the following conditions, where

√

means that the connection is allowed and
− means that the connection is not al-
lowed.

4. D(object(θ1, · · · , θn)) = D(θ1)× · · · ×D(θn).

For convenience, we denote D∗ =
⋃

θ∈T D(θ).
Let E be a finite set. A type function for E is a mapping τ : E → T . For e ∈ E, τ(e) is called

the type of e. A marking of E is a mapping M : E → D∗ satisfying M(e) ∈ D(τ(e)) for e ∈ E. For
e ∈ E, M(e) called the mark of e. We denote by M the set of all markings of E. We can regard
M as the set

∏
e∈E D(τ(e)). Consider a function f :M → R. For a subset F ⊆ E and an element

v ∈∏
e∈F D(τ(e)), let f [F = v] :

∏
e∈E−F D(τ(e))→ R be the function obtained from f by restricting

the value for F to v, i.e. f [F = v](z) = f(z, v) for z ∈ ∏
e∈E−F D(τ(e)). Let F be a subset of E

such that e ∈ F satisfies D(τ(e)) = R or R≥0. We say that the function f is continuous for F if
f [E − F = v] :

∏
e∈F D(τ(e))→ R is continuous on

∏
e∈F D(τ(e)) for any v ∈ ∏

e∈E−F D(τ(e)).
Based on the above terminology, we define the notion of hybrid functional Petri net with extension

(HFPNe). The basic idea of HFPNe is two-fold. The first is to introduce types with which we can
deal with various data types. The second is to employ functions of marking f(M) to determine the
weight, delay, and speed, etc. which control the system behavior. In the following definition, we use
different names instead of place, transition, arc, etc. which are conventionally used in Petri net theory
since biological system modeling requires more intuitive names for representing biological entities and
processes.

Definition 1 We define a hybrid functional Petri net with extension (HFPNe) H = (E,P, h,

τ, C, d, α) as follows:

1. E = {e1, · · · , en} is a non-empty finite set of entities andP = {p1, · · · , pm} is a non-empty finite
set of processes, where we assume E ∩ P = ∅∗.

2. h : E ∪ P → {discrete, continuous, generic} is a mapping called the hybrid function † A
process p ∈ P with h(p) = discrete (resp., continuous, generic) is called a discrete process
(resp., continuous process, generic process). An entity e ∈ E with h(e) = discrete (resp.,
continuous, generic) is called a discrete entity (resp., continuous entity, generic entity).

∗Terms “entity” and “process” correspond to place and transition, respectively.
†Terms “discrete” and “continuous” correspond to those in hybrid Petri net [1] and “generic” is a newly introduced

name which can be of any type in T .

A Versatile Petri Net Based Architecture for Modeling 183

3. τ : E → T is a type function for E such that τ(e) = integer+ if e is a discrete entity, and
τ(e) = real+ if e is a continuous entity.

4. C = (EP,PE, a, w, u) consists of subsets EP ⊆ E × P and PE ⊆ P × E. An element in
EP ∪ PE is called a connector‡. Each connector has a connector type which is given by a
mapping a : EP ∪ PE → {process, associate, inhibitor} called the connector type function
which satisfies the conditions: (i) a(c) = process for c ∈ PE. (ii) All connectors c = (e, p) ∈ EP

satisfy the conditions in Table 1(a) and all connectors c = (p, e) ∈ PE satisfy the conditions
in Table 1(b). A connector c = (e, p) ∈ EP is called a process connector (resp., an associate
connector, an inhibitory connector) if a(c) = process (resp., associate, inhibitor)§. For a
connector c = (p, e) ∈ PE, a(c) = process by definition and we also call it a process connector.
We say that a connector c = (e, p) ∈ EP is discrete (resp., continuous, generic) if p is a
discrete process (resp., continuous process, generic process). In the same way, we also say that
c = (p, e) ∈ PE is discrete (resp., continuous, generic) if p is a discrete process (resp., continuous
process, generic process). LetM be the set of all markings of E and let F be the set of continuous
entities in E. Then we denote Ddiscrete = {f | f :M→ N}, Dcontinuous = {f | f :M→ R≥0 is
continuous for F}, Dgeneric = {f | f :M→ D∗}, and Dboolean = {f | f :M→ {true, false}}.
Then w and u are given as follows:

(a) w : EP → Ddiscrete ∪ Dcontinuous ∪ Dboolean is a function called the activity function such
that for a connector c ∈ EP (i) w(c) ∈ Ddiscrete if c is discrete, (ii) w(c) ∈ Dcontinuous if
c is continuous, (iii) w(c) ∈ Dboolean if c is generic. For a connector (e, p), w(e, p) be used
as a function giving the threshold in discrete and continuous cases and the condition in
generic case which is required for enabling the process p.

(b) u : EP ∪ PE → Ddiscrete ∪ Dcontinuous ∪ Dgeneric is a function called the update function
which satisfies the following conditions: For a connector c ∈ EP ∪ PE, let c = (e, p) ∈ EP

or c = (p, e) ∈ PE. (i) u(c) ∈ Ddiscrete if c is discrete. (ii) u(c) ∈ Dcontinuous if c is
continuous. (iii) If c is generic, then u(c) is a function in Dgeneric such that u(c)(M) is in
D(τ(e)) for any marking M ∈M. For a connector c = (e, p) or c = (p, e), u(c) is used as a
function which will update the mark of e.

5. d : Pdiscrete → Dcontinuous is a mapping called the delay, where Pdiscrete is the set of discrete
processes in P . For a discrete process p, d(p) :M→ R≥0 is called the delay function of p.

6. α > 0 is a real number called the generic time. The generic time is used as the clock for generic
processes.

For graphical representation, HFPNe inherits the tradition of other Petri nets as in Figure 1.

We introduce a parameter t ∈ R≥0 called the time to a hybrid functional Petri net with extension
H = (E,P, h, τ, C, d, α). Given a marking I called the initial marking, we define a marking M(t) called
the marking at time t and a marking Mr(t) called the reserved marking at time t for t ≥ 0 in the
following way. By convention, we denote M(e, t) = M(t)(e) and Mr(e, t) = Mr(t)(e) for e ∈ E. We
define M̃(t) by M̃(e, t) = M(e, t)−Mr(e, t) for discrete and continuous entities and M̃(e, t) = M(e, t)
for generic entities e.

First, we define M(0) = I, Mr(e, 0) = 0 for all discrete and continuous entities e. For all generic
entities e, Mr(e, t) = null (the empty list) for any t ≥ 0. For t > 0, we define M(t) and Mr(t) in the
following way. For a process p ∈ P at time t, if the following conditions are satisfied, then the process
p is said to be enabled at time t. Otherwise the process is said to be unenabled at time t.

‡“Connector” corresponds to arc.
§“Process connector”, “associate connector” and “inhibitory connector” correspond to arc with weight, test arc and

inhibitory arc, respectively.

184 Nagasaki et al.

1. If p is a discrete process, then for all connectors c = (e, p) ∈ EP the following conditions hold:

(a) M̃(e, t) ≥ w(e, p)(M(t)) if a(c) 6= inhibitor.

(b) M̃(e, t) < w(e, p)(M(t)) if a(c) = inhibitor.

2. If p is a continuous process, then for all connectors c = (e, p) ∈ EP the following conditions
hold:

(a) M̃(e, t) ≥ w(e, p)(M(t)) if a(c) 6= inhibitor.

(b) M̃(e, t) ≤ w(e, p)(M(t)) if a(c) = inhibitor.

3. If p is a generic process, then for all connectors c = (e, p) ∈ EP the following conditions hold:

(a) w(e, p)(M̃ (t)) = true if a(c) 6= inhibitor.

(b) w(e, p)(M̃ (t)) = false if a(c) = inhibitor.

If an unenabled process turns to be enabled at time t, the process is said to be triggered at time t. If
an enabled process turns to be unenabled or an unenabled process turns to be enabled at time t, the
process is said to be switched at time t. If a discrete process p is triggered at time t, we say that the
discrete process can be fired at time t + d(p)(M(t)). If a generic process p is triggered at time t, we
say that the generic process can be fired at time t + α.

For an entity e ∈ E and time t, let Sd(t) be the set of discrete processes which can be fired at time
t, and let Ud(t) be the set of discrete processes which are triggered at time t. For a discrete process p

that can be fired at time t, we denote by q(p, t) the time when p is triggered. Let Sc(t) be the set of
continuous processes which are enabled at time t. Let Sg(t) be the set of generic processes which can
be fired at time t.

Note that we can choose a sufficiently small εt > 0 such that in the interval [t − εt, t), neither
discrete nor generic process is triggered or can be fired and no continuous process is switched.

Also note the following facts:

1. Sc(t− εt) = Sc(t
′) for any t′ ∈ [t− εt, t) since no continuous process is switched in the interval

[t− εt, t).

2. M̃(t′) is constant on E − Econtinuous in the interval [t − εt, t) since neither discrete nor generic
process is triggered or can be fired in the interval [t − εt, t), where Econtinuous = {e ∈ E |
e is continuous}.

3. For any continuous connector c, u(c)(M̃ (t′)) is continuous on [t − εt, t) since by definition u(c)
is continuous for Econtinuous and M̃(t′) is constant on E −Econtinuous in the interval [t− εt, t).

Then M(t) is defined by the following procedure:

1. Tmp←M(t− εt), Tmpr ←Mr(t− εt)
2. if t = αk for some integer k ≥ 1 then

for each generic process p ∈ Sg(t)
Tmp′ ← Tmp

for each (e, p) ∈ EP with a(e, p) = process

Tmp′(e)← u(e, p)(Tmp)
for each (p, e) ∈ PE

Tmp′(e)← u(p, e)(Tmp)
Tmp← Tmp′

3. for each continuous process p ∈ Sc(t− εt)

A Versatile Petri Net Based Architecture for Modeling 185

Tmp′ ← Tmp

for each (e, p) ∈ EP with a(e, p) = process

Tmp′(e)← Tmp′(e)−
∫ t

t−εt

u(e, p)(M̃ (x))dx

for each (p, e) ∈ PE

Tmp′(e)← Tmp′(e) +

∫ t

t−εt

u(p, e)(M̃ (x))dx

Tmp← Tmp′

4. for each discrete process p ∈ Sd(t)
Tmp′ ← Tmp

for each (e, p) ∈ EP with a(e, p) = process

Tmp′(e)← Tmp′(e)− u(e, p)(M̃ (q(p, t)))
for each (p, e) ∈ PE

Tmp′(e)← Tmp′(e) + u(p, e)(M̃ (q(p, t)))
Tmp← Tmp′

5. M(t)← Tmp

Then Mr(t) is defined as follows:

6. for each entity e with h(e) = discrete or continuous

Tmpr(e)← Tmpr(e) −
∑

p with p ∈ Sd(t)
and (e, p) ∈ EP

u(e, p)(M̃ (q(p, t))) +
∑

p with p ∈ Ud(t)
and (e, p) ∈ EP

u(e, p)(M̃ (t− εt)).

7. Mr(t)← Tmpr.

We call M(t) (t ≥ 0) the behavior of H starting at the initial marking M(0) = I.

2.1 Remarks in Implementation of HFPNe

In Genomic Object Net, we have implemented a simulator of HFPNe by approximating the time t by
t = 0, δ, · · · , kδ, · · · for integers k by using an appropriately small real number δ > 0. Furthermore,
the generic time α is also set to be δ = α for simplicity.

Another issue in implementation is the problem of conflict resolution. In the above procedure,
Step 2 for generic processes and Step 4 for discrete processes may have conflicts for execution. Let
pi1 , . . . , pit be processes which can be fired in Step 2 or Step 4. In our implementation, we arrange
these processes in a random order and execute the processes according to this order. During this
execution, we will skip the processes which cannot be fired anymore due to the changes of marks of
entities.

2.2 Relationships with Other Petri Nets

HFPN H = (E,P, h, τ, C, d) is defined from HFPNe by deleting all matters with “generic” and by
adding the restriction that u(c) = w(c) for any discrete connector c = (e, p) ∈ EP . This condition
means that the weight w(c) of the connector is the same as the number of tokens u(c) removed from
the entity e by firing. This convention is traditionally employed in Petri net as a weight. In our
definition of HFPNe, however, we have separated these two notions.

HPN H = (E,P, h, τ, C = (EP,PE, a, w, u), d) [1] is defined by adding the following restriction
to HFPN: (i) w(c), u(c), and d(p) are constants for any connector c ∈ EP ∪ PE and any process
p ∈ P . HDN H = (E,P, h, τ, C = (EP,PE, a, w, u), d) [10, 11] is also defined by adding the following

186 Nagasaki et al.

EXON1 EXON2 EXON3 Calcitonin CGRPCGRP

EXON2 EXON3EXON1 EXON2 EXON3 Calcitonin CGRPCGRP

EXON1 EXON2 EXON3 Calcitonin CGRPCGRP

EXON1 EXON2 EXON3 Calcitonin CGRPCGRP

PP P

PP P

EXON2 EXON3

EXON6EXON5EXON4

CGRPCGRPPP P

PP P

EXON1 EXON2 EXON3 CalcitoninPP P

PP P

A

A

A AA

A AA

DNA

step3

step1

step2

transcription

5’capping

alternative splicing

Calcitionin CGRP

step4 3’polyadenilation

precursor
 mRNA

5’

5’

5’

5’

5’

5’

5’

3’

3’

3’

3’

3’

3’

3’

m7G

m7G m7G

m7G

m7G

7-metylguanosine

250

250

Figure 2: Alternative RNA splicing model of the
Calcitonin/CGRP gene in Figure 3.

Figure 3: An alternative RNA splicing model of
the Calcitonin/CGRP gene with HFPNe.

restriction to HFPN: (ii) For any continuous process p, it is assumed that w(e, p) = u(p, e ′) for any
process connectors (e, p) ∈ EP and (p, e′) ∈ PE.

If we delete all matters with “discrete” from HPN, we have the definition of CTPN. If we delete
all matters with “continuous” from HPN, we have the definition of TPN. Furthermore, if we delete
the matters with “delay” from TPN, we have the definition of the original Petri net. Thus, HFPNe is
a highly abstract extension of Petri net for biological process modeling which can involve PN, TPN,
CTPN, HPN and HFPN as its special cases.

3 Modeling of Biological Processes with HFPNe

Figure 1: Graphical notations of HFPNe compo-
nents with conventional way.

In this section, we demonstrate that more bi-
ological processes can be easily modeled with HF-
PNe than HFPN. For this purpose, we selected
four biological processes for modeling that ex-
tensively use the HFPNe features. These bio-
logical processes are important activities in liv-
ing cells and should be handled with application
tools that aim to model and simulate biologi-
cal systems. Our aim is not only to theoreti-
cally describe how to model biological processes
but also to provide a useful application tool to
users in biology and medicine. We have devel-
oped GON [9, 27] which is based on the HFPNe
architecture. In the following sections, we exem-
plify with GON that complex biological processes
can be modeled while illustrating snapshots of

HFPNe models as in Figures 3, 4(a), 5 and 6.

3.1 From DNA to mRNA in Eucaryotes - Alternative Splicing

The mechanism from DNA to mRNA in eucaryote is more complicated than that in bacteria. The
major difference derives from eucaryotic genes which consist of two regions, i.e. exons and introns.
As in Figure 2, the mechanism mainly consists of four steps; step1: transcription, step2: 5’ capping,
step3: RNA splicing, and step4: 3’ polyadenylation. In step1, DNA is transcribed into precursor-
mRNA (specially named to distinguish from mRNA (mature-mRNA) after step4). In step2, 5’ end of

A Versatile Petri Net Based Architecture for Modeling 187

Table 2: Update functions of connectors for the Calcitonin/CGRP transcription model in Figure 3.
External Java classes Transcription, Splicing and Splicing CalcitoninCGRP are in our site [43].
conn- connector update function

ector type

a01 process import("gon.Transcription");

totalnum = m08.length(); num = m01.length();

if(totalnum > num){

nextcode = m08.substring(totalnum-num-1,totalnum-num);

newsequence = m01 + Transcription::Trans(nextcode);}

else{new_sequence = "";} return newsequence;
a02 process import("gon.Transcription");

if(Transcription::Finish(m01,m08)){return m01;} else{return "";}
a03 process return m02;

a04 process import("gon.Transcription");

if(!m02.equals("")){return Transcription::Capping(m02);} else{return "";}
a05 process return "";

a06 process import("gon.Splicing_CalcitoninCGRP"); if(m03.equals("")){return m03;}

else{return Splicing_CalcitoninCGRP::AlternativeSplicing(m03);}
a08 process return "";

a10 process return m10;

a11 process num = 0; for(i=0;i<m05.length;++i){if(m05[i].equals(m09)){num++;}}

return num;
a12 process return m05;

a13 process num = 0; for(i=0;i<m05.length;++i){if(m05[i].equals(m10)){num++;}}

return num;
a14 process return m05;

a15 process import("gon.Transcription"); if(m04.equals("")){return m05;}

else{return m05+[Transcription::Polyadenylation(m04)];}

entity entity type type initial mark

m01/m02/m03/m04 generic string “”
m05 generic list string ()
m06/m07 discrete integer+ 0
m08/m09/m10 generic string see [43]

Table 3: Properties of enti-
ties for the Calcitonin/CGRP
transcription model in Fig-
ure 3.

the precursor-mRNA is modified. In step3, each splicing event removes one intron and accordingly all
introns of the precursor-mRNA are removed. Finally in step4, 3’ end of precursor-mRNA is modified
to produce mature-mRNA in order to allow the cell to assess whether both ends of the mRNA are
present before it exports the RNA sequence from the nucleus for translation into proteins.

In step3, there is a eucaryote specific splicing process named alternative RNA splicing. The
alternative RNA splicing is to produce different mRNA from the same precursor-mRNA by splicing it
in different ways. The DNA to mRNA transcription with alternative RNA splicing was found in 1982
for Calcitonin/CGRP gene expression [2]. We draw focus to model Calcitonin/CGRP gene expression
while combining other recent biological knowledge [7, 36].

As in Figure 2, the Calcitonin gene expression consists of four introns and five exons, and the
transcription process progresses with step1, step2, step3 and step4. In step3, by alternative splicing
events, one of exon1/exon2/exon3/exon4 (say set1) or exon2/exon3/exon5/exon6 (say set2) is selected.
If set1 (set2) is selected, the mature-mRNA is translated into Calcitonin (CGRP), respectively. The
HFPNe model can faithfully realize these steps as generic processes and realize precursor-mRNA and
mature-mRNA states as generic entities with the type string (see Figure 3). In the model, the
mature-RNAs, Calcitonin mRNA and CGRP mRNA, are represented by the generic entity m09 with
the type list string. The generic entities, m12,m13,m14, and m15 are used to inform which sequence
should be spliced in the generic processes, t03,t04,t05, and t06, respectively. These generic notions
are necessary for modeling these four steps from DNA to mRNA. It is hard to model with HFPN [9]

188 Nagasaki et al.

and other simulation tools [26, 35]. The detailed parameters and functions are described in Tables 2
and 3.

As another example of alternative splicing, DSCAM gene in Drosophila, where for exons (named
exon A, B, C, and D) are selected and combined. Each precursor-mRNA contains 12 alternatives for
exon A, 48 alternatives for exon B, 33 alternatives for exon C, 2 alternatives for exon D [38]. Thus,
there are 38,016 possible mature mRNAs for the DSCAM gene. If the model is created with HFPN,
we have to deal with 38,016 entities for this DSCAM transcription process. If the model is created
with HFPN, 38016 entities are necessary for the simple DSCAM transcription model.

3.2 Translation of mRNA - Frameshift

Frameshift is also an important biological process that occurs during RNA translations. The frameshift
is to skip or reread some ribonucleotides when translating RNAs and it is commonly utilized by many
RNA viruses as programmed ribosomal frameshifting [14].

For example, a model of ribosomal frameshifting in the human immunodeficiency virus (HIV-1)
(gag-pol expression in Figure 4(b)) can be modeled with HFPNe as in Figure 4(a). As in Figure 4,
two proteins, gag and pol, are produced from one RNA sequence with the frameshift by rereading a
ribonucleotide, adenine (A), twice. In HFPNe, the generic entity e3 has the type pair(integer (i1)
,string (s1)), in order to express frameshifting states; i1 denotes how many ribonucleotides are
skipped (+1) or reread (-1) and s1 denotes the length of current translated amino-acid sequence. The
frameshifting occurs at a specific point. In addition the probability of reread at the point is 0.1 in wild
type [14]. Thus, in the model we assign an mRNA translation skip function with stochastic behavior
to this specific point. The stochastic feature is already realized in HFPN and HFPNe also inherits this
feature. The detailed update functions are summarized in Table 4(c) and the initial marks and types
of entities are summarized in Figure 4(d). It is also not straightforward to represent the ribosomal
frameshifting with HFPN.

3.3 Huntington’s Disease

As an advanced pathway model with HFPNe, we selected a genetic disease called Huntington’s disease.
Because in biology and medical sciences disease pathway modeling and simulation are becoming one of
the most important topics to treat the disease from the pathway level. Huntington’s disease is an au-
tosomal dominant progressive neurodegenerative disorder that is characterized by chorea, psychiatric
disturbances, and dementia [20]. The disease is in short the generic defects of Huntingtin. Huntingtin
is a multi-domain protein with a polymorphic glutamine/proline (G/P)-rich domain at the N termi-
nus [37]. Polyglutamine (polyQ) sequences in unaffected individuals range from 11 to 34 glutamine
residues, whereas those of Huntingtin disease patients contain 37 or more glutamine residues (more
than 90)[4]. The disease appears when a specific polyQ length is exceeded.

Based on the disease model proposed by Wellington et al. [13], we created a HFPNe model for this
disease in Figure 5. Our model uses following known experimental facts in the literature.

fact1 Huntingtin can be cleaved by caspase-3 and yields two fragments, N terminal region (NT) that
contains polyQ repeats in Huntingtin and C terminal region (CT) [13].

fact2 Both of Huntingtin disease and normal Huntingtin can cleave and the rates of fragmentation are
the same [40].

fact3 Procaspase-3 has low-level catalytic activity for disease Huntingtin and is capable of cleaving the
same substrates, i.e. NT and CT, as activated caspase-3 [32].

fact4 When cleaved by caspase-3, NT has a responsibility for cytotoxicity [15, 41].

fact5 NT has the ability to form protein aggregates and can be found in the nucleus and in the
cytoplasm [33].

A Versatile Petri Net Based Architecture for Modeling 189

(a) (b)
connector update function

a3 m4 = 0;for(i=0;i<m3.length;++i){if(m3[i].equals(m6)){m4++;}}return m4;

a4 m5 = 0;for(i=0;i<m3.length;++i){if(m3[i].equals(m7)){m5++;}}return m5;

a5 import("gon.Translation");

num=m2[1].length(); n=m1.substring(num*3+m2[0],(num+1)*3+m2[0]);

if(Translation::EndCode(n)){ m3 += [m2[1]]; }return m3;
a7 import("gon.Translation");

num=m2[1].length(); n=m1.substring(num*3+m2[0],(num+1)*3+m2[0]);

if(!Translation::EndCode(n)){m2[1] += Translation::Trans(n);

if(num==2 && Math::random()<=0.1){m2[0]=-1;}}

else{m2[0] = 0;m2[1] = "";}return m2;

(c)

entity entity type type initial mark

m1/m6/m7 generic string see [43]
m2 generic pair(integer,string) (0,“”)
m3 generic list string ()
m4/m5 discrete integer+ 0

(d)

Figure 4: (a) Ribosomal frameshifting in HIV-1 gag-pol. (b) Ribosomal frameshifting in HIV-1 gag-
pol expressed with HFPNe. The characterization of ribosomal frameshifting was first described by
Tyler [14]. (c) Update functions in (b). (d) Properties of entities in (b).

fact6 The aggregate number of NT increases in proportion to the length of polyQ [34].

fact7 NT fragments of mutant Huntingtin have the ability to induce caspase-3 [6].

fact8 Both of disease and normal NT can cross the nuclear membrane. The smaller the cleavage
product, the greater the tendency of Huntingtin cross [12, 39].

Huntingtin and NT change their function depending on their polyQ length (fact3, fact6, fact7).
Thus, in our model, these proteins are represented with generic entities with the type: pair(integer+,
real+). The first attribute integer+ corresponds to the length of polyQ and the second attribute
real+ corresponds to the quantity of the protein, i.e. NT or Huntingtin. In our model, NT and
Huntingtin are represented with m1 and m4, respectively. The properties of processes and entities in
the model are summarized in Tables 4 and 5. Huntingtin m4 is translated by the generic process t09
while procaspase-3 m6 is translated by the continuous process t10. The procaspase-3 m6 can cleave t12

disease Huntingtin (fact3). Thus, the weight function of associate connector a14 has a function that
depends on the length of huntingtin m4 and cleavage process t12 is not enabled for normal Huntingtin.

190 Nagasaki et al.

process process type

t01/t02/t04/t06/t07/t08/t10/t17/t18 continuous

t03/t05/t09/t11/t12/t13/t14/t15/t16/t19 generic

Table 4: Properties of pro-
cesses for Huntington’s disease
model in Figure 5.

entity entity type initial

type mark

dt continuous real+ 0.0

m1/m2/m4 generic pair(integer+ (n,0.0)
,real+)

m3/m5/m6/m7/m8/m9 continuous real+ 0.0

Table 5: Properties of enti-
ties for the huntingtin disease
model in Figure 5. Initial
value n in m1, m2, and m4

denotes the length of Q re-
peats in the huntingtin protein
and must be assigned an inte-
ger value when simulating the
model.

The activity functions and types of connectors are summarized in Table 6. On the other hand, the
caspase-3 m5 can cleave normal Huntingtin and disease Huntingtin that is modeled with the process
t11 (fact2). Thus, the weight of associate connector a21 has a function that does not depend on the
length of Huntingtin m4. Huntingtin m4 is cleaved and separated into CT m3 and NT m1 (fact1). CT
does not contain the polyQ region and is represented with continuous entity m3 (fact1).

NT inherits the polyQ region. The length of NT relates to the activity of the process t13 that
changes procaspase-3 m6 into caspase-3 m5 (fact7). To model it, the weight function of associate
connector a15 depends on the length of NT m1 and process t13 can not be activated by normal
huntingtin.

NT in cytoplasm migrates to nucleus (fact8), and NT in nucleus m2 causes cell death t19 with
the cytotoxicity (fact4). From fact5, cell death can be prevented by aggregation of NT. Moreover,
the aggregation rate depends on the length of polyQ (fact6). NT in nucleus m2 should therefore be
denoted by generic entities such as Huntingtin m4 and NT m1 in cytoplasm. NT in the cytoplasm m1

and NT in the nucleus m2 connect to the aggregation process t15 and t16, respectively. The update
functions of process connectors a23 and a26 represent aggregate speeds and depend on the length of
polyQ in NT in nucleus m2 (fact6). The update functions of connectors are summarized in Table 7.

With the model, we can simulate the n polyQ length huntingtin (0 ≤ n ≤ 100 [4]) by only changing
the initial marks of m1, m2, and m4 as in Table 5. If the same disease model is created with HFPN, at
least extra (i) one entity and (ii) many connectors are necessary; (i) an entity (say e1) that denotes
the length of huntingtin, (ii) associate connectors that point from e1 to every process that has more
than one connector whose weight function or speed function depends on the value of e1. Thus, the
HFPNe huntingtin disease model is simpler than the HFPN model.

3.4 Protein Modification - p53

The previous HFPNe models extensively use generic entities and generic processes. However, their
types of generic entities are only simple ones, e.g. string, list real, list string, pair(integer+,
string+), pair(integer+,real+). A generic entity can take more advanced type object as its type.
Under HFPNe application GON, an object corresponds to a Java class and a method of an object is
a specific function assigned to the object. If a generic entity has the type object, the entity can be
initialized with an object with methods and variables and these methods can be applied to update
functions of connectors that join the generic entity and generic processes, and change the mark by
updating variables of the entity.

To show the effectiveness of generic entities with the type object, we deal with protein modification
biological processes - e.g. phosphorylation, acetylation, and methylation - with enzymes. Specifically,
the protein p53 that can be modified by enzymes - CK1, ATM, DNAPK, TFIIH, MAPK, PCAF, PKC,

A Versatile Petri Net Based Architecture for Modeling 191

Figure 5: Huntington’s disease model with HFPNe. HFPNe components in this figure are replaced
with suitable images that represents biological information.

p300, CK2, and JNK - is modeled [16]. By these enzymes, eighteen positions of p53 are modified.
There are 218 patterns. Thus, it is again hard to create a model with HFPN because 218 entities are
necessary for the model with HFPN.

To model with HFPNe while using the type object for generic entities, Protein and Enzyme

classes are created and these classes are inherited in order to realize specific Protein class, e.g. p53,
and Enzyme classes, e.g. CK1, ATM, DNAPK, TFIIH, MAPK, PCAF, PKC, p300, CK2, and JNK. As in Table 9,
(i) the generic entity m01 takes a specific object ProteinSet that is initialized with p53 object that
corresponds to p53 class and inherits Protein class, (ii) the generic entities m02, m03, m04, m05, m06,
m07, m08, m09, m10, and m11 take specific objects whose classes inherit Enzyme classes CK1, ATM, DNAPK,
TFIIH, MAPK, PCAF, PKC, p300, CK2, and JNK, respectively (a class name corresponds to an enzyme
name). These objects are implemented with Java classes on GON. Full codes of these classes are
available from [43].

To describe modification biological processes by enzymes, the generic processes t01,· · · , t10 are
used. As in Table 10, the update functions a13,a14,a15,a16,a17, a18,a19,a20,a21,a22 of the generic
processes call the Modify method of p53 class to simulate the modification biological process by CK1,
ATM, DNAPK, TFIIH, MAPK, PCAF, PKC, p300, CK2, JNK, respectively. To describe translation
and degradation biological processes of p53, the generic processes t11 and t12 are created, respectively.
As in Table 10, processes t11 and t12 follow connectors with update functions a21 and a22 that call
Translation and Degradation methods of p53 class to simulate the translation and degradation
biological processes, respectively.

At the first glance, HFPNe model of p53 modification biological processes seems complicated.
However, as in Table 10, in the p53 model, all update functions just call a specific method, e.g. Modify,

192 Nagasaki et al.

Figure 6: A protein mod-
ification model of the
p53 protein with HF-
PNe. The generic en-
tity in the center m01 is
modification target p53
and other generic entities
m02,· · · ,m11 are enzymes
that modify the p53 en-
tity. Generic processes
t01,· · · ,t10 have connec-
tors a01,· · · ,a10 and by
their update functions,
the modified state of p53
in m01 is updated.

Translation, and Degradation. As in Table 9, all initial marks of generic entities are defined by just
calling the specific method, i.e. Initialize. Thus, if objects with suitable methods that correspond to
biological processes are created as a biopathway library, the majority of users, biological and medical
scientists without programming skills, can create biological models. But with their expert knowledge
of biological processes, they can create models by simply assigning a suitable object to a generic entity
and a suitable method to the update function of the generic connector.

We can apply the same approach to the previous biological processes. In the previous example,
generic entities can take type object whose class is DNA with transcription method or RNA with
translation method instead of string primitive type. Thus, owing to the object extension of
HFPNe, more complicated biological processes can be easily modeled than with HFPN.

On the other hand, the Gene Ontology (GO) Consortium is trying to produce a controlled vo-
cabulary that can be applied to all organisms as knowledge of gene and protein roles in cells [3]. By
applying these gene ontology related vocabularies to names of objects and their methods, we can
create a more standardized library for biological processes with HFPNe.

Table 6: Properties of connectors for Huntington’s disease model in Figure 5. A property of connectors,
update function is summarized in Table 7.

connector connector type activity function

a02/a09/a19/a20 process 0.0

a04/a05/a06/a11 process return true;

a12 process return {(m4[1]>20.0) ? true : false;}

a14 associate return {(m4[0]>37&&m6>0.0) ? true : false;}

a15 associate return {(m4[0]>37&&m1>0.0) ? true : false;}

a17 process 20.0

a21 associate return {(m5[1]>0.0) ? true : false;}

a23/a26/a29 process return true;

a25/a28 process 1.0

a31 process return {(m2[1]>10.0) ? true : false;}

A Versatile Petri Net Based Architecture for Modeling 193

Table 7: Update functions of connectors for the huntingtin disease model in Figure 5. Update function
must be defined for all process connectors that are connected with at least one generic process.

connector connector type update function

a01/a02 process 1.0

a03 process m4[1] = m4[1]+1.0*dt; return m4;

a04 process m4[1] = m4[1] - (m4[1]*dt)/200; return m4;

a05 process m4[1] = m4[1]-0.0001*m4[1]*m6*dt; return m4;

a06 process m4[1] = m4[1]-0.001*m4[1]*m5*dt; return m4;

a07 process m3 = m3+0.0001*m4[1]*m6*dt; return m3;

a08 process m3 = m3+0.001*m4[1]*m5*dt; return m3;

a09 process m3/50

a10 process m1[1] = m1[1]+0.001*m4[1]*m5*dt; return m1;

a11 process m1[1] = m1[1]-(m1[1]/100)*dt; return m1;

a12 process m1[1] = m1[1]-0.001*m1[1]*dt; return m1;

a13 process m2[1] = m2[1]+0.001*m1[1]*dt; return m2;

a16 process 1.0

a17 process m6 = m6 - 0.001*m1*m6*dt; return m6;

a18 process m5 = m5 + 0.001*m1*m6*dt; return m5;

a19 process m6/100

a20 process m5/100

a22 process m1[1]=m1[1]+0.0001*m4[1]*m6*dt;return m1;

a23 process m1[1]=m1[1]-(m1[1]*(m1[0]/1000))*dt;return m1;

a24 process m7=m7+(m1[1]*(m1[0]/1000))*dt;return m7;

a25 process m7/100

a26 process m2[1]=m2[1]-(m2[1]*(m2[0]/1000))*dt;return m2;

a27 process m8=m8+(m2[1]*(m2[0]/1000))*dt;return m8;

a28 process m8/100

a29 process m2[1]=m2[1]-(m2[1]/100)*dt;return m1;

a30 process m9+=0.001*m2[1];return m9;

Table 8: The protein modification positions and modification type of p53 enzymes [16].

enzyme modification modification

type positions

CK1 Phosphorylation S4,S6,S9,S18

ATM Phosphorylation S15

DNAPK Phosphorylation S15,S37

TFIIH Phosphorylation S33,S315
S378,S392

MAPK Phosphorylation T73,T83

PCAF Acetylation K320

PKC Phosphorylation S378

p300 Acetylation K382

CK2 Phosphorylation S392

JNK Phosphorylation S33

S4

K382K320S392

S378

S315

T83

S73

S33

S37

S15

S6

S9

S18

p53

CK1

ATM

DNAPK

TFIIH

MAPK

JNK

PKC

CK2 p300PCAF

Ac Ac

P

P
P

P

P

P

P

P

P P

P
P

P

P

P
P

P

Ac Acetylation

Phosphorylation

194 Nagasaki et al.

Table 9: Properties of entities for the p53 modification model in Figure 6.
entity entity type type initial mark

m01 generic object ProtenSet::Initialize(m01,p53::Initialize())

m02 generic object CK1::Initialize(m02)

m03 generic object ATM::Initialize(m03)

m04 generic object DNAPK::Initialize(m04)

m05 generic object TFIIH::Initialize(m05)

m06 generic object MAPK::Initialize(m06)

m07 generic object PCAF::Initialize(m07)

m08 generic object PKC::Initialize(m08)

m09 generic object p300::Initialize(m09)

m10 generic object CK2::Initialize(m10)

m11 generic object JNK::Initialize(m11)

conn- connector update

ector type function

a11 process m01.Translate(); return m01;

a12 process m01.Degradation();return m01;

a13 process m01.Modify(m02); return m01;

a14 process m01.Modify(m03); return m01;

a15 process m01.Modify(m04); return m01;

a16 process m01.Modify(m05); return m01;

a17 process m01.Modify(m06); return m01;

a18 process m01.Modify(m07); return m01;

a19 process m01.Modify(m08); return m01;

a20 process m01.Modify(m09); return m01;

a21 process m01.Modify(m10); return m01;

a22 process m01.Modify(m11); return m01;

Table 10: Update functions of the
p53 modification model with HF-
PNe in Figure 6. All update func-
tions are written in Pnuts lan-
guage [44]. External java classes,
CK1, ATM, DNAPK, TFIIH, MAPK, PCAF,
PKC, p300, CK2, JNK, ProteinSet,
Enzyme, and Protein are described
in [43]. Connectors a01,·,a10 have
connector type associate and up-

date function do not exist.

4 Discussion and Conclusion

In this paper, new versatile Petri net based architecture HFPNe is demonstrated for easy biologi-
cal process modeling and simulation. HFPNe introduces the notions of generic entities and generic
processes to HFPN. In HFPNe architecture, generic entities can hold various kinds of types includ-
ing object. With the feature and inherited features of HFPN, complex biological processes can be
effectively modeled. Four biological processes, alternative splicing, frameshifting, Huntington’s dis-
ease, and multi-domain modification process of p53 are employed in order to show the effectiveness of
HFPNe.

From the theoretical point of view in the Petri net community, HFPNe can be one of the object
oriented Petri nets (OPN). This approach was first given by Becker and Colom [5]. In the community,
two advanced Petri nets based on the OPN architectures have been proposed, Objective Colored Petri
Nets (OCP-Nets) [19] and Reference nets [18]. OCP-Nets is based on the OPN enhanced by the
fusion place concept of Hierarchical Colored Petri Nets (HCPN). With this concept, OCP-Nets can
dynamically change (shrink or grow) their structure of the net in simulation, the feature does not exist
in HFPNe. Reference nets is also based on the OPN enhanced by the reference entities concept. With
the concept, (i) an entity in a net (net1) can hold another net (net2), (ii) the net2 can move to other
entities in the net1 by firing, (iii) the net2 can also change its state by firing. The differences between
them are as follows: Reference nets can move the net but OCP-Nets cannot move the net in simulation
processes. Besides OCP-Nets can create new connection rules in simulation processes. The HFPNe
does not support these two OCP-Nets and Reference nets features. On the other hand, the feature of
delay function of HFPNe does not exist in these object oriented Petri nets. However, in a cell, various
kinds of time scale biological processes exist and to model these biological processes in one model,

A Versatile Petri Net Based Architecture for Modeling 195

the notion of delay is necessary. With delay functions, HFPNe can handle these biological processes
efficiently. In theoretical point of view, it may be easy to extend HFPNe to support OCP-Nets or
Reference nets features because an implementation of HFPNe GON has been already extended to
treat the feature to add/remove entities and processes while simulation.

As the reason that is already described in Section 3.4, we are trying to create a biological process
library with HFPNe on GON. However, it is difficult to create all biological processes at once. Thus,
as the first step, all processes in Kyoto Model [24] will be recompiled as a part of the library. Kyoto
Model is a ventricular cell model by compiling classical electro-physiological findings. In the process of
reconstruction, we will persist efforts to locate the best approach to systematically reconstruct existing
other biological process models like Kyoto Model. Then we will apply the systematic approach to these
other biological process models for enriching the library.

References

[1] Alla, H. and David, R., Continuous and hybrid Petri nets, Journal of Circuits, Systems, and
Computers, 8:159–188, 1998.

[2] Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S., and Evans, R.M., Alternative RNA pro-
cessing in calcitonin gene expression generates mRNAs encoding different polypeptide products,
Nature, 298:240–244, 1982.

[3] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., and Sherlock, G.,
Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet.,
25:25–29, 2000.

[4] Bates, G., Harper, P., and Jones, L., eds., Huntington’s Disease, 3rd edn, Oxford University
Press, 2002.

[5] Becker, U. and Moldt, D., Object-oriented concepts for Coloured Petri nets, IEEE International
Conference on Systems, Man and Cybernetics, 3:279–286, 1993.

[6] Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., Guo, L., Farrell,
L.A., Hersch, S.M., Hobbs, W., Vonsattel, J.P., Cha, J.H., and Friedlander, R.M., Minocycline
inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of
Huntington disease, Nat. Med., 6:797–801, 2000.

[7] Coleman, T.P., Tran, Q., and Roesser, J.R., Binding of a candidate splice regulator to a calcitonin-
specific splice enhancer regulates calcitonin/CGRP pre-mRNA splicing, Biochim. Biophys. Acta.,
1625:153–164, 2003.

[8] David, R. and Alla, H., Continuous Petri nets, In: 8th European Workshop on Application and
Theory of Petri Nets, Lecture Notes in Computer Science, Springer-Verlag 340:275–294, 1987.

[9] Doi, A., Nagasaki, M., Fujita, S., Matsuno, H., and Miyano, S., Genomic Object Net:II. Modeling
biopathways by hybrid functional Petri net with extension, Applied Bioinformatics, 2:185–188,
2004.

[10] Drath, R., Hybrid object nets: An object oriented concept for modeling complex hybrid sys-
tems, In: 3rd International Conference on Automation of Mixed Processes: Hybrid Dynamical
Systems (ADPM), Shaker Verlag, 437–442, 1998.

[11] Drath, R., Engmann, U., and Schwuchow, S., Hybrid aspects of modeling manufacturing systems
using modified Petri nets, In: 5th Workshop on Intelligent Manufacturing Systems, 1999, http:
//www.systemtechnik.tu-ilmenau.de/~drath/Download/Brasil98.ps.zip

196 Nagasaki et al.

[12] Hackam, A.S., Singaraja, R., Wellington, C.L., Metzler, M., McCutcheon, K., Zhang, T., Kalch-
man, M., and Hayden, M.R., The influence of huntingtin protein size on nuclear localization and
cellular toxicity, J. Cell. Biol., 141:1097–1105, 1998.

[13] Hickey, M.A.and Chesselet, M.F., Apoptosis in Huntington’s disease, Prog Neuropsychopharmacol
Biol Psychiatry, 27:255–265, 2003.

[14] Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J., and Varmus, H.E., Characteriza-
tion of ribosomal frameshifting in HIV-1 gag-pol expression, Nature, 331:280–283 1988.

[15] Kim, Y.J., Yi, Y., Sapp, E., Wang, Y., Cuiffo, B., Kegel, K.B., Qin, Z.H., Aronin, N., and DiFiglia,
M., Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present
in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-
dependent proteolysis, Proc. Natl. Acad. Sci. USA, 98:12784–12789, 2001.

[16] Kohn, K.W., Molecular interaction map of the mammalian cell cycle control and DNA repair
systems, Mol. Biol. Cell., 10:2703–2734, 1999.

[17] Kuipers, B.J. and Shults, B., Reasoning in logic about continuous systems, Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fourth International Conference KR94,
Morgan Kaufmann 391–402, 1994.

[18] Kummer, O., Introduction to Petri Nets and Reference Nets, Sozionik Aktuell, 1:1–9, 2001.

[19] Maier, C. and Moldt, D., Object Coloured Petri Nets - A Formal Technique for Object Oriented
Modeling, In: Concurrent Object-Oriented Programming and Petri Nets, Advances in Petri Nets.
Lecture Notes in Computer Science, Springer-Verlag, 2001:406–427, 2001.

[20] Martin, J.B. and Gusella, J.F., Huntington’s disease. Pathogenesis and management, N. Engl.
J. Med., 315:1267–1276, 1986.

[21] Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S., Biopathways Rep-
resentation and Simulation on Hybrid Functional Petri Net, In Silico Biol., 3:389–404, 2003.
http://www.bioinfo.de/isb/toc_vol_03.html/

[22] Matsuno, H., Doi, A., Nagasaki, M., and Miyano, S., Hybrid Petri net representation of gene
regulatory network, Pacific Symposium on Biocomputing 2000, 5:341–352, 2000.

[23] Matsuno, H., Murakami, R., Yamane, R., Yamasaki, N., Fujita, S., Yoshimori, H., and Miyano, S.,
Boundary formation by notch signaling in Drosophila multicellular systems: Experimental obser-
vations and gene network modeling by Genomic Object Net, Pacific Symposium on Biocomputing
2003, 8:152–163, 2003.

[24] Matsuoka, S., Sarai, N., Kuratomi, S., Ono, K., and Noma, A., Role of individual ionic current
systems in ventricular cells hypothesized by a model study, The Japanese Journal of Physiology,
53:105-123, 2003.

[25] McCarthy, J., Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I, ACM Conference on Symbolic Manipulation, 3:184–195, 1960.

[26] Mendes, P., GEPASI: A software package for modelling the dynamics, steady states and control
of biochemical and other systems, Comput. Appl. Biosci., 9:563–571, 1993.

[27] Nagasaki, M., Doi, A., Matsuno, H., and Miyano, S., Genomic Object Net:I. A platform for
modeling and simulating biopathways, Applied Bioinformatics, 2:181–184, 2004.

[28] Nagasaki, M., Onami, S., Miyano, S., and Kitano, H., Bio-calculus: Its concept and molecular
interaction, Genome Informatics, 10:133–143, 1999.

[29] Reddy, V.N., Liebman, M.N., and Mavrovouniotis, M.L., Qualitative analysis of biochemical
reaction systems, Comput. Biol. Med., 26:9–24, 1996.

A Versatile Petri Net Based Architecture for Modeling 197

[30] Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N., Petri Net Representations in Metabolic
Pathways, In Proceedings First International Conference on Intelligent Systems for Molecular
Biology, Volume 1., MIT Press, 328–336, 1993.

[31] Reisig, W. and Rozenberg, G., eds., Lecture on Petri nets I: Basic models, Lecture Notes in
Computer Science, Springer-Verlag, 1491, 1998.

[32] Roy, S., Bayly, C.I., Gareau, Y., Houtzager, V.M., Kargman, S., Keen, S.L., Rowland, K., Seiden,
I.M., Thornberry, N.A., and Nicholson, D.W., Maintenance of caspase-3 proenzyme dormancy
by an intrinsic ”safety catch” regulatory tripeptide, Proc. Natl. Acad. Sci. USA, 98:6132–6137,
2001.

[33] Roizin, L., Stellar, S., and Liu, J.C., Neuronal nuclear-cytoplasmic changes in Huntington’s
chorea: electron microscope investigations, Raven Press, 1979.

[34] Senut, M.C., Suhr, S.T., Kaspar, B., and Gage, F.H., Intraneuronal aggregate formation and cell
death after viral expression of expanded polyglutamine tracts in the adult rat brain, J. Neurosci.,
20:219–229, 2000.

[35] Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K.,
Tanida, S., Yugi, K., Venter, J.C., and Hutchison, C.A.3rd., E-CELL: software environment for
whole-cell simulation, Bioinformatics, 15:72–84, 1999.

[36] Tran, Q., Coleman, T.P., and Roesser, J.R., Human transformer 2beta and SRp55 interact with
a calcitonin-specific splice enhancer, Biochim. Biophys. Acta., 1625:141–152, 2003.

[37] The Huntington’s Disease Collaborative Research Group, A novel gene containing a trinucleotide
repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell, 72:971–83,
1993.

[38] Webster, S.D., Cason, Z., Lemos, L.B., and Benghuzzi, H., Cytohistologic correlation in patients
with clinical symptoms of postmenopausal bleeding, Biomed. Sci. Instrum., 36:367–372, 2000.

[39] Wheeler, V.C., White, J.K., Gutekunst, C.A., Vrbanac, V., Weaver, M., Li, X.J., Li, S.H., Yi,
H., Vonsattel, J.P., Gusella, J.F., Hersch, S., Auerbach, W., Joyner, A.L., and MacDonald, M.E.,
Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny
striatal neurons in HdhQ92 and HdhQ111 knock-in mice, Hum. Mol. Genet., 9:503–513, 2000.

[40] Wellington, C.L., Ellerby, L.M., Gutekunst, C.A., Rogers, D., Warby, S., Graham, R.K., Loubser,
O., van R., J., Singaraja, R., Yang, Y.Z., Gafni, J., Bredesen, D., Hersch, S.M., Leavitt, B.R.,
Roy, S., Nicholson, D.W., and Hayden, M.R., Caspase cleavage of mutant huntingtin precedes
neurodegeneration in Huntington’s disease, J. Neurosci., 22:7862–7872, 2002.

[41] Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singaraja, R.,
McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., Rowland, K.J., Zhang, T., Rasper,
D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C.A., Nicholson, D.W., Bredesen,
D.E., and Hayden, M.R., Caspase cleavage of gene products associated with triplet expansion
disorders generates truncated fragments containing the polyglutamine tract, J. Biol. Chem.,
273:9158–9167, 1998.

[42] GON: Genomic Object Net project, http://GenomicObject.net/

[43] HFPNe Generic Models, http://genomicobject.net/public/BSB2004/code/

[44] Pnuts, http://www.pnuts.org/

